skip to main content
research-article

Real-Time Guarantees in Routerless Networks-on-Chip

Published: 26 September 2023 Publication History

Abstract

This article considers the use of routerless networks-on-chip as an alternative on-chip interconnect for multi-processor systems requiring hard real-time guarantees for inter-processor communication. It presents a novel analytical framework that can provide latency upper bounds to real-time packet flows sent over routerless networks-on-chip, and it uses that framework to evaluate the ability of such networks to provide real-time guarantees. Extensive comparative analysis is provided, considering different architectures for routerless networks and a state-of-the-art wormhole network based on priority-preemptive routers as a baseline.

References

[1]
F. Alazemi, A. AziziMazreah, B. Bose, and L. Chen. 2018. Routerless network-on-chip. In Proceedings of the 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA’18). 492–503.
[2]
R. Ausavarungnirun, C. Fallin, X. Yu, K. K. Chang, G. Nazario, R. Das, G. H. Loh, and O. Mutlu. 2014. Design and evaluation of hierarchical rings with deflection routing. In Proceedings of the IEEE 26th International Symposium on Computer Architecture and High Performance Computing. 230–237.
[3]
E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. 2004. QNoC: QoS architecture and design process for network on chip. Journal of Systems Architecture 50, 2-3 (2004), 105–128.
[4]
S. Bourduas and Z. Zilic. 2007. A hybrid ring/mesh interconnect for network-on-chip using hierarchical rings for global routing. In Proceedings of the International Symposium on Networks-on-Chip (NOCS’07). 195–204.
[5]
A. Burns, L. S. Indrusiak, N. Smirnov, and J. Harrison. 2020. A novel flow control mechanism to avoid multi-point progressive blocking in hard real-time priority-preemptive NoCs. In Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’20). 137–147.
[6]
L. Chen, F. M. Alazemi, and B. Bose. 2020. Routerless networks-on-chip. (May 2020). Patent No. US10657216B2.
[7]
W. J. Dally and B. Towles. 2004. Principles and Practices of Interconnection Networks. Morgan Kaufmann, San Francisco, CA.
[8]
F. Giroudot and A. Mifdaoui. 2019. Tightness and computation assessment of worst-case delay bounds in wormhole networks-on-chip. In Proceedings of the 27th International Conference on Real-Time Networks and Systems (RTNS’19). 19–29.
[9]
K. Goossens, J. Dielissen, and A. Radulescu. 2005. AEthereal network on chip: Concepts, architectures, and implementations. IEEE Design & Test of Computers 22, 5 (2005), 414–421.
[10]
C. Gómez, M. E. Gómez, P. López, and J. Duato. 2008. Reducing packet dropping in a bufferless NoC. In Proceedings of the 14th International Conference on Parallel Processing (Euro-Par’08). 899–909.
[11]
S. L. Hary and F. Ozguner. 1997. Feasibility test for real-time communication using wormhole routing. IET Proceedings–Computers and Digital Techniques 144, 5 (1997), 273–278.
[12]
S. Hesham, J. Rettkowski, D. Goehringer, and M. A. Abd El Ghany. 2017. Survey on real-time networks-on-chip. IEEE Transactions on Parallel and Distributed Systems 28, 5 (2017), 1500–1517.
[13]
L. S. Indrusiak, A. Burns, and B. Nikolic. 2018. Buffer-aware bounds to multi-point progressive blocking in priority-preemptive NoCs. In Proceedings of the Design, Automation, and Test in Europe Conference and Exhibition (DATE’18). 219–224.
[14]
H. Kashif and H. Patel. 2016. Buffer space allocation for real-time priority-aware networks. In Proceedings of the 2016 Real-Time and Embedded Technology and Applications Symposium (RTAS’16). 1–12.
[15]
S. Khan, S. Anjum, U. A. Gulzari, M. K. Afzal, T. Umer, and F. Ishmanov. 2018. An efficient algorithm for mapping real time embedded applications on NoC architecture. IEEE Access 6 (2018), 16324–16335.
[16]
B. Kim, J. Kim, S. Hong, and S. Lee. 1998. A real-time communication method for wormhole switching networks. In Proceedings of the International Conference on Parallel Processing. 527–534.
[17]
T. Lin, D. Penney, M. Pedram, and L. Chen. 2020. A deep reinforcement learning framework for architectural exploration: A routerless NoC case study. In Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA ’20). 99–110.
[18]
S. Liu, T. Chen, L. Li, X. Feng, Z. Xu, H. Chen, F. Chong, and Y. Chen. 2016. IMR: High-performance low-cost multi-ring NoCs. IEEE Transactions on Parallel and Distributed Systems 27, 6 (June2016), 1700–1712.
[19]
Y. Ma, M. N. S. M. Sayuti, and L.S. Indrusiak. 2014. Inexact end-to-end response time analysis as fitness function in search-based task allocation heuristics for hard real-time network-on-chips. In Proceedings of the International Symposium on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC’14). IEEE, Los Alamitos, CA. DOI:
[20]
G. Michelogiannakis, D. Sanchez, W. J. Dally, and C. Kozyrakis. 2010. Evaluating bufferless flow control for on-chip networks. In Proceedings of the ACM/IEEE International Symposium on Networks-on-Chip. 9–16.
[21]
T. Moscibroda and O. Mutlu. 2009. A case for bufferless routing in on-chip networks. ACM SIGARCH Computer Architecture News 37, 3 (June2009), 196–207.
[22]
M. W. Mutka. 1994. Using rate monotonic scheduling technology for real-time communications in a wormhole network. In Proceedings of the Workshop on Parallel and Distributed Real-Time Systems. 194–199.
[23]
B. Nikolic, R. Hofmann, and R. Ernst. 2019. Slot-based transmission protocol for real-time NoCs—SBT-NoC. In Proceedings of the 31st Euromicro Conference on Real-Time Systems (ECRTS’19). Article 26, 22 pages.
[24]
B. Nikolic, S. Tobuschat, L. S. Indrusiak, R. Ernst, and A. Burns. 2019. Real-time analysis of priority-preemptive NoCs with arbitrary buffer sizes and router delays. Real-Time Systems 55, 1 (2019), 63–105.
[25]
W. Penny, D. Palomino, M. S. Porto, B. Zatt, and L. S. Indrusiak. 2019. Design space exploration of HEVC RCL mapped onto NoC-based embedded platforms. In Proceedings of the International Symposium on Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC’19). IEEE, Los Alamitos, CA. DOI:
[26]
D. C. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry, D. Cox, P. Harvey, P. M. Harvey, H. P. Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, M. Pham, J. Pille, S. Posluszny, M. Riley, D. L. Stasiak, M. Suzuoki, O. Takahashi, J. Warnock, S. Weitzel, D. Wendel, and K. Yazawa. 2006. Overview of the architecture, circuit design, and physical implementation of a first-generation cell processor. IEEE Journal of Solid-State Circuits 41, 1 (2006), 179–196.
[27]
Yilian Ribot González and Geoffrey Nelissen. 2020. HopliteRT*: Real-time NoC for FPGA. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39, 11 (2020), 3650–3661. DOI:
[28]
E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, and D. Rajwan. 2012. Power-management architecture of the Intel microarchitecture code-named Sandy Bridge. IEEE Micro 32, 2 (2012), 20–27.
[29]
M. N. S. M. Sayuti and L. S. Indrusiak. 2013. Real-time low-power task mapping in networks-on-chip. In Proceedings of the 2013 IEEE Computer Society Annual Symposium on VLSI (ISVLSI’13). 14–19.
[30]
Z. Shi and A. Burns. 2008. Real-time communication analysis for on-chip networks with wormhole switching. In Proceedings of the 2nd ACM/IEEE International Symposium on Networks-on-Chip (NOCS’08). 161–170.
[31]
D. Siguenza-Tortosa and J. Nurmi. 2002. Proteo: A new approach to network-on-chip. In Proceedings of the IASTED International Conference on Communication Systems and Networks (CSN’02).
[32]
K. W. Tindell, A. Burns, and A. J Wellings. 1994. An extendible approach for analyzing fixed priority hard real-time tasks. Real-Time Systems 6, 2 (1994), 133–151.
[33]
N. Ueter, G. von der Brueggen, J. J. Chen, T. Mitra, and V. Venkataramani. 2019. Simultaneous progressing switching protocols for timing predictable real-time network-on-chips. arXiv:1909.09457v1 [cs.DC] (2019).
[34]
J. Xiao and K. L. Yeung. 2019. Onion: An efficient heuristic for designing routerless network-on-chip. In Proceedings of the 2019 IEEE 44th LCN Symposium on Emerging Topics in Networking (LCN Symposium’19). 125–132. DOI:
[35]
Q. Xiong, Z. Lu, F. Wu, and C. Xie. 2016. Real-time analysis for wormhole NoC: Revisited and revised. In Proceedings of the 2016 International Great Lakes Symposium on VLSI (GLSVLSI’16). 75–80.
[36]
Q. Xiong, F. Wu, Z. Lu, and C. Xie. 2017. Extending real-time analysis for wormhole NoCs. IEEE Transactions on Computers 66, 9 (2017), 1532–1546.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Embedded Computing Systems
ACM Transactions on Embedded Computing Systems  Volume 22, Issue 5
September 2023
217 pages
ISSN:1539-9087
EISSN:1558-3465
DOI:10.1145/3625382
  • Editor:
  • Tulika Mitra
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Journal Family

Publication History

Published: 26 September 2023
Online AM: 23 August 2023
Accepted: 07 August 2023
Revised: 03 July 2023
Received: 21 September 2022
Published in TECS Volume 22, Issue 5

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Response time analysis
  2. real-time networks

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 147
    Total Downloads
  • Downloads (Last 12 months)75
  • Downloads (Last 6 weeks)6
Reflects downloads up to 29 Jan 2025

Other Metrics

Citations

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media