2016 Volume E99.D Issue 9 Pages 2377-2380
For an efficient processing of large data in a distributed system, Hadoop MapReduce performs task scheduling such that tasks are distributed with consideration of the data locality. The data locality, however, is limitedly exploited, since it is pursued one node at a time basis without considering the global optimality. In this paper, we propose a novel task scheduling algorithm that globally considers the data locality. Through experiments, we show our algorithm improves the performance of MapReduce in various situations.