skip to main content
research-article
Open access

Quad mesh mechanisms

Published: 19 November 2024 Publication History

Abstract

This paper provides computational tools for the modeling and design of quad mesh mechanisms, which are meshes allowing continuous flexions under the assumption of rigid faces and hinges in the edges. We combine methods and results from different areas, namely differential geometry of surfaces, rigidity and flexibility of bar and joint frameworks, algebraic geometry, and optimization. The basic idea to achieve a time-continuous flexion is time-discretization justified by an algebraic degree argument. We are able to prove computationally feasible bounds on the number of required time instances we need to incorporate in our optimization. For optimization to succeed, an informed initialization is crucial. We present two computational pipelines to achieve that: one based on remeshing isometric surface pairs, another one based on iterative refinement. A third manner of initialization proved very effective: We interactively design meshes which are close to a narrow known class of flexible meshes, but not contained in it. Having enjoyed sufficiently many degrees of freedom during design, we afterwards optimize towards flexibility.

References

[1]
Alisher Aikyn, Yang Liu, Dmitry A Lyakhov, Florian Rist, Helmut Pottmann, and Dominik L Michels. 2024. Flexible Kokotsakis meshes with skew faces: Generalization of the orthodiagonal involutive type. Computer-Aided Design 168 (2024), 103669.
[2]
Thomas Bächler, Vladimir Gerdt, Markus Lange-Hegermann, and Daniel Robertz. 2012. Algorithmic Thomas decomposition of algebraic and differential systems. Journal of Symbolic Computation 47, 10 (2012), 1233--1266.
[3]
Eric Baldwin. 2018. SOM Designs Kinematic Sculpture for Chicago Design Week. ArchDaily (Jan 19). https://www.archdaily.com/904506
[4]
Mario Botsch, Stephan Steinberg, Stephan Bischoff, and Leif Kobbelt. 2002. OpenMesh: A Generic and Efficient Polygon Mesh Data Structure. Proc. OpenSG Symposium. https://graphics.uni-bielefeld.de/publications/openmesh.pdf
[5]
Sebastien Callens and Amir Zadpoor. 2018. From flat sheets to curved geometries: Origami and kirigami approaches. Materials Today 21, 3 (2018), 241--264.
[6]
Victor Ceballos Inza, Florian Rist, Johannes Wallner, and Helmut Pottmann. 2023. Developable Quad Meshes and Contact Element Nets. ACM Trans. Graph. 42, 6 (2023), 183:1--13.
[7]
Yan Chen, Rui Peng, and Zhong You. 2015. Origami of thick panels. Science 349 (2015), 396--400. (Issue 6246).
[8]
Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. 2018. Shape from Metric. ACM Trans. Graph. 37, 4 (2018), 63:1--17.
[9]
Robert Connelly. 1987. Infinitesimal Rigidity. in: Theory of rigid structures (unpublished collection). http://pi.math.cornell.edu/~connelly/rigidity.chapter.2.pdf
[10]
Robert Connelly and Herman Servatius. 1994. Higher-order rigidity --- What is the proper definition? Discrete Comput Geom 11 (1994), 193--200.
[11]
Xiangxin Dang, Fan Feng, Paul Plucinsky, Richard D. James, Huiling Duan, and Jianxiang Wang. 2022. Inverse design of deployable origami structures that approximate a general surface. Intl. J. Solids and Structures 234--235, Article 111224 (2022), 18 pages.
[12]
Erik Demaine and Joseph O'Rourke. 2007. Geometric Folding Algorithms. Cambridge Univ. Press.
[13]
Levi H Dudte, Etienne Vouga, Tomohiro Tachi, and L Mahadevan. 2016. Programming curvature using origami tessellations. Nature materials 15, 5 (2016), 583.
[14]
Hans-Christian Ebke, David Bommes, Marcel Campen, and Leif Kobbelt. 2013. QEx: Robust Quad Mesh Extraction. ACM Trans. Graph. 32, 6, Article 168 (2013), 10 pages.
[15]
Ivan Erofeev and Grigory Ivanov. 2020. Orthodiagonal anti-involutive Kokotsakis polyhedra. Mechanism and Machine Theory 146, Article 103713 (2020), 18 pages.
[16]
Thomas A. Evans, Robert J. Lang, Spencer P. Magleby, and Larry L. Howell. 2015a. Rigidly foldable origami gadgets and tessellations. R. Soc. Open Sci. 2, 9, Article 150067 (2015), 18 pages.
[17]
Thomas A. Evans, Robert J. Lang, Spencer P. Magleby, and Larry L. Howell. 2015b. Rigidly foldable Origami Twists. In Origami6. Vol. 1. American Math. Soc, 119--130.
[18]
Fan Feng, Xiangxin Dang, Richard D. James, and Paul Plucinsky. 2020. The designs and deformations of rigidly and flat-foldable quadrilateral mesh origami. J. Mechanics and Physics of Solids 142, Article 104018 (2020), 23 pages.
[19]
Ruslan Guseinov, Eder Miguel, and Bernd Bickel. 2017. CurveUps: Shaping Objects from Flat Plates with Tension-Actuated Curvature. ACM Trans. Graph. 36, 4 (2017), 64:1--12.
[20]
Zeyuan He and Simon D. Guest. 2020. On rigid origami II: quadrilateral creased papers. Proc. R. Soc. A 476, Article 20 (2020), 19 pages.
[21]
Chuck Hoberman. 2006. Transformation in Architecture and Design. In Transportable Environments 3. Taylor & Francis, 70--79.
[22]
Ivan Izmestiev. 2017. Classification of flexible Kokotsakis polyhedra with quadrangular base. Int. Math. Res. Not. 3 (2017), 715--808.
[23]
Ivan Izmestiev, Arvin Rasoulzadeh, and Jonas Tervooren. 2023. Isometric Deformations of Discrete and Smooth T-surfaces. arxiv:2302.08925.
[24]
Amin Jamalimehr, Morad Mirzajanzadeh, Abdolhamid Akbarzadeh, and Damiano Pasini. 2022. Rigidly flat-foldable class of lockable origami-inspired metamaterials with topological stiff states. Nature Commun. 13, Article 1816 (2022), 14 pages.
[25]
Caigui Jiang, Klara Mundilova, Florian Rist, Johannes Wallner, and Helmut Pottmann. 2019. Curve-pleated structures. ACM Trans. Graph. 38, 6 (2019), 169:1--13.
[26]
Caigui Jiang, Cheng Wang, Florian Rist, Johannes Wallner, and Helmut Pottmann. 2020. Quad-mesh based isometric mappings and developable surfaces. ACM Trans. Graph. 39, 4 (2020), 128:1--13.
[27]
Caigui Jiang, Hui Wang, Victor Ceballos Inza, Felix Dellinger, Florian Rist, Johannes Wallner, and Helmut Pottmann. 2021. Using isometries for computational design and fabrication. ACM Trans. Graphics 40, 4 (2021), 42:1--42:12.
[28]
Martin Kilian, Aron Monszpart, and Niloy J. Mitra. 2017. String Actuated Curved Folded Surfaces. ACM Trans. Graph. 36, 3 (2017), 25:1--13.
[29]
Antonios Kokotsakis. 1933. Über bewegliche Polyeder. Math. Ann. 107 (1933), 627--647.
[30]
Mina Konaković, Keenan Crane, Bailin Deng, Sofien Bouaziz, Daniel Piker, and Mark Pauly. 2016. Beyond Developable: Computational Design and Fabrication with Auxetic Materials. ACM Trans. Graph. 35, 4 (2016), 89:1--11.
[31]
Mina Konaković-Luković, Julian Panetta, Keenan Crane, and Mark Pauly. 2018. Rapid Deployment of Curved Surfaces via Programmable Auxetics. ACM Trans. Graph. 37, 4 (2018), 106:1--13.
[32]
Julian Lienhard, Simon Schleicher, Simon Poppinga, Tom Masselter, Markuks Milwich, Thomas Speck, and Jan Knippers. 2011. Flectofin: a hingeless flapping mechanism inspired by nature. Bioinspir. Biomim. 6, Article 045001 (2011), 7 pages.
[33]
Kaj Madsen, Hans Bruun Nielsen, and Ole Tingleff. 2004. Methods for non-linear least squares problems (2nd ed.). Technical Univ. Denmark.
[34]
Luigi Malomo, Jesús Pérez, Emmanuel Iarussi, Nico Pietroni, Eder Miguel, Paolo Cignoni, and Bernd Bickel. 2018. FlexMaps: Computational Design of Flat Flexible Shells for Shaping 3D Objects. ACM Trans. Graph. 37, 6 (2018), 231:1--14.
[35]
Tom Masselter, Simon Poppinga, Julian Lienhard, Simon Schleicher, and Thomas Speck. 2012. The flower of Strelitzia reginae as concept generator for the development of a technical deformation system for architectural purposes. In Proc. 7th. Plant Biomechanics Int. Conf. INRIA, 389--392.
[36]
Toby Mitchell, Arek Mazurek, Christian Hartz, Masaaki Miki, and William Baker. 2018. Structural Applications of the Graphic Statics and Static-Kinematic Dualities: Rigid Origami, Self-Centering Cable Nets, and Linkage Meshes. In Graphic statics. Proc. IASS Symposia, Vol. 16. Article 10, 8 pages.
[37]
Koryo Miura. 1980. Method of Packaging and Deployment of Large Membranes in Space. In 31st Congress Int'l Astronautical Federation (Tokyo 1980).
[38]
Nicolas Montagne, Cyril Douthe, Xavier Tellier, Corentin Fivet, and Olivier Baverel. 2020. Voss surfaces: A design space for geodesic gridshells. Journal of the IASS 61, 4 (2020), 255--263.
[39]
Georg Nawratil. 2023. Generalizing continuous flexible Kokotsakis belts of the isogonal type. In Proc. 20th Int. Conf. Geom. & Graphics, L.-Y. Cheng (Ed.). Springer, 115--126.
[40]
Georg Nawratil. 2024. From axial C-hedra to general P-nets. In Advances in Robot Kinematics 2024. Springer, 340--347. Extended version see arxiv:2401.04649.
[41]
Julian Panetta, Mina Konaković-Luković, Florin Isvoranu, Etienne Bouleau, and Mark Pauly. 2019. X-shells: A new class of deployable beam structures. ACM Trans. Graph. 38, 4 (2019), 83:1--15.
[42]
Stefan Pillwein, Johanna Kübert, Florian Rist, and Przemyslaw Musialski. 2020a. Design and Fabrication of Elastic Geodesic Grid Structures. In Proc. SCF 2020: ACM Symposium on Computational Fabrication. Article 2, 11 pages.
[43]
Stefan Pillwein, Kurt Leimer, Michael Birsak, and Przemyslaw Musialski. 2020b. On Elastic Geodesic Grids and Their Planar to Spatial Deployment. ACM Trans. Graph. 39, 4 (2020), 125:1--12.
[44]
Idzhad Kh. Sabitov. 1992. Local Theory of Bendings of Surfaces. In Geometry III. Springer, 179--256.
[45]
Robert Sauer. 1970. Differenzengeometrie. Springer.
[46]
Wolfgang Schief, Alexander Bobenko, and Tim Hoffmann. 2008. On the integrability of infinitesimal and finite deformations of polyhedral surfaces. In Discrete differential geometry, A. Bobenko et al. (Eds.). Oberwolfach Seminars, Vol. 38. Springer, 67--93.
[47]
Kiumars Sharifmoghaddam, Georg Nawratil, Arvin Rasoulzadeh, and Jonas Tervooren. 2021. Using Flexible Trapezoidal Quad-Surfaces for Transformable Design. In Transformable Structures. Proc. IASS Symposia, Vol. 28. 7:1--13.
[48]
Keyao Song, Xiang Zhou, Shixi Zang, Hai Wang, and Zhong You. 2017. Design of rigid-foldable doubly curved origami tessellations based on trapezoidal crease patterns. Proc. R. Soc. A 473, Article 20170016 (2017), 18 pages.
[49]
Enrique Soriano, Ramon Sastre, and Dionis Boixader. 2019. G-shells: Flat collapsible geodesic mechanisms for gridshells. In Elastic Gridshells and Bending Active Systems. Proc. IASS Annual Symposia, Vol. 11. 6:1--8.
[50]
Hellmuth Stachel. 2010. A kinematic approach to Kokotsakis meshes. Comp. Aided Geom. Design 27 (2010), 428--437.
[51]
Hellmuth Stachel. 2011. What lies betwen rigidity and flexibility of structures. Serbian Architectural J. 3 (2011), 102--115.
[52]
Tomohiro Tachi. 2009. Generalization of rigid foldable quadrilateral mesh origami. J. Int. Ass. Shell & Spatial Structures 50 (2009), 173--179.
[53]
Tomohiro Tachi. 2010a. Freeform rigid-foldable structure using bidirectionally flat-foldable planar quadrilateral mesh. In Advances in Architectural Geometry 2010, C. Ceccato et al. (Eds.). Springer, 87--102.
[54]
Tomohiro Tachi. 2010b. Geometric Considerations for the Design of Rigid Origami Structures. In Proc. IASS Symposium 2010. 771--782.
[55]
Tomohiro Tachi. 2013. Composite Rigid-Foldable Curved Origami Structure. In Proc. 1st Transformables Conf., F. Escrig and J. Sanchez (Eds.). Starbooks, Sevilla, 6 pp.
[56]
Tomohiro Tachi and Gregory Epps. 2011. Designing One-DOF Mechanisms for Architecture by Rationalizing Curved Folding. In Proc. ALGODE Symposium, Y. Ikeda (Ed.). Arch. Institute Japan, Tokyo, 14 pp.
[57]
Chengcheng Tang, Xiang Sun, Alexandra Gomes, Johannes Wallner, and Helmut Pottmann. 2014. Form-finding with Polyhedral Meshes Made Simple. ACM Trans. Graph. 33, 4 (2014), 70:1--9.
[58]
Sivan Toledo. 2003. Taucs, A Library of Sparse Linear Solvers. Tel Aviv University. www.tau.ac.il/~stoledo/taucs
[59]
Aurel Voss. 1888. Über diejenigen Flächen, auf denen zwei Scharen geodätischer Linien ein conjugirtes System bilden. Sitzungsber. Bayer. Akad. Wiss., math.-naturw. Klasse 18 (1888), 95--102.
[60]
Walter Wunderlich. 1951. Zur Differenzengeometrie der Flächen konstanter negativer Krümmung. Sitzungsber. Österr. Ak. Wiss. II 160 (1951), 39--77.
[61]
Kai Xiao, Zihe Liang, Bihui Zou, Xiang Zhou, and Jaehyung Ju. 2022. Inverse design of 3D reconfigurable curvilinear modular origami structures using geometric and topological reconstructions. Nature Commun. 13, Article 7474 (2022), 9 pages.
[62]
Zirui Zhai, Lingling Wu, and Hanqing Jiang. 2021. Mechanical metamaterials based on origami and kirigami. Appl. Phys. Rev. 8, Article 04131 (2021), 22 pages.

Cited By

View all
  • (2025)An Integrated Method for the Reconstruction of Private Renaissance Exhibition Rooms (camerini) Starting from Ippolito II d’Este’s Cabinet of Paintings at His Tiburtine VillaHeritage10.3390/heritage80200548:2(54)Online publication date: 28-Jan-2025

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 43, Issue 6
December 2024
1828 pages
EISSN:1557-7368
DOI:10.1145/3702969
Issue’s Table of Contents
This work is licensed under a Creative Commons Attribution-NonCommercial International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 19 November 2024
Published in TOG Volume 43, Issue 6

Check for updates

Author Tags

  1. transformable design
  2. flexible meshes
  3. kinematics
  4. discrete differential geometry
  5. isometry

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)293
  • Downloads (Last 6 weeks)95
Reflects downloads up to 08 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2025)An Integrated Method for the Reconstruction of Private Renaissance Exhibition Rooms (camerini) Starting from Ippolito II d’Este’s Cabinet of Paintings at His Tiburtine VillaHeritage10.3390/heritage80200548:2(54)Online publication date: 28-Jan-2025

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media