skip to main content
research-article
Open access

Edge-Light: Exploiting Luminescent Solar Concentrators for Ambient Light Communication

Published: 09 September 2024 Publication History

Abstract

A recent advance in embedded Internet of Things (IoT) exploits ambient light for wireless communication. This new paradigm enables highly efficient links via simple light modulation, but the design space has a fundamental constraint: in most State of the Art (SoA) studies, the link can only follow the propagation direction of ambient light. Consider, for example, a swarm of drones and ground robots that want to communicate with sunlight. Drone-to-robot communication could be possible because sunlight travels downwards from the air (drone) to the ground (robot), allowing drones to modulate light to send information to robots beneath them. Robot-to-robot communication, however, is not possible because sunlight does not travel sideways (parallel to the ground). To allow 'lateral communication' with ambient light, we propose using Luminescent Solar Concentrators (LSC). These optical components receive ambient light on their surface and re-direct part of the spectra towards their edges. Considering this optical property of LSC, our work has three main contributions. First, we benchmark various optical properties of LSC to assess their performance for ambient light communication. Second, we combine LSC with liquid crystal (LC) shutters to form lateral links with ambient light. Third, we test our links indoors and outdoors with artificial and natural ambient light, by enhancing two robots with our LSC transceivers and showing that they can exchange basic commands and coordinate tasks by communicating only with sunlight.

Supplemental Material

MP4 File - Video for Edge-Light: Exploiting Luminescent Solar Concentrators for Ambient Light Communication
Videos of the demos of robots' joint tasks using Edge-Light to communicate and coordinate.

References

[1]
Ataberk Aksoy, Ömer Yıldiz, and Sait Eser Karlık. 2024. Comparative Analysis of End Device and Field Test Device Measurements for RSSI, SNR and SF Performance Parameters in an Indoor LoRaWAN Network. Wireless Personal Communications 134, 1 (2024), 339--360.
[2]
N. Aste, L.C. Tagliabue, C. Del Pero, D. Testa, and R. Fusco. 2015. Performance analysis of a large-area luminescent solar concentrator module. Renewable Energy 76 (2015), 330--337. https://doi.org/10.1016/j.renene.2014.11.026
[3]
Haley C. Bauser, Colton R. Bukowsky, Megan Phelan, William Weigand, David R. Needell, Zachary C. Holman, and Harry A. Atwater. 2020. Photonic Crystal Waveguides for >90% Light Trapping Efficiency in Luminescent Solar Concentrators. ACS Photonics 7, 8 (2020), 2122--2131. https://doi.org/10.1021/acsphotonics.0c00593 arXiv:https://doi.org/10.1021/acsphotonics.0c00593
[4]
Matthew R. Bergren, Nikolay S. Makarov, Karthik Ramasamy, Aaron Jackson, Rob Guglielmetti, and Hunter McDaniel. 2018. High-Performance CuInS2 Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows. ACS Energy Letters 3, 3 (2018), 520--525. https://doi.org/10.1021/acsenergylett.7b01346 arXiv:https://doi.org/10.1021/acsenergylett.7b01346
[5]
Rens Bloom, Marco Zúñiga Zamalloa, and Chaitra Pai. 2019. LuxLink: creating a wireless link from ambient light. In Proceedings of the 17th Conference on Embedded Networked Sensor Systems (New York, New York) (SenSys '19). Association for Computing Machinery, New York, NY, USA, 166--178. https://doi.org/10.1145/3356250.3360021
[6]
Yurong Dong, Meng Shi, Xilu Yang, Pan Zeng, Junyi Gong, Sunming Zheng, Mengjie Zhang, Rongqing Liang, Qiongrong Ou, Nan Chi, and Shuyu Zhang. 2017. Nanopatterned luminescent concentrators for visible light communications. Opt. Express 25, 18 (Sep 2017), 21926--21934. https://doi.org/10.1364/OE.25.021926
[7]
Seyed Keyarash Ghiasi, Vivian Dsouza, Koen Langendoen, and Marco Zuniga. 2023. SpectraLux: Towards Exploiting the Full Spectrum with Passive VLC. In Proceedings of the 22nd International Conference on Information Processing in Sensor Networks (San Antonio, TX, USA) (IPSN '23). Association for Computing Machinery, New York, NY, USA, 274--287. https://doi.org/10.1145/3583120.3586966
[8]
Seyed Keyarash Ghiasi, Marco A. Zúñiga Zamalloa, and Koen Langendoen. 2021. A principled design for passive light communication. In Proceedings of the 27th Annual International Conference on Mobile Computing and Networking (New Orleans, Louisiana) (MobiCom '21). Association for Computing Machinery, New York, NY, USA, 121--133. https://doi.org/10.1145/3447993.3448629
[9]
Borja Genoves Guzman, Muhammad Sarmad Mir, Dayrene Frometa Fonseca, Ander Galisteo, Qing Wang, and Domenico Giustiniano. 2023. Prototyping Visible Light Communication for the Internet of Things Using OpenVLC. IEEE Communications Magazine 61, 5 (2023), 122--128. https://doi.org/10.1109/MCOM.001.2200642
[10]
Alberto Jiménez-Solano, José-Maria Delgado-Sánchez, Mauricio E Calvo, José M Miranda-Muñoz, Gabriel Lozano, Diego Sancho, Emilio Sánchez-Cortezón, and Hernán Míguez. 2015. Design and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals. Prog. Photovolt. 23, 12 (Dec. 2015), 1785--1792.
[11]
A. Kerrouche, D.A. Hardy, D. Ross, and B.S. Richards. 2014. Luminescent solar concentrators: From experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV. Solar Energy Materials and Solar Cells 122 (2014), 99--106. https://doi.org/10.1016/j.solmat.2013.11.026
[12]
Chung-Yi Li, Hai-Han Lu, Wen-Shing Tsai, Chao-Yu Feng, Cing-Ru Chou, Yi-Hao Chen, and Agustina Nainggolan. 2020. White-lighting and WDM-VLC system using transmission gratings and an engineered diffuser. Opt. Lett. 45, 22 (Nov 2020), 6206--6209. https://doi.org/10.1364/OL.409843
[13]
Jiangtao Li, Angli Liu, Guobin Shen, Liqun Li, Chao Sun, and Feng Zhao. 2015. Retro-VLC: Enabling Battery-free Duplex Visible Light Communication for Mobile and IoT Applications. In Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications (Santa Fe, New Mexico, USA) (HotMobile '15). Association for Computing Machinery, New York, NY, USA, 21--26. https://doi.org/10.1145/2699343.2699354
[14]
Guiju Liu, Raffaello Mazzaro, Changchun Sun, Yuanming Zhang, Yiqian Wang, Haiguang Zhao, Guangting Han, and Alberto Vomiero. 2020. Role of refractive index in highly efficient laminated luminescent solar concentrators. Nano Energy 70 (2020), 104470. https://doi.org/10.1016/j.nanoen.2020.104470
[15]
Nikolay S. Makarov, Karthik Ramasamy, Aaron Jackson, Andres Velarde, Chloe Castaneda, Nic Archuleta, Damon Hebert, Matthew R. Bergren, and Hunter McDaniel. 2019. Fiber-Coupled Luminescent Concentrators for Medical Diagnostics, Agriculture, and Telecommunications. ACS Nano 13, 8 (2019), 9112--9121. https://doi.org/10.1021/acsnano.9b03335 arXiv:https://doi.org/10.1021/acsnano.9b03335 31291097.
[16]
Pavlos P. Manousiadis, Hyunchae Chun, Sujan Rajbhandari, Dimali A. Vithanage, Rahmat Mulyawan, Grahame Faulkner, Harald Haas, Dominic C. O'Brien, Steve Collins, Graham A. Turnbull, and Ifor D. W. Samuel. 2020. Optical Antennas for Wavelength Division Multiplexing in Visible Light Communications beyond the Étendue Limit. Advanced Optical Materials 8, 4 (2020), 1901139. https://doi.org/10.1002/adom.201901139 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adom.201901139
[17]
Pavlos P. Manousiadis, Sujan Rajbhandari, Rahmat Mulyawan, Dimali A. Vithanage, Hyunchae Chun, Grahame Faulkner, Dominic C. O'Brien, Graham A. Turnbull, Stephen Collins, and Ifor D.W. Samuel. 2016. Wide field-of-view fluorescent antenna for visible light communications beyond the étendue limit. Optica 3, 7 (Jul 2016), 702--706. https://doi.org/10.1364/OPTICA.3.000702
[18]
Fahad Mateen, Mumtaz Ali, Heemuk Oh, and Sung-Kyu Hong. 2019. Nitrogen-doped carbon quantum dot based luminescent solar concentrator coupled with polymer dispersed liquid crystal device for smart management of solar spectrum. Solar Energy 178 (2019), 48--55. https://doi.org/10.1016/j.solener.2018.12.013
[19]
Barry McKenna and Rachel C. Evans. 2017. Towards Efficient Spectral Converters through Materials Design for Luminescent Solar Devices. Advanced Materials 29, 28 (2017), 1606491. https://doi.org/10.1002/adma.201606491 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201606491
[20]
Ioannis Papakonstantinou, Mark Portnoi, and Michael G. Debije. 2021. The Hidden Potential of Luminescent Solar Concentrators. Advanced Energy Materials 11, 3 (2021), 2002883. https://doi.org/10.1002/aenm.202002883 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.202002883
[21]
T. Peyronel, K. J. Quirk, S. C. Wang, and T. G. Tiecke. 2016. Luminescent detector for free-space optical communication. Optica 3, 7 (Jul 2016), 787--792. https://doi.org/10.1364/OPTLCA.3.000787
[22]
Loredana Protesescu, Sergii Yakunin, Maryna I. Bodnarchuk, Franziska Krieg, Riccarda Caputo, Christopher H. Hendon, Ruo Xi Yang, Aron Walsh, and Maksym V. Kovalenko. 2015. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters 15, 6 (2015), 3692--3696. https://doi.org/10.1021/nl5048779 arXiv:https://doi.org/10.1021/nl5048779 25633588.
[23]
Mehran Rafiee, Subhash Chandra, Hind Ahmed, and Sarah J. McCormack. 2019. An overview of various configurations of Luminescent Solar Concentrators for photovoltaic applications. Optical Materials 91 (2019), 212--227. https://doi.org/10.1016/j.optmat.2019.01.007
[24]
Bryce S. Richards and Ian A. Howard. 2023. Luminescent solar concentrators for building integrated photovoltaics: opportunities and challenges. Energy Environ. Sci. 16 (2023), 3214--3239. Issue 8. https://doi.org/10.1039/D3EE00331K
[25]
Marika Savarese, Anna Aliberti, Ilaria De Santo, Edmondo Battista, Filippo Causa, Paolo A. Netti, and Nadia Rega. 2012. Fluorescence Lifetimes and Quantum Yields of Rhodamine Derivatives: New Insights from Theory and Experiment. The Journal of Physical Chemistry A 116, 28 (2012), 7491--7497. https://doi.org/10.1021/jp3021485 arXiv:https://doi.org/10.1021/jp3021485 22667332.
[26]
Jeroen A. H. P. Sol, Gilles H. Timmermans, Abraham J. van Breugel, Albertus P. H. J. Schenning, and Michael G. Debije. 2018. Multistate Luminescent Solar Concentrator "Smart" Windows. Advanced Energy Materials 8, 12 (2018). https://doi.org/10.1002/aenm.201702922 Cited by: 80; All Open Access, Green Open Access, Hybrid Gold Open Access.
[27]
Y. Tanaka, S. Haruyama, and M. Nakagawa. 2000. Wireless optical transmissions with white colored LED for wireless home links. In 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications. PIMRC 2000. Proceedings (Cat. No.00TH8525), Vol. 2. 1325--1329 vol.2. https://doi.org/10.1109/PIMRC.2000.881634
[28]
Mikhail Vasiliev, Kamal Alameh, Mohsin Ali Badshah, Seok-Min Kim, and Mohammad Nur-E-Alam. 2018. Semi-Transparent Energy-Harvesting Solar Concentrator Windows Employing Infrared Transmission-Enhanced Glass and Large-Area Microstructured Diffractive Elements. Photonics 5, 3 (2018). https://doi.org/10.3390/photonics5030025
[29]
Velmenni. 2023. Li-Fi Dongle and Access Point. https://www.velmenni.com/lifi-dongle-access-points
[30]
Purui Wang, Lilei Feng, Guojun Chen, Chenren Xu, Yue Wu, Kenuo Xu, Guobin Shen, Kuntai Du, Gang Huang, and Xuanzhe Liu. 2020. Renovating road signs for infrastructure-to-vehicle networking: a visible light backscatter communication and networking approach. In Proceedings of the 26th Annual International Conference on Mobile Computing and Networking (London, United Kingdom) (MobiCom '20). Association for Computing Machinery, New York, NY, USA, Article 6, 13 pages. https://doi.org/10.1145/3372224.3380883
[31]
Yue Wu, Purui Wang, Kenuo Xu, Lilei Feng, and Chenren Xu. 2020. Turboboosting Visible Light Backscatter Communication. In Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication (Virtual Event, USA) (SIGCOMM '20). Association for Computing Machinery, New York, NY, USA, 186--197. https://doi.org/10.1145/3387514.3406229
[32]
Kenuo Xu, Chen Gong, Bo Liang, Yue Wu, Boya Di, Lingyang Song, and Chenren Xu. 2023. Low-Latency Visible Light Backscatter Networking with RetroMUMIMO. In Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems (Boston, Massachusetts) (SenSys '22). Association for Computing Machinery, New York, NY, USA, 448--461. https://doi.org/10.1145/3560905.3568507
[33]
Talia Xu, Miguel Chávez Tapia, and Marco Zúñiga. 2022. Exploiting Digital Micro-Mirror Devices for Ambient Light Communication. In 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22). USENIX Association, Renton, WA, 387--400. https://www.usenix.org/conference/nsdi22/presentation/xu-talia
[34]
Xieyang Xu, Yang Shen, Junrui Yang, Chenren Xu, Guobin Shen, Guojun Chen, and Yunzhe Ni. 2017. PassiveVLC: Enabling Practical Visible Light Backscatter Communication for Battery-free IoT Applications. In Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking (Snowbird, Utah, USA) (MobiCom '17). Association for Computing Machinery, New York, NY, USA, 180--192. https://doi.org/10.1145/3117811.3117843
[35]
Zhice Yang, Zeyu Wang, Jiansong Zhang, Chenyu Huang, and Qian Zhang. 2015. Wearables Can Afford: Light-weight Indoor Positioning with Visible Light. In Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services (Florence, Italy) (MobiSys '15). Association for Computing Machinery, New York, NY, USA, 317--330. https://doi.org/10.1145/2742647.2742648
[36]
Jun Zhang, Mengjiao Wang, Yi Zhang, Hao He, Wei Xie, Mengmeng Yang, Jianjun Ding, Jun Bao, Song Sun, and Chen Gao. 2015. Optimization of large-size glass laminated luminescent solar concentrators. Solar Energy 117 (2015), 260--267. https://doi.org/10.1016/j.solener.2015.05.004
[37]
Haiguang Zhao. 2019. Refractive index dependent optical property of carbon dots integrated luminescent solar concentrators. Journal of Luminescence 211 (2019), 150--156. https://doi.org/10.1016/j.jlumin.2019.03.039
[38]
Yimu Zhao and Richard R. Lunt. 2013. Transparent Luminescent Solar Concentrators for Large-Area Solar Windows Enabled by Massive Stokes-Shift Nanocluster Phosphors. Advanced Energy Materials 3, 9 (2013), 1143--1148. https://doi.org/10.1002/aenm.201300173

Index Terms

  1. Edge-Light: Exploiting Luminescent Solar Concentrators for Ambient Light Communication

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
      Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies  Volume 8, Issue 3
      September 2024
      1782 pages
      EISSN:2474-9567
      DOI:10.1145/3695755
      Issue’s Table of Contents
      This work is licensed under a Creative Commons Attribution International 4.0 License.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 09 September 2024
      Published in IMWUT Volume 8, Issue 3

      Check for updates

      Author Tags

      1. passive visible light communication
      2. robot-to-robot communication
      3. sunlight communication
      4. visible light communication

      Qualifiers

      • Research-article
      • Research
      • Refereed

      Funding Sources

      • Dutch Research Council (NWO)

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 315
        Total Downloads
      • Downloads (Last 12 months)315
      • Downloads (Last 6 weeks)38
      Reflects downloads up to 31 Jan 2025

      Other Metrics

      Citations

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Full Access

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media