计算机科学 ›› 2019, Vol. 46 ›› Issue (11): 88-93.doi: 10.11896/jsjkx.190500106

• 网络与通信 • 上一篇    下一篇

无人机视频回传中的动态资源分配机制

贺超1,2, 谢智东1,2, 田畅1   

  1. (陆军工程大学通信工程学院 南京210007)1
    (军事科学院国防科技创新研究院 北京100071)2
  • 收稿日期:2019-05-20 出版日期:2019-11-15 发布日期:2019-11-14
  • 通讯作者: 谢智东(1984-),男,博士,副研究员,主要研究方向为人工智能,E-mail:[email protected]
  • 作者简介:贺超(1982-),女,博士生,助理研究员,主要研究方向为视频传输质量保证,E-mail:[email protected];田畅(1963-),男,博士,教授,博士生导师,主要研究方向为数据链系统与信息感知。
  • 基金资助:
    本文受国家自然科学基金项目(91738201,61401507)资助。

Dynamic Resource Allocation for UAV Video Uploading

HE Chao1,2, XIE Zhi-dong1,2, TIAN Chang1   

  1. (College of Communications Engineering,Army Engineering University of PLA,Nanjing 210007,China)1
    (National Innovation Institute of Defense Technology,Academy of Military Sciences of PLA,Beijing 100071,China)2
  • Received:2019-05-20 Online:2019-11-15 Published:2019-11-14

摘要: 无人机(Unmanned Aerial Vehicles,UAV)通过所携带的传感器实时获取图像和视频。特别地,多架无人机通过构成集群来协同工作,能够高效地完成侦察、感知、测绘等任务,在军事和民用领域都有广泛的应用。然而,无人机拍摄的视频均需要通过无线信道传输到地面站或控制中心,视频业务高清程度的不断提高和集群数量的不断增加,导致对无线信道传输速率的要求越来越高。因此,在有限的无线传输资源约束下,如何在无人机集群中分配资源,使得无人机集群回传视频的质量最大化,是亟需解决的问题。针对该问题,设计了一种分布式资源分配算法。首先,为了区分视频业务与普通数据业务,提出了一种面向用户体验质量的效用函数;然后,围绕该问题建立了势博弈模型,所有的用户仅基于很少的局部信息交互就可以不断独立更新其策略。该算法最终收敛于一组相关均衡,实现了无线资源在集群中的全局优化分配。从视频应用的角度出发,根据不同视频信号的特性,每个无人机用户能够智能地调整信道资源的使用,在有限的无线信道资源情况下,能够实现无人机集群总体效用的最大化。仿真结果表明,该算法能够同时为无线通信资源提供方和无人机视频用户带来便利。

关键词: 分布式算法, 势博弈, 视频业务, 无人机, 资源分配

Abstract: Unmanned Aerial Vehicles (UAV) can capture images and videos in real time by the sensors they carry.In particular,when a cluster of UAVs work together,they are able to efficiently complete reconnaissance,perception,mapping and other tasks,which make them widely used in both military and civil fields.However,all videos captured by UAVs need to be transmitted to the ground station or control center through wireless channels.The requirement of wireless channel transmission rate is higher and higher,along with video service definition unceasing enhancement and the cluster quantity continuous increase.Thus,under the constraint of limited wireless transmission resources,how to allocate them in the UAV cluster to maximize the uploading quality of videos has become an urgent problem to be solved.For this problem,a distributed algorithm was designed.In order to specify video from other data transmission,the QoE-oriented utility function is considered first.Then,around the problem,a potential game model is formulated and all the users can update their strategies with very little information exchange.The algorithm converges to a set of correlated equilibria and achieves the global optimal allocation of wireless resources in the cluster.This algorithm starts from the perspective of video application,and according to the properties of different video signals,each UAV can intelligently adjust the channel resource occupation.The highest total utility of the UAV cluster can be achieved under the limited wireless channel resources.Numeric simulation results indicate that it brings remarkable benefits to both resource providers and UAV video users.

Key words: Distributed algorithm, Potential game, Resource allocation, UAV, Video service

中图分类号: 

  • TN919
[1]美国国防部.陆军神目:美国陆军无人机系统2010-2035路线图[M].丁卫华,孟凡松,译.沈阳:辽宁大学出版社,2011:1-3.
[2]JIANG Q,LEUNG V CM,TANG H,et al.QoS-Guaranteed Adaptive Bandwidth Allocation for Mobile Multiuser Scalable Video Streaming [J].IEEE Wireless Communications Letters,2019,8(3):721-724.
[3]ZHU L,ZHAN C,HU H.Transmission Rate Allocation for Reliable Video Transmission in Aerial Vehicle Networks[C]∥2018 14th International Wireless Communications Mobile Computing Conference (IWCMC).Limassol,2018:30-35.
[4]BAI X,LI Q,TANG Y.A Low-Complexity Resource Allocation Algorithm for Indoor Visible Light Communication Ultra-Dense Networks [J].Applied Sciences,2019,9(7):1391-1408.
[5]ZHU K,NIYATO D,WANG P.Optimal Bandwidth Allocation with Dynamic Service Selection in Heterogeneous Wireless Networks[C]∥IEEE Global Telecommunications Conference (GLOBECOM 2010).Miami,2010:1-5.
[6]LI F W,HUANG X,ZHANG H B,et al.Cluster-based Radio Resource Allocation Mechanism in D2D Networks[J].Computer Science,2018,45(9):123-128,165.(in Chinese)
李方伟,黄旭,张海波,等.D2D网络中基于分簇的无线资源分配机制[J].计算机科学,2018,45(9):123-128,165.
[7]DONG C W,WEN W S.Joint optimization for task offloading in edge computing:An evolutionary game approach[J].Sensors,2019,19(3):740-763.
[8]SARMA A,CHAKRABORTY S,NANDI S.Deciding Handover Points Based on Context-Aware Load Balancing in a WiFi-WiMAX Heterogeneous Network Environment[J].IEEE Transactions on Vehicular Technology,2016,65(1):348-357.
[9]SENOUCI M A,SOUIHI S,HOCEINI S,et al.QoE-based network interface selection for heterogeneous wireless networks:A survey and e-Health case proposal[C]∥2016 IEEE Wireless Communications and Networking Conference.Doha,2016:1-6.
[10]DENG Z,LIU Y,LIU J,et al.QoE-Oriented Rate Allocation for Multipath High-Definition Video Streaming Over Heteroge-neous Wireless Access Networks[J].IEEE Systems Journal,2017,11(4):2524-2535..
[11]ELGABLIL A,ELGHARIANI A,AGGARWAL V,et al.QoE-Aware Resource Allocation for Small Cells[C]∥2018 IEEE Global Communications Conference (GLOBECOM).Abu Dhabi,2018:1-6.
[12]YUAN H,WEI X,YANG F,et al.Cooperative BargainingGame-Based Multiuser Bandwidth Allocation for Dynamic Adaptive Streaming Over HTTP[J].IEEE Transactions on Multimedia,2018,20(1):183-197.
[13]BIAN Y Y.5G Communication technology promotes the development of military UAVs[J].Military Abstract,2019(7):20-23.(in Chinese)
卞颖颖.5G通信技术促进军用无人机发展[J].军事文摘,2019(7):20-23.
[14]谢希仁.计算机网络(第7版)[M].北京:电子工业出版社,2017:375.
[15]XIONG L R,JIN X.QoE Evaluation Model of Mobile Streaming Media[J].Computer Science,2017,44(S2):110-114.(in Chinese)
熊丽荣,金鑫.移动流媒体用户QoE评估模型[J].计算机科学,2017,44(S2):110-114.
[16]SHOAIB K,SVETOSLAV D,ECKEHARD S,et al.MOS-Based Multiuser Multiapplication Cross-Layer Optimization for Mobile Multimedia Communication[J].Advances in Multimedia,2007,2007:1-11.
[17]THAKOLSRI S,KELLERER W,STEINBACH E.QoE-BasedCross-Layer Optimization of Wireless Video with Unperceivable Temporal Video Quality Fluctuation[C]∥2011 IEEE International Conference on Communications (ICC).Kyoto,2011:1-6.
[18]CHOI L U,IVRLAC M T,STEINBACH E,et al.Sequence-level models for distortion-rate behaviour of compressed video[C]∥IEEE International Conference on Image Processing.Genova,2005.
[19]VOORNEVELD M.Best-response potential games[J].Economics Letters,2000,66(3):289-295.
[20]SCUTARI G,BARBAROSSA S,PALOMAR D P.PotentialGames:A Framework for Vector Power Control Problems With Coupled Constraints[C]∥2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.Toulouse,2006.
[21]HART S,MAS-COLELL A.A Simple Adaptive ProcedureLeading to Correlated Equilibrium[J].Econometrica,2000,68(5):1127-1150.
[1] 蹇奇芮, 陈泽茂, 武晓康.
面向无人机通信的认证和密钥协商协议
Authentication and Key Agreement Protocol for UAV Communication
计算机科学, 2022, 49(8): 306-313. https://doi.org/10.11896/jsjkx.220200098
[2] 于滨, 李学华, 潘春雨, 李娜.
基于深度强化学习的边云协同资源分配算法
Edge-Cloud Collaborative Resource Allocation Algorithm Based on Deep Reinforcement Learning
计算机科学, 2022, 49(7): 248-253. https://doi.org/10.11896/jsjkx.210400219
[3] 唐枫, 冯翔, 虞慧群.
基于自适应知识迁移与资源分配的多任务协同优化算法
Multi-task Cooperative Optimization Algorithm Based on Adaptive Knowledge Transfer andResource Allocation
计算机科学, 2022, 49(7): 254-262. https://doi.org/10.11896/jsjkx.210600184
[4] 李梦菲, 毛莺池, 屠子健, 王瑄, 徐淑芳.
基于深度确定性策略梯度的服务器可靠性任务卸载策略
Server-reliability Task Offloading Strategy Based on Deep Deterministic Policy Gradient
计算机科学, 2022, 49(7): 271-279. https://doi.org/10.11896/jsjkx.210600040
[5] 刘漳辉, 郑鸿强, 张建山, 陈哲毅.
多无人机使能移动边缘计算系统中的计算卸载与部署优化
Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems
计算机科学, 2022, 49(6A): 619-627. https://doi.org/10.11896/jsjkx.210600165
[6] 陈博琛, 唐文兵, 黄鸿云, 丁佐华.
基于改进人工势场的未知障碍物无人机编队避障
Pop-up Obstacles Avoidance for UAV Formation Based on Improved Artificial Potential Field
计算机科学, 2022, 49(6A): 686-693. https://doi.org/10.11896/jsjkx.210500194
[7] 谢万城, 李斌, 代玥玥.
空中智能反射面辅助边缘计算中基于PPO的任务卸载方案
PPO Based Task Offloading Scheme in Aerial Reconfigurable Intelligent Surface-assisted Edge Computing
计算机科学, 2022, 49(6): 3-11. https://doi.org/10.11896/jsjkx.220100249
[8] 周天清, 岳亚莉.
超密集物联网络中多任务多步计算卸载算法研究
Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks
计算机科学, 2022, 49(6): 12-18. https://doi.org/10.11896/jsjkx.211200147
[9] 邱旭, 卞浩卜, 吴铭骁, 朱晓荣.
基于5G毫米波通信的高速公路车联网任务卸载算法研究
Study on Task Offloading Algorithm for Internet of Vehicles on Highway Based on 5G MillimeterWave Communication
计算机科学, 2022, 49(6): 25-31. https://doi.org/10.11896/jsjkx.211100198
[10] 胥昊, 曹桂均, 闫璐, 李科, 王振宏.
面向铁路集装箱的高可靠低时延无线资源分配算法
Wireless Resource Allocation Algorithm with High Reliability and Low Delay for Railway Container
计算机科学, 2022, 49(6): 39-43. https://doi.org/10.11896/jsjkx.211200143
[11] 沈家芳, 钱丽萍, 杨超.
面向集能型中继窄带物联网的非正交多址接入和多维网络资源优化
Non-orthogonal Multiple Access and Multi-dimension Resource Optimization in EH Relay NB-IoT Networks
计算机科学, 2022, 49(5): 279-286. https://doi.org/10.11896/jsjkx.210400239
[12] 史殿习, 刘聪, 佘馥江, 张拥军.
GPS拒止环境下基于定位置信度的多无人机协同定位方法
Cooperation Localization Method Based on Location Confidence of Multi-UAV in GPS-deniedEnvironment
计算机科学, 2022, 49(4): 302-311. https://doi.org/10.11896/jsjkx.210200106
[13] 赵耿, 宋鑫宇, 马英杰.
混沌子载波调制的无人机安全数据链路
Secure Data Link of Unmanned Aerial Vehicle Based on Chaotic Sub-carrier Modulation
计算机科学, 2022, 49(3): 322-328. https://doi.org/10.11896/jsjkx.210200022
[14] 潘燕娜, 冯翔, 虞慧群.
基于自适应资源分配池的竞争合作群协同优化算法
Competitive-Cooperative Coevolution for Large Scale Optimization with Computation Resource Allocation Pool
计算机科学, 2022, 49(2): 182-190. https://doi.org/10.11896/jsjkx.201200012
[15] 成昭炜, 沈航, 汪悦, 王敏, 白光伟.
基于深度强化学习的无人机辅助弹性视频多播机制
Deep Reinforcement Learning Based UAV Assisted SVC Video Multicast
计算机科学, 2021, 48(9): 271-277. https://doi.org/10.11896/jsjkx.201000078
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!