skip to main content
10.1145/3581791.3596868acmconferencesArticle/Chapter ViewAbstractPublication PagesmobisysConference Proceedingsconference-collections
research-article

Enabling Native WiFi Connectivity for Ambient Backscatter

Published: 18 June 2023 Publication History

Abstract

WiFi backscatter communication has required unwanted constraints on either excitations or receivers since its inception eight years ago. We present Chameleon, the first native WiFi backscatter system where WiFi tags can generate native WiFi packets using uncontrolled productive WiFi as carriers. Our tag-only solution requires no particular excitation patterns and no change for software/hardware on WiFi NICs. The key insight is that the Chameleon tag can demodulate productive WiFi and backscatter this arbitrary carrier into a full-function packet using on-the-fly modulation. We prototype WiFi tags using ultra-low-power FPGAs and evaluate them in real-world scenarios where excitations are ambient traffic and backscatter receivers are a range of COTS NICs. Comprehensive field studies show that the maximal backscatter throughput of Chameleon is almost 1 Mbps, which is over 125× and 1000× better than WiTAG and FS-Backscatter. Also, we show that Chameleon can natively communicate with various COTS WiFi devices on Windows, iOS, and Android platforms. We believe this native WiFi backscatter design will enable ubiquitous WiFi connectivity for billions of IoT devices via widely available mobile gadgets and existing wireless infrastructure.

References

[1]
[n. d.]. https://github.com/hui811116/gr-wifi-dsss. ([n. d.]).
[2]
[n. d.]. https://www.keysight.com/us/en/products/software/pathwave-design-software. ([n. d.]).
[3]
[n. d.]. https://w.wol.ph/2015/08/28/maximum-wifi-transmission-power-country/. ([n. d.]).
[4]
[n. d.]. Global Wi-Fi Enabled Devices Shipment Forecast. https://www.researchandmarkets.com/reports/5135535/global-wi-fi-enabled-devices-shipment-forecast. ([n. d.]).
[5]
A. Abedi, F. Dehbashi, M. Mazaheri, O. Abari, and T. Brecht. 2020. Witag: Seamless wifi backscatter communication. In Proc. of ACM SIGCOMM.
[6]
D. Bharadia, K. Joshi, M. Kotaru, and S. Katti. 2015. Backfi: High throughput wifi backscatter. In Proc. of ACM SIGCOMM.
[7]
L. Chen, W. Hu, K. Jamieson, X. Chen, D. Fang, and J. Gummeson. 2021. Pushing the Physical Limits of IoT Devices with Programmable Metasurfaces. In Proc. of USENIX NSDI.
[8]
Z. Chi, X. Liu, W. Wang, Y. Yao, and T. Zhu. 2020. Leveraging ambient lte traffic for ubiquitous passive communication. In Proc. of ACM SIGCOMM.
[9]
Q. Dong, J. Wu, W. Hu, and J. Crowcroft. 2007. Practical Network Coding in Wireless Networks. In Proc. of ACM MobiCom.
[10]
M. Dunna, M. Meng, P. Wang, C. Zhang, P. P Mercier, and D. Bharadia. 2021. SyncScatter: Enabling WiFi like synchronization and range for WiFi backscatter Communication. In Proc. of USENIX NSDI.
[11]
J. F Ensworth and M. S Reynolds. 2017. BLE-backscatter: Ultralow-power IoT nodes compatible with Bluetooth 4.0 low energy (BLE) smartphones and tablets. IEEE Transactions on Microwave Theory and Techniques 65, 9 (2017), 3360--3368.
[12]
N. Gershenfeld, R. Krikorian, and D. Cohen. 2004. The internet of things. Scientific American 291, 4 (2004), 76--81.
[13]
R. Ghaffarivardavagh, S. Afzal, O. Rodriguez, and F. Adib. 2020. Ultra-Wideband Underwater Backscatter via Piezoelectric Metamaterials. In Proc. of ACM SIGCOMM.
[14]
R. Ghaffarivardavagh, S. Afzal, O. Rodriguez, and F. Adib. 2020. Underwater Backscatter Localization: Toward a Battery-Free Underwater GPS. In Proc. of ACM HotNets.
[15]
W. Gong, S. Chen, and J. Liu. 2017. Towards higher throughput rate adaptation for backscatter networks. In Proc. of IEEE ICNP.
[16]
W. Gong, S. Chen, J. Liu, and Z. Wang. 2018. MobiRate: Mobility-Aware Rate Adaptation Using PHY Information for Backscatter Networks. In Proc. of IEEE INFOCOM.
[17]
W. Gong, H. Liu, J. Liu, X. Fan, K. Liu, Q. Ma, and X. Ji. 2018. Channel-Aware Rate Adaptation for Backscatter Networks. IEEE/ACM Transactions on Networking (2018).
[18]
W. Gong, H. Liu, K. Liu, Q. Ma, and Y. Liu. 2016. Exploiting channel diversity for rate adaptation in backscatter communication networks. In Proc. of IEEE INFOCOM.
[19]
W. Gong, K. Liu, and Y. Liu. 2015. Directional Diagnosis for Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems (2015).
[20]
W. Gong, L. Yuan, Q. Wang, and J. Zhao. 2020. Multiprotocol backscatter for personal IoT sensors. In Proc. of ACM CoNEXT.
[21]
X. Guo, L. Shangguan, Y. He, N. Jing, J. Zhang, H. Jiang, and Y. Liu. 2022. Saiyan: Design and Implementation of a Low-power Demodulator for LoRa Backscatter Systems. In Proc. of USENIX NSDI.
[22]
Z. Huang and W. Gong. 2022. EAScatter: Excitor-Aware Bluetooth Backscatter. In Proc. of IEEE/ACM IWQoS.
[23]
V. Iyer, R. Nandakumar, A. Wang, S. B. Fuller, and S. Gollakota. 2019. Living IoT: A Flying Wireless Platform on Live Insects. In Proc. of ACM MobiCom.
[24]
V. Iyer, V. Talla, B. Kellogg, S. Gollakota, and J. Smith. 2016. Inter-technology backscatter: Towards internet connectivity for implanted devices. In Proc. of ACM SIGCOMM.
[25]
J. Jang and F. Adib. 2019. Underwater backscatter networking. In Proc. of ACM SIGCOMM.
[26]
J. Jiang, Z. Xu, F. Dang, and J. Wang. 2021. Long-Range Ambient LoRa Backscatter with Parallel Decoding. In Proc. of ACM MobiCom.
[27]
S. Jog, J. Guan, S. Madani, R. Lu, S. Gong, D. Vasisht, and H. Hassanieh. 2022. Enabling IoT Self-Localization Using Ambient 5G Signals. In Proc. of USENIX NSDI.
[28]
S. Jog, Z. Liu, A. Franques, V. Fernando, S. Abadal, J. Torrellas, and H. Hassanieh. 2021. One Protocol to Rule Them All: Wireless Network-on-Chip using Deep Reinforcement Learning. In Proc. of USENIX NSDI.
[29]
B. Kellogg, A. Parks, S. Gollakota, J. R Smith, and D. Wetherall. 2014. Wi-Fi backscatter: Internet connectivity for RF-powered devices. In Proc. of ACM SIGCOMM.
[30]
B. Kellogg, V. Talla, S. Gollakota, and J. R Smith. 2016. Passive wi-fi: Bringing low power to wi-fi transmissions. In Proc. of USENIX NSDI.
[31]
S. Li, H. Zheng, C. Zhang, Y. Song, S. Yang, M. Chen, L. Lu, and M. Li. 2022. Passive DSSS: Empowering the Downlink Communication for Backscatter Systems. In Proc. of USENIX NSDI.
[32]
V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R Smith. 2013. Ambient backscatter: Wireless communication out of thin air. ACM SIGCOMM Computer Communication Review 43, 4 (2013), 39--50.
[33]
X. Liu, Z. Chi, W. Wang, Y. Yao, P. Hao, and T. Zhu. 2021. Verification and Redesign of OFDM Backscatter. In Proc. of USENIX NSDI.
[34]
M. K. Mukerjee, D. Naylor, J. Jiang, D. Han, S. Seshan, and H. Zhang. 2015. Practical, Real-Time Centralized Control for CDN-Based Live Video Delivery. In Proc. of ACM SIGCOMM.
[35]
A. N Parks, A. Liu, S. Gollakota, and J. R Smith. 2014. Turbocharging ambient backscatter communication. ACM SIGCOMM Computer Communication Review 44, 4 (2014), 619--630.
[36]
Y. Peng, L. Shangguan, Y. Hu, Y. Qian, X. Lin, X. Chen, D. Fang, and K. Jamieson. 2018. PLoRa: A passive long-range data network from ambient LoRa transmissions. In Proc. of ACM SIGCOMM.
[37]
M. Rostami, X. Chen, Y. Feng, K. Sundaresan, and D. Ganesan. 2021. MIXIQ: Re-Thinking Ultra-Low Power Receiver Design for next-Generation on-Body Applications. In Proc. of ACM MobiCom.
[38]
V. Talla, M. Hessar, B. Kellogg, A. Najafi, J. Smith, and S. Gollakota. 2017. Lora backscatter: Enabling the vision of ubiquitous connectivity. In Proc. of ACM IMWUT.
[39]
Ambuj Varshney, Carlos Pérez-Penichet, Christian Rohner, and Thiemo Voigt. 2017. LoRea: A Backscatter Architecture That Achieves a Long Communication Range. In Proc. of ACM SenSys.
[40]
A. Wang, V. Iyer, V. Talla, J. R Smith, and S. Gollakota. 2017. {FM} backscatter: Enabling connected cities and smart fabrics. In Proc. of USENIX NSDI.
[41]
F. Wang, J. Liu, and W. Gong. 2019. WiCAR: WiFi-based in-Car Activity Recognition with Multi-Adversarial Domain Adaptation. In Proc. of IEEE/ACM IWQoS.
[42]
Q. Wang, S. Chen, J. Zhao, and W. Gong. 2021. RapidRider: Efficient WiFi Backscatter with Uncontrolled Ambient Signals. In Proc. of IEEE INFOCOM.
[43]
Y. Yang, L. Yuan, J. Zhao, and W. Gong. 2022. Content-agnostic backscatter from thin air. In Proc. of ACM MobiSys.
[44]
L. Yuan and W. Gong. 2022. SubScatter: Sub-symbol WiFi Backscatter for High Throughput. In Proc. of IEEE ICNP.
[45]
M. Zhang, S. Chen, J. Zhao, and W. Gong. 2021. Commodity-level BLE backscatter. In Proc. of ACM MobiSys.
[46]
M. Zhang, J. Zhao, S. Chen, and W. Gong. 2020. Reliable backscatter with commodity ble. In Proc. of IEEE INFOCOM.
[47]
P. Zhang, D. Bharadia, K. Joshi, and S. Katti. 2016. Hitchhike: Practical backscatter using commodity wifi. In Proc. of ACM SenSys.
[48]
P. Zhang, C. Josephson, D. Bharadia, and S. Katti. 2017. Freerider: Backscatter communication using commodity radios. In Proc. of ACM CONEXT.
[49]
P. Zhang, M. Rostami, P. Hu, and D. Ganesan. 2016. Enabling practical backscatter communication for on-body sensors. In Proc. of ACM SIGCOMM.
[50]
J. Zhao, W. Gong, and J. Liu. 2018. Spatial Stream Backscatter Using Commodity WiFi. In Proc. of ACM MobiSys.
[51]
J. Zhao, W. Gong, and J. Liu. 2018. X-tandem: Towards multi-hop backscatter communication with commodity wifi. In Proc. of ACM MobiCom.
[52]
J. Zhao, W. Gong, and J. Liu. 2020. Towards scalable backscatter sensor mesh with decodable relay and distributed excitation. In Proc. of ACM MobiSys.
[53]
Y. Zhao, S. Afzal, W. Akbar, O. Rodriguez, F. Mo, D. Boyle, F. Adib, and H. Haddadi. 2022. Towards battery-free machine learning and inference in underwater environments. In Proc. of ACM HotMobile.

Cited By

View all

Index Terms

  1. Enabling Native WiFi Connectivity for Ambient Backscatter

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    MobiSys '23: Proceedings of the 21st Annual International Conference on Mobile Systems, Applications and Services
    June 2023
    651 pages
    ISBN:9798400701108
    DOI:10.1145/3581791
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 18 June 2023

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. backscatter
    2. wifi
    3. 802.11b

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    MobiSys '23
    Sponsor:

    Acceptance Rates

    MobiSys '23 Paper Acceptance Rate 41 of 198 submissions, 21%;
    Overall Acceptance Rate 274 of 1,679 submissions, 16%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)289
    • Downloads (Last 6 weeks)32
    Reflects downloads up to 26 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media