skip to main content
10.1145/3532213.3532333acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiccaiConference Proceedingsconference-collections
research-article

A Multi-Task Model for Sea-Sky Scene Perception with Information Intersection

Published: 13 July 2022 Publication History
First page of PDF

References

[1]
Q.P.Chen, Y.F. Xie, S.F. Guo, Sensing system of environmental perceptiontechnologies for driverless vehicle : A review of state of the art andchallenges. Sensors and Actuators: A Physical, 2021.
[2]
Yang L, Yang J, Yang K. Adaptive detection for infrared small target under sea-sky complex background[J]. Electronics Letters, 2004, 40(17): 1083-1085.
[3]
]Gui Y, Zhang X H, Shang Y, A real-time sea-sky-line detection method under complicated sea-sky background[C]//Applied Mechanics and Materials. Trans Tech Publications Ltd, 2012, 182: 1826-1831.
[4]
Wang X, Han T X, Yan S. An HOG-LBP human detector with partial occlusion handling[C]//2009 IEEE 12th international conference on computer vision. IEEE, 2009: 32-39.
[5]
Liu W, Anguelov D, Erhan D, Ssd: Single shot multibox detector[C]//European conference on computer vision. Springer, Cham, 2016: 21-37.
[6]
Huang L, Yang Y, Deng Y, Densebox: Unifying landmark localization with end to end object detection[J]. arXiv preprint arXiv:1509.04874, 2015.
[7]
Ren S, He K, Girshick R, Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in neural information processing systems, 2015, 28: 91-99.
[8]
Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
[9]
Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv:2004.10934, 2020.
[10]
Lin T Y, Goyal P, Girshick R, Focal loss for dense object detection[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2980-2988.
[11]
Tian Z, Shen C, Chen H, Fcos: Fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 9627-9636.
[12]
Zhou X, Wang D, Krähenbühl P. Objects as points[J]. arXiv preprint arXiv:1904.07850, 2019.
[13]
Law H, Deng J. Cornernet: Detecting objects as paired keypoints[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 734-750.
[14]
Carion N, Massa F, Synnaeve G, End-to-end object detection with transformers[C]//European Conference on Computer Vision. Springer, Cham, 2020: 213-229.
[15]
Zhu X, Su W, Lu L, Deformable detr: Deformable transformers for end-to-end object detection[J]. arXiv preprint arXiv:2010.04159, 2020.
[16]
Pan X, Shi J, Luo P, Spatial as deep: Spatial cnn for traffic scene understanding[C]//Thirty-Second AAAI Conference on Artificial Intelligence. 2018.
[17]
Qin Z, Wang H, Li X. Ultra fast structure-aware deep lane detection[C]//Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIV 16. Springer International Publishing, 2020: 276-291.
[18]
Tabelini L, Berriel R, Paixao T M, Keep your eyes on the lane: Real-time attention-guided lane detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 294-302.
[19]
He K, Gkioxari G, Dollár P, Mask r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2961-2969.
[20]
Wu D, Liao M, Zhang W, YOLOP: You Only Look Once for Panoptic Driving Perception[J]. arXiv preprint arXiv:2108.11250, 2021.
[21]
Qian Y, Dolan J M, Yang M. DLT-Net: Joint detection of drivable areas, lane lines, and traffic objects[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(11): 4670-4679.
[22]
Li X, Wang W, Hu X, Generalized focal loss v2: Learning reliable localization quality estimation for dense object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 11632-11641.
[23]
Woo S, Park J, Lee J Y, Cbam: Convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 3-19.
[24]
Hou Y, Ma Z, Liu C, Learning lightweight lane detection cnns by self attention distillation[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 1013-1021.
[25]
Tabelini L, Berriel R, Paixao T M, Polylanenet: Lane estimation via deep polynomial regression[C]//2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021: 6150-6156.
[26]
Zhang S, Chi C, Yao Y, Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 9759-9768.
[27]
Tan M, Pang R, Le Q V. Efficientdet: Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 10781-10790.
[28]
Ge Z, Liu S, Wang F, Yolox: Exceeding yolo series in 2021[J]. arXiv preprint arXiv:2107.08430, 2021.
[29]
TuSimple: Tusimple benchmark.https://github.com/TuSimple/tusimple-benchmark, accessed November, 2019

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICCAI '22: Proceedings of the 8th International Conference on Computing and Artificial Intelligence
March 2022
809 pages
ISBN:9781450396110
DOI:10.1145/3532213
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 July 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Multi-Task Model
  2. Object Detection
  3. Sea-Sky Line Positioning

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

ICCAI '22

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)2
Reflects downloads up to 30 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media