计算机科学 ›› 2017, Vol. 44 ›› Issue (Z6): 33-36.doi: 10.11896/j.issn.1002-137X.2017.6A.007

• 综述研究 • 上一篇    下一篇

基于社交媒体的事件感知与多模态事件脉络生成

徐程浩,郭斌,欧阳逸,翟书颖,於志文   

  1. 西北工业大学计算机学院 西安710129,西北工业大学计算机学院 西安710129,西北工业大学计算机学院 西安710129,西北工业大学明德学院 西安710129,西北工业大学计算机学院 西安710129
  • 出版日期:2017-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家重点基础研究发展计划(973计划)(2015CB352400),国家自然科学基金(61332005,9)资助

Event Sensing and Multimodal Event Vein Generation Leveraging Social Media

XU Cheng-hao, GUO Bin, OUYANG Yi, ZHAI Shu-ying and YU Zhi-wen   

  • Online:2017-12-01 Published:2018-12-01

摘要: 随着信息技术的发展和社交媒体的流行,普通用户已经完成了从信息接受者到信息产生者的转变,每个人都可以实时分享自己身边的信息,也可以转发自己感兴趣的内容,这使得社交媒体的数据量迅速增长。在海量数据中蕴含着丰富的社会事件发生和发展的记录,如何有效地从这些数据中挖掘出有价值的信息成为了当前信息领域的重要问题。针对该问题,介绍了基于社交媒体的事件感知与多模态事件脉络生成。基于社交媒体的事件感知与多模态事件脉络生成旨在通过分析社交媒体中的文本、时间、图像、评论、观点、情感和用户交互等多模态数据,感知事件并刻画事件的关系,从而实现对事件的总结。讨论了基于社交媒体的事件感知与多模态事件脉络生成的描述模型、概念、发展历史、关键技术与挑战以及其广泛的应用领域,综述了社交媒体分析在事件感知和事件总结方面的研究进展,并对其未来发展进行了展望。

关键词: 社交媒体,事件感知,多模态数据,事件脉络,跨媒体

Abstract: With the development of information technology and popularity of social media,normal users have become information producers from receivers and everyone can share what happened around them and repost what they are interested in,which makes the information stored in social media increase rapidly.The large amount of data contains abundant and valuable records of social events.How to get valuable informations from these data has become one of the most important problems in information field.This paper introduced the new research field,including crowd-powered event sensing and multimodal summarization to solve this problem.Crowd-powered event sensing and multimodal summarization aim at sensing and analyzing events by analyzing multimodal data existed in social media to predict and summarize events effectively.This paper described the modal of event,the history of sensing,the key technology,challenges and wide application field,summarized the development of event sensing and summarization based social media analysis and looked into the future.

Key words: Social media,Event sensing,Multimodal data,Storyline,Cross media

[1] SAKAKI T,OKAZAKI M,MATSUO Y.Earthquake shakesTwitter users:real-time event detection by social sensors [C]∥Proceedings of the 19th International Conference on World Wide Web.ACM,2010:851-860.
[2] HU M D,LIU S X,WEI F R,et al.Breaking news on twitter [C]∥Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.ACM,2012:2751-2754.
[3] PSALLIDAS F,BECKER H,NAAMAN M,et al.EffectiveEvent Identification in Social Media[J].IEEE Data Eng.Bull.,2013,36(3):42-50.
[4] ZIN T T,TIN P,HAMA H,et al.Knowledge based social network applications to disaster event analysis [C]∥Proceedings of the International Multiconference of Engineers and Computer Scientists.2013.
[5] LAMPOS V,CRISTIANINI N.Tracking the flu pandemic bymonitoring the social web[C]∥2010 2nd International Workshop on Cognitive Information Processing.IEEE,2010:411-416.
[6] SAKAKI T,OKAZAKI M,MATSUO Y.Tweet analysis forreal-time event detection and earthquake reporting system deve-lopment[J].IEEE Transactions on Knowledge and Data Engineering,2013,25(4):919-931.
[7] ZHAO S Q,ZHONG L,WICKRAMASURIYA J,et al.Human as real-time sensors of social and physical events:A case study of twitter and sports games[J].arXiv preprint arXiv:1106.4300,2011.
[8] LI R,LEI K H,KHADIWALA R,et al.Tedas:A twitter-based event detection and analysis system[C]∥2012 IEEE 28th International Conference on Data Engineering.IEEE,2012:1273-1276.
[9] AGARWAL P,VAITHIYANATHAN R,SHARMA ARMA S,et al.Catching the Long-Tail:Extracting Local News Events from Twitter[C]∥ICWSM.2012.
[10] PATHAK N,DELONG C,BANERJEE A,et al.Social topicmodels for community extraction[C]∥The 2nd SNA-KDD workshop.2008.
[11] ZHANG H Z,GILES C L,FOLEY H C,et al.Probabilistic community discovery using hierarchical latent gaussian mixture model[C]∥AAAI.2007:663-668.
[12] LI C L,SUN A X,DATTA A.Twevent:segment-based event detection from tweets [C]∥Proceedings of the 21st ACM International Conference on Information and Knowledge Management.ACM,2012:155-164.
[13] PAN C C,MITRA P.Event detection with spatial latent Di-richlet allocation[C]∥Proceedings of the 11th Annual International ACM/IEEE Joint Conference on Digital Libraries.ACM,2011:349-358.
[14] YANG Y M,PIERCE T,CARBONELL J.A study of retrospective and on-line event detection[C]∥Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,1998:28-36.
[15] KLEINBERG J.Bursty and hierarchical structure in streams[J].Data Mining and Knowledge Discovery,2003,7(4):373-397.
[16] FUNG G P C,YU J X,YU P S,et al.Parameter free bursty events detection in text streams[C]∥Proceedings of the 31st International Conference on Very Large Data Bases.VLDB Endowment,2005:181-192.
[17] ZHANG X M,CHEN X M,CHEN Y,et al.Event detection and popularity prediction in microblogging[J].Neurocomputing,2015,149:1469-1480.
[18] CORNEY D,MARTIN C,GKER A.Two Sides to Every Story:Subjective Event Summarization of Sports Events using Twitter[C]∥[email protected].
[19] BIAN J W,YANG Y,ZHANG H W,et al.Multimedia summarization for social events in microblog stream [J].IEEE Tran-sactions on Multimedia,2015,17(2):216-228.
[20] RUDRA K,GHOSH S,GANGULY N,et al.Extracting Situational Information from Microblogs during Disaster Events:a Classification-Summarization Approach [C]∥Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.ACM,2015:583-592.
[21] MELADIANOS P,NIKOLENTZOS G,ROUSSEAU F,et al.Degeneracy-based real-time sub-event detection in twitter stream[C]∥Ninth International AAAI Conference on Web and Social Media.2015:248-257.
[22] XU J J,LU T C.Seeing the Big Picture from Microblogs:Harnessing Social Signals for Visual Event Summarization[C]∥Proceedings of the 20th International Conference on Intelligent User Interfaces.ACM,2015:62-66.
[23] NICHOLS J,MAHMUD J,DREWS C.Summarizing sporting events using twitter[C]∥Proceedings of the 2012 ACM International Conference on Intelligent User Interfaces.ACM,2012:189-198.
[24] YAN R,WAN X J,LAPATA M,et al.Visualizing timelines:evo-lutionary summarization via iterative reinforcement between text and image streams[C]∥Proceedings of the 21st ACM International Conference on Information and Knowledge Management.ACM,2012:275-284.
[25] HUANG L F,HUANG L E.Optimized Event Storyline Generation based on Mixture-Event-Aspect Model[C]∥EMNLP.2013:726-735.
[26] CHAKRABARTI D,PUNERA K.Event Summarization Using Tweets[C]∥ICWSM.Spain,July 2011:66-73.
[27] CHANG Y,WANG X H,MEI Q Z,et al.Towards Twitter context summarization with user influence models [C]∥Procee-dings of the Sixth ACM International Conference on Web Search and Data Mining.ACM,2013:527-536.
[28] WANG D D,LI T,OGIHARA M.Generating Pictorial Storylines Via Minimum-Weight Connected Dominating Set Approximation in Multi-View Graphs[C]∥AAAI.2012.
[29] LEE P,LAKSHMANAN L V S,MILIOS E.CAST:A Context-Aware Story-Teller for Streaming Social Content[C]∥Procee-dings of the 23rd ACM International Conference on Conference on Information and Knowledge Management.ACM,2014:789-798.
[30] LIN C,LIN C,LI J X,et al.Generating event storylines from microblogs[C]∥Proceedings of the 21st ACM International Conference on Information and Knowledge Management.ACM,2012:175-184.
[31] ZHOU W B,SHEN C,LI T,et al.Generating textual storyline to improve situation awareness in disaster management [C]∥2014 IEEE 15th International Conference on Information Reuse and Integration (IRI).IEEE,2014:585-592.
[32] MCPARLANE P J,MCMINN A J,JOSE J M.Picture thescene:Visually Summarising Social Media Events [C]∥Proceedings of the 23rd ACM International Conference on Confe-rence on Information and Knowledge Management.ACM,2014:1459-1468.
[33] SCHINAS M,PAPADOPOULOS S,K OMPATSIARIS Y,et al.MGraph:multimodal event summarization in social media using topic models and graph-based ranking [J].International Journal of Multimedia Information Retrieval,2016,5(1):51-69.
[34] LYNCH C,ARYAFAR K,ATTENBERG J.Images Don’t Lie:Transferring Deep Visual Semantic Features to Large-Scale Multimodal Learning to Rank[J].arXiv preprint arXiv:1511.06746,2015.
[35] ZHANG J F,GUO B,HAN Q,et al.CrowdStory:multi-layered event storyline generation with mobile crowdsourced data[C]∥Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing:Adjunct.ACM,2016:237-240.
[36] 张佳凡,郭斌,路新江,等.基于移动群智数据的城市热点事件感知方法[J].计算机科学,2015,42(6A):5-9.
[37] 欧阳逸,郭斌,何萌,等.微博事件感知与脉络呈现系统[J].浙江大学学报(工学版),2016,50(6):1176-1182.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!