2019 Volume E102.D Issue 10 Pages 2004-2012
Recognizing the different segments of speech belonging to the same speaker is an important speech analysis task in various applications. Recent works have shown that there was an underlying manifold on which speaker utterances live in the model-parameter space. However, most speaker clustering methods work on the Euclidean space, and hence often fail to discover the intrinsic geometrical structure of the data space and fail to use such kind of features. For this problem, we consider to convert the speaker i-vector representation of utterances in the Euclidean space into a network structure constructed based on the local (k) nearest neighbor relationship of these signals. We then propose an efficient community detection model on the speaker content network for clustering signals. The new model is based on the probabilistic community memberships, and is further refined with the idea that: if two connected nodes have a high similarity, their community membership distributions in the model should be made close. This refinement enhances the local invariance assumption, and thus better respects the structure of the underlying manifold than the existing community detection methods. Some experiments are conducted on graphs built from two Chinese speech databases and a NIST 2008 Speaker Recognition Evaluations (SREs). The results provided the insight into the structure of the speakers present in the data and also confirmed the effectiveness of the proposed new method. Our new method yields better performance compared to with the other state-of-the-art clustering algorithms. Metrics for constructing speaker content graph is also discussed.