Abstract
Modular design has recently emerged as an efficient solution to build large data center (DC) facilities. Modular DCs are based on stand-alone prefabricated modules (i.e., PODs) that can be easily installed and interconnected. PODs can generate a large amount of traffic and thus require an ultra-high-capacity interconnection network. However, current electronic and optical interconnect architectures applied to modular DCs may experience major scalability problems in terms of high energy consumption and cabling complexity. To address these problems, we investigate five optical interconnect architectures based on spatial division multiplexing (SDM), and for each architecture, we propose a resource allocation strategy. We also present an extensive comparison among the SDM architectures in terms of cost and performance (i.e., blocking probability and throughput), with the objective to find the architecture offering the best trade-off between cost and performance for given DC sizes and traffic load values. Our results demonstrate that, in small modular DCs with low traffic load, an architecture based only on SDM is the best option, while in medium DCs with medium traffic load, an architecture based on coupled SDM and flexgrid wavelength division multiplexing (WDM) with spectral flexibility is the best solution. Finally, for large DCs with high traffic load values, the best trade-off between cost and performance is achieved by an SDM architecture that is based on uncoupled SDM and flexgrid WDM.
© 2017 Optical Society of America
Full Article | PDF ArticleMore Like This
Li Yan, Matteo Fiorani, Ajmal Muhammad, Massimo Tornatore, Erik Agrell, and Lena Wosinska
J. Opt. Commun. Netw. 10(9) 796-808 (2018)
Yuxin Cheng, Matteo Fiorani, Rui Lin, Lena Wosinska, and Jiajia Chen
J. Opt. Commun. Netw. 9(5) 401-411 (2017)
Federico Pederzolli, Domenico Siracusa, Behnam Shariati, José Manuel Rivas-Moscoso, Elio Salvadori, and Ioannis Tomkos
J. Opt. Commun. Netw. 9(3) B1-B11 (2017)