计算机科学 ›› 2015, Vol. 42 ›› Issue (3): 210-213.doi: 10.11896/j.issn.1002-137X.2015.03.043

• 人工智能 • 上一篇    下一篇

基于文本事件网络自动摘要的抽取方法

杨竣辉,刘宗田,刘 炜,苏小英   

  1. 上海大学计算机工程与科学学院 上海200072;江西理工大学信息工程学院 赣州341000,上海大学计算机工程与科学学院 上海200072,上海大学计算机工程与科学学院 上海200072,上海大学计算机工程与科学学院 上海200072
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然科学基金项目(61273328,61305053)资助

Extraction Method of Text Summarization Based on Event Network

YANG Jun-hui, LIU Zong-tian, LIU Wei and SU Xiao-ying   

  • Online:2018-11-14 Published:2018-11-14

摘要: 将文本按事件方式进行表示,把事件作为基本语义单元来构建事件本体。根据事件间的关系构建事件网络有向图能较好地表达文本的语义信息及事件间的关系重要程度。利用PAGERANK算法测算事件网络图中各节点对应事件的重要度并进行排序,按事件发生的时间顺序,输出事件对应的原语句作为摘要。实验结果表明,基于事件网络的文本自动文摘方法抽取出的摘要效果较好。

关键词: 文本表示,事件本体,事件网络,PAGERANK

Abstract: Text was expressed by the means of event,and event ontology was built by using event as the basic semantic unit.According to the relationship between events,we built event network direct diagram which can express more semantic information of the text and describe the importance of relationship between events.The importance degree of event of the event network corresponding to each node was calculated and ranked by using the PAGERANK algorithm.According to the time sequence of events,event corresponding primitives were exported as abstract.The experimental results show that automatic summary based on the event network method has better performance.

Key words: Text representation,Event ontology,Event-Network,PAGERANK

[1] 胡侠,等.自动文本摘要技术综述[J].情报杂志,2010,9(8):144-147
[2] Lin C Y.Training a Selection Function for Extraction[C]∥Proceeding of the Eighteenth Annual International ACM Conference on Information and Knowledge Management(CIKM).1999:55-62
[3] Jiang Chang-jin,Peng Hong,Ma Qian-li,et al.Automatic Summarization for Chinese Text Based on Combined Words Recognition and Paragraph Clustering[C]∥Proceedings of the 2010 Third International Symposium on Intelligent Information Technology and Security Informatics(IITSI’10).2010:591-594
[4] Z Pei-ying,L Cun-he.Automatic text summarization basedon sentences clustering and extraction[C]∥Proceedings of the 2009 2nd International Conference on Computer Science and Information Technology (ICCSIT 2009).2009:167-170
[5] Chandra M,Gupta V,Paul S K.A Statistical approach for Automatic Text Summarization by Extraction[C]∥2011 International Conference on Communication Systems and Network Technologies(CSNT 2011).2011:268-271
[6] Erkan G,Radev D R.LexRank:Graph-based lexical centrality as salience in text summarization[J].Journal of Artificial Intelligence Research,2004(22):457-479
[7] Zwaan R A,Radvansky G A.Situation models in language comprehension and memory[J].Psychological bulletin,1998,3(2):162-185
[8] ACE (Automatic Contente Extraction) Chinese AnnotationGuidelines for Events[R].National Institute of Standards and Technology,2005
[9] 刘茂福,李文捷,姬东鸿.基于事件项语义图聚类的多文档摘要方法[J].中文信息学报,2010,4(5):77-84
[10] 韩永峰.基于事件抽取的网络新闻多文档自动摘要[J].中文信息学报,2012,6(1):58-66
[11] Ge Shu-zhi,Zhang Zheng-chen,He Hong-shen.Weighted Graph Model Based Sentence Clustering and Ranking for Document Summarization[C]∥4th International Conference on Interaction Sciences (ICIS).2011:90-95
[12] Thwaites P.Causal identifiability via Chain Event Graphs[J].Artificial Intelligence,2013(195):291-315
[13] Zhong Zhao-man,Liu Zong-tian.Ranking Events Based on Event Relation Graph for a Single Document [J].Information Technology Journal,2010,9(1):174-178
[14] 刘宗田,黄美丽,周文,等.面向事件的本体研究[J].计算机科学,2009,36(11):189-192,9
[15] Page L,Brin S,Motwani R,et al.The Pagerank citation rank-ing:Bringing order to the Web,Technical report[J].Stanford University,1998
[16] 蒋效字.基于关键词抽取的自动文摘算法[J].计算机工程,2012,8(3):183-186
[17] 葛斌,李芳芳,李阜,等.基于无向图构建策略的主题句抽取[J].计算机科学,2011,8(5):181-185
[18] Jaruskulchai C,Kruengkrai C.Generic text summarization using local and global properties of sentences[C]∥Proceedings of the IEEE/WIC International Conference on Web Intelligence.Piscataway,USA:IEEE Press,2003:201-206

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!