skip to main content
research-article
Public Access

Intersection-free rigid body dynamics

Published: 19 July 2021 Publication History

Abstract

We introduce the first implicit time-stepping algorithm for rigid body dynamics, with contact and friction, that guarantees intersection-free configurations at every time step.
Our algorithm explicitly models the curved trajectories traced by rigid bodies in both collision detection and response. For collision detection, we propose a conservative narrow phase collision detection algorithm for curved trajectories, which reduces the problem to a sequence of linear CCD queries with minimal separation. For time integration and contact response, we extend the recently proposed incremental potential contact framework to reduced coordinates and rigid body dynamics.
We introduce a benchmark for rigid body simulation and show that our approach, while less efficient than alternatives, can robustly handle a wide array of complex scenes, which cannot be simulated with competing methods, without requiring per-scene parameter tuning.

Supplementary Material

ZIP File (a183-ferguson.zip)
a183-ferguson.zip
MP4 File (a183-ferguson.mp4)

References

[1]
Mihai Anitescu and Gary D. Hart. 2004a. A Constraint-Stabilized Time-Stepping Approach for Rigid Multibody Dynamics with Joints, Contact and Friction. Internat. J. Numer. Methods Engrg. (2004).
[2]
Mihai Anitescu and Gary D. Hart. 2004b. A Fixed-Point Iteration Approach for Multi-body Dynamics with Contact and Small Friction. Mathematical Programming 101, 1 (2004), 3--32.
[3]
Mihai Anitescu and Florian R. Potra. 1997. Formulating Dynamic Multirigid-Body Contact Problems with Friction as Solvable Linear Complementarity Problems. ASME Nonlinear Dynamics 14 (1997), 231--247.
[4]
Uri M. Ascher and Linda R. Petzold. 1998. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations (1st ed.). Society for Industrial and Applied Mathematics, USA.
[5]
David Baraff. 1989. Analytical Methods for Dynamic Simulation of Non-Penetrating Rigid Bodies. Computer Graphics (Proceedings of SIGGRAPH) 23, 3 (July 1989), 223--232.
[6]
David Baraff. 1991. Coping with Friction for Non-penetrating Rigid Body Simulation. Computer Graphics (Proceedings of SIGGRAPH) 25, 4 (July 1991), 31--41.
[7]
David Baraff. 1994. Fast Contact Force Computation for Nonpenetrating Rigid Bodies. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '94). Association for Computing Machinery, New York, NY, 23--34.
[8]
Jan Bender, Kenny Erleben, Jeff Trinkle, and Erwin Coumans. 2012. Interactive Simulation of Rigid Body Dynamics in Computer Graphics. In Eurographics 2012 - State of the Art Reports, Marie-Paule Cani and Fabio Ganovelli (Eds.). The Eurographics Association.
[9]
Bernard Brogliato. 1999. Nonsmooth Mechanics. Springer-Verlag.
[10]
John Canny. 1986. Collision Detection for Moving Polyhedra. IEEE Transactions on Pattern Analysis and Machine Intelligence Pami-8, 2 (1986), 200--209.
[11]
Michael B. Cline and Dinesh K. Pai. 2003. Post-stabilization for rigid body simulation with contact and constraints. In Proceedings of IEEE International Conference on Robotics and Automation.
[12]
Eulalie Coevoet, Otman Benchekroun, and Paul G. Kry. 2020. Adaptive Merging for Rigid Body Simulation. ACM Transactions on Graphics (2020).
[13]
Erwin Coumans and Yunfei Bai. 2016--2019. PyBullet, a Python module for physics simulation for games, robotics and machine learning. http://pybullet.org.
[14]
Kenny Erleben. 2007. Velocity-based shock propagation for multibody dynamics animation. ACM Transactions on Graphics (2007).
[15]
Kenny Erleben. 2017. Rigid Body Contact Problems using Proximal Operators. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '17). Association for Computing Machinery, New York, NY, Article 13, 12 pages.
[16]
Kenny Erleben. 2018. Methodology for Assessing Mesh-Based Contact Point Methods. ACM Transactions on Graphics 37, 3 (2018).
[17]
Michael Fogleman. 2017. Binary Packing for SLS printing. https://www.michaelfogleman.com/pack3d/.
[18]
F. Sebastin Grassia. 1998. Practical Parameterization of Rotations Using the Exponential Map. Journal of Graphics Tools 3, 3 (March 1998), 29--48.
[19]
Eran Guendelman, Robert Bridson, and Ronald Fedkiw. 2003. Nonconvex Rigid Bodies with Stacking. ACM Transactions on Graphics (Proceedings of SIGGRAPH) (2003).
[20]
Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3.
[21]
James K. Hahn. 1988. Realistic Animation of Rigid Bodies. Computer Graphics (Proceedings of SIGGRAPH) (Aug. 1988), 299--308.
[22]
Ernst Hairer, Christian Lubich, and Gerhard Wanner. 2006. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Vol. 31. Springer.
[23]
David Harmon, Daniele Panozzo, Olga Sorkine, and Denis Zorin. 2011. Interference-Aware Geometric Modeling. ACM Transactions on Graphics 30, 6 (Dec. 2011), 1--10.
[24]
Shu-Wei Hsu and John Keyser. 2010. Piles of Objects. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) (2010).
[25]
Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing library. https://libigl.github.io/
[26]
Couro Kane, Jerrold E Marsden, Michael Ortiz, and Matthew West. 2000. Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems. Internat. J. Numer. Methods Engrg. 49, 10 (Dec. 2000).
[27]
Danny M. Kaufman, Shinjiro Sueda, Doug L. James, and Dinesh K. Pai. 2008. Staggered Projections for Frictional Contact in Multibody Systems. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 27, 5 (2008).
[28]
Michael Lerch, German Tischler, Jürgen Wolff Von Gudenberg, Werner Hofschuster, and Walter Krämer. 2006. FILIB++, a Fast Interval Library Supporting Containment Computations. ACM Trans. Math. Software 32, 2 (June 2006), 299--324.
[29]
Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental Potential Contact: Intersection- and Inversion-free Large Deformation Dynamics. ACM Transactions on Graphics 39, 4 (2020).
[30]
Per Lötstedt. 1982. Numerical Simulation of Time-Dependent Contact Friction Problems in Rigid Body Mechanics. SIAM Journal of Scientific Statistical Computing 5, 2 (1982), 370--393.
[31]
Libin Lu, Matthew J. Morse, Abtin Rahimian, Georg Stadler, and Denis Zorin. 2019. Scalable Simulation of Realistic Volume Fraction Red Blood Cell Flows through Vascular Networks. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '19). Association for Computing Machinery, New York, NY, Article 6, 30 pages.
[32]
M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and T. Y. Kim. 2020. Primal/Dual Descent Methods for Dynamics. In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA '20). Eurographics Association, Goslar, DEU, Article 9, 12 pages.
[33]
Khaled Mammou. 2020. V-HACD. https://github.com/kmammou/v-hacd
[34]
Jerrold E. Marsden and Tudor S. Ratiu. 2013. Introduction to Mechanics and Symmetry. Springer.
[35]
Hammad Mazhar, Toby Heyn, Dan Negrut, and Alessandro Tasora. 2015. Using Nesterov's Method to Accelerate Multibody Dynamics with Friction and Contact. 34, 3, Article 32 (May 2015), 14 pages.
[36]
Brian Mirtich. 2000. Timewarp Rigid Body Simulation. Annual Conference Series (Proceedings of SIGGRAPH), 193--200.
[37]
Brian Mirtich and John F. Canny. 1995. Impulse-based dynamic simulation of rigid bodies. In Symposium on Interactive 3D Graphics.
[38]
Brian Vincent Mirtich. 1996. Impulse-Based Dynamic Simulation of Rigid Body Systems. Ph.D. Dissertation.
[39]
Jean Jacques Moreau. 1966. Quadratic Programming in Mechanics: Dynamics of OneSided Constraints. SIAM Journal on Control 4, 1 (1966), 153--158.
[40]
Jean Jacques Moreau. 1988. Unilateral Contact and Dry Friction in Finite Freedom Dynamics. Nonsmooth Mechanics and Applications, CISM Courses and Lectures 302 (1988), 1--82.
[41]
Jürgen Moser and Alexander P. Veselov. 1991. Discrete Versions of Some Classical Integrable Systems and Factorization of Matrix Polynomials. Communications in Mathematical Physics 139 (1991), 217--243.
[42]
Matthias Müller, Miles Macklin, Nuttapong Chentanez, Stefan Jeschke, and Tae-Yong Kim. 2020. Detailed Rigid Body Simulation with Extended Position Based Dynamics. Computer Graphics Forum 39, 8 (2020), 101--112.
[43]
B. Owren and B. Welfert. 2000. The Newton Iteration on Lie Groups. BIT Numerical Mathematics 40 (2000), 121--145.
[44]
Jia Pan, Liangjun Zhang, and Dinesh Manocha. 2012. Collision-Free and Smooth Trajectory Computation in Cluttered Environments. The International Journal of Robotics Research 31, 10 (2012), 1155--1175.
[45]
Xavier Provot. 1997. Collision and Self-Collision Handling in Cloth Model Dedicated to Design Garments. In Computer Animation and Simulation. Springer, 177--189.
[46]
Stéphane Redon, Abderrahmane Kheddar, and Sabine Coquillart. 2002a. Fast Continuous Collision Detection between Rigid Bodies. Computer Graphics Forum 21, 3 (2002), 279--287.
[47]
Stéphane Redon, Abderrahmane Kheddar, and Sabine Coquillart. 2002b. Gauss' least constraints principle and rigid body simulations. In Proceedings of IEEE International Conference on Robotics and Automation, Vol. 1. 517--522.
[48]
Rodrigues. 1840. Des lois géométriques qui régissent les déplacements d'un système solide dans l'espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire. Journal de Mathématiques Pures et Appliquées (1840), 380--440.
[49]
Fabian Schwarzer, Mitul Saha, and Jean-Claude Latombe. 2005. Adaptive Dynamic Collision Checking for Single and Multiple Articulated Robots in Complex Environments. IEEE Transactions on Robotics 21 (July 2005), 338--353.
[50]
SideFX. 2020. Houdini. https://www.sidefx.com/products/houdini/
[51]
Breannan Smith, Danny M. Kaufman, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun. 2012. Reflections on Simultaneous Impact. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 31, 4 (2012), 106:1--106:12.
[52]
John M. Snyder. 1992. Interval Analysis for Computer Graphics. Computer Graphics (Proceedings of SIGGRAPH) 26, 2 (July 1992), 121--130.
[53]
John M. Snyder, Adam R. Woodbury, Kurt Fleischer, Bena Currin, and Alan H. Barr. 1993. Interval Methods for Multi-Point Collisions between Time-Dependent Curved Surfaces. Annual Conference Series (Proceedings of SIGGRAPH), 321--334.
[54]
Jos Stam. 2009. Nucleus: Towards a Unified Dynamics Solver for Computer Graphics. Proceedings of IEEE International Conference on Computer-Aided Design and Computer Graphics (2009), 1--11.
[55]
David Stewart. 2000. Rigid-Body Dynamics with Friction and Impact. SIAM Rev. 42 (March 2000), 3--39.
[56]
David Stewart and J.C. Trinkle. 2000. An Implicit Time-Stepping Scheme for Rigid Body Dynamics with Coulomb Friction. Proceedings of IEEE International Conference on Robotics and Automation 1, 162--169.
[57]
Min Tang, Young J. Kim, and Dinesh Manocha. 2009. C2A: Controlled Conservative Advancement for Continuous Collision Detection of Polygonal Models. In Proceedings of IEEE International Conference on Robotics and Automation. 849--854.
[58]
Min Tang, Young J. Kim, and Dinesh Manocha. 2011. CCQ: Efficient Local Planning Using Connection Collision Query. Springer Berlin Heidelberg, Berlin, Heidelberg, 229--247.
[59]
Alessandro Tasora, Radu Serban, Hammad Mazhar, Arman Pazouki, Daniel Melanz, Jonathan Fleischmann, Michael Taylor, Hiroyuki Sugiyama, and Dan Negrut. 2016. Chrono: An Open Source Multi-physics Dynamics Engine. Springer, 19--49.
[60]
Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. MuJoCo: A physics engine for model-based control. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. 5026--5033.
[61]
Richard Tonge, Feodor Benevolenski, and Andrey Voroshilov. 2012. Mass Splitting for Jitter-Free Parallel Rigid Body Simulation. ACM Transactions on Graphics (2012).
[62]
Jeff Trinkle, Jong-Shi Pang, Sandra Sudarsky, and Grace Lo. 1995. On Dynamic Multi-Rigid-Body Contact Problems with Coulomb Friction. Technical Report. Texas A&M University, Department of Computer Science.
[63]
Warwick Tucker. 2011. Validated Numerics: A Short Introduction to Rigorous Computations. Princeton University Press, USA.
[64]
Etienne Vouga, Breannan Smith, Danny M. Kaufman, Rasmus Tamstorf, and Eitan Grinspun. 2017. All's Well That Ends Well: Guaranteed Resolution of Simultaneous Rigid Body Impact. ACM Transactions on Graphics 36, 4 (July 2017).
[65]
Bin Wang, François Faure, and Dinesh K. Pai. 2012. Adaptive Image-based Intersection Volume. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 31, 4 (July 2012).
[66]
Bolun Wang, Zachary Ferguson, Teseo Schneider, Xin Jiang, Marco Attene, and Daniele Panozzo. 2020. A Large Scale Benchmark and an Inclusion-Based Algorithm for Continuous Collision Detection. arXiv:2009.13349 [cs.GR]
[67]
J.M.P. van Waveren. 2005. Robust Continuous Collision Detection Between Arbitrary Polyhedra Using Trajectory Parameterization of Polyhedral Features. (March 2005).
[68]
Andrew Witkin and David Baraff. 2001. Physically Based Modeling. In SIGGRAPH 2001 Course Notes.
[69]
Hongyi Xu, Yili Zhao, and Jernej Barbič. 2014. Implicit Multibody Penalty-based Distributed Contact. IEEE Transactions on Visualization and Computer Graphics 20, 9 (2014).
[70]
Liangjun Zhang, Young J. Kim, and Dinesh Manocha. 2007a. C-DIST: Efficient Distance Computation for Rigid and Articulated Models in Configuration Space. In Proceedings of ACM Symposium on Solid and Physical Modeling (Beijing, China) (SPM '07). Association for Computing Machinery, New York, NY, 159--169.
[71]
Liangjun Zhang, Young J. Kim, Gokul Varadhan, and Dinesh Manocha. 2007b. Generalized Penetration Depth Computation. Computer-Aided Design 39, 8 (2007), 625--638.
[72]
Xinyu Zhang, Minkyoung Lee, and Young J Kim. 2006. Interactive Continuous Collision Detection for Non-convex Polyhedra. The Visual Computer 22, 9-11 (2006), 749--760.
[73]
Xinyu Zhang, Stephane Redon, Minkyoung Lee, and Young J. Kim. 2007c. Continuous Collision Detection for Articulated Models Using Taylor Models and Temporal Culling. ACM Transactions on Graphics 26, 3 (July 2007), 15--es.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 40, Issue 4
August 2021
2170 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/3450626
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 19 July 2021
Published in TOG Volume 40, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. contact mechanics
  2. continuous collision detection
  3. rigid body simulation

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)335
  • Downloads (Last 6 weeks)40
Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media