skip to main content
10.1145/3345770.3356738acmconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article

Fall Detection Application for the Elderly in the Family Heroes System

Published: 25 November 2019 Publication History

Abstract

Population aging is a considerable challenge for a global society. Indeed, it raises several concerns and gives more or fewer alarmist projections of social-economic problems, that it could engender. Technological solutions to address the issue of aging are now a necessity. Systems based on these solutions combine wearable and ambient sensors, processing software, and user interfaces. Their objective is to monitor dependent and frail elderly people in institutions and/or home. The healthcare monitoring for elderly people is a growing application axis thanks to the massive technology development. Family Heroes is a new concept of an automatic healthcare monitoring system based on the Internet of things. In this paper, we will present the global architecture of our system and the preliminary results of the fall detection using only the Kinect V2. The results show the system, in the first stage of validation, detect 70% of falls using a novel approach threshold-based on the variation of angels of the upper body during the movement cycle.

References

[1]
2016. Ageing. Retrieved June 21, 2019 from https://www.un.org/en/sections/ issues-depth/ageing/index.html
[2]
2016. Le coût des chutes des personnes âgées estimé à 2 milliards d'euros pour les collectivités - Silver Economie. Retrieved June 21, 2019 from https://www.silvereco.fr/le-cout-des-chutes-des-personnes-agees-estimea- 2-milliards-deuros-pour-les-collectivites/3157058
[3]
2017. Qu'est-ce que la silver économie ou économie des seniors ? Retrieved June 21, 2019 from https://www.economie.gouv.fr/entreprises/silver-economiedefinition
[4]
2018. Ageing and health. Retrieved June 2, 2019 from https://www.who.int/newsroom/ fact-sheets/detail/ageing-and-health
[5]
2018. Population par âge Tableaux de l'économie française | Insee. Retrieved June 21, 2019 from https://www.insee.fr/fr/statistiques/3303333'sommaire=3353488
[6]
2019. Best Medical Alert Smartwatches of 2019 - Reviews of the latest in smartwatches for seniors. Retrieved June 1, 2019 from https://www.toptenreviews. com/health/senior-care/best-medical-alert-smartwatches/
[7]
M. Alwan, P.J. Rajendran, S. Kell, D. Mack, S. Dalal, M. Wolfe, and R. Felder. 2006. A Smart and Passive Floor-Vibration Based Fall Detector for Elderly. In 2006 2nd International Conference on Information & Communication Technologies, Vol. 1. IEEE, Damascus, Syria, 1003--1007. https://doi.org/10.1109/ICTTA.2006.1684511
[8]
Maryam Bagheri and Siavosh H. Movahed. 2016. The Effect of the Internet of Things (IoT) on Education Business Model. In 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS). IEEE, Naples, Italy, 435--441. https://doi.org/10.1109/SITIS.2016.74
[9]
Neha Avinash Belapurkar and Baris Aksanli. [n. d.]. Energy-Efficient Human Activity Detection in Smart Spaces. In Proceedings of the 16th ACM International Symposium on Mobility Management and Wireless Access - MobiWac'18. ACM Press, Montreal, QC, Canada. https://doi.org/10.1145/3265863.3265870
[10]
David C. Blair. 1979. Information Retrieval, 2nd ed. C.J. Van Rijsbergen. London: Butterworths; 1979: 208 pp. Price: $32.50. Journal of the American Society for Information Science 30, 6 (Nov. 1979), 374--375. https://doi.org/10.1002/asi.4630300621
[11]
M. Borsato, N. Wognum, and M. Peruzzini. 2016. Transdisciplinary Engineering: Crossing Boundaries: Proceedings of the 23rd ISPE Inc. International Conference on Transdisciplinary Engineering October 3 -- 7, 2016. IOS Press. Google-Books-ID: aBKhDQAAQBAJ.
[12]
A.K. Bourke and G.M. Lyons. 2008. A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Medical Engineering & Physics 30, 1 (Jan. 2008), 84--90. https://doi.org/10.1016/j.medengphy.2006.12.001
[13]
A.K. Bourke, J.V. O'Brien, and G.M. Lyons. 2007. Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait & Posture 26, 2 (July 2007), 194--199. https://doi.org/10.1016/j.gaitpost.2006.09.012
[14]
J. Chen, K. Kwong, D. Chang, J. Luk, and R. Bajcsy. 2005. Wearable Sensors for Reliable Fall Detection. In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, Shanghai, China, 3551--3554. https://doi.org/10.1109/ IEMBS.2005.1617246
[15]
Francisco de Arriba-Pérez, Manuel Caeiro-Rodríguez, and Juan Santos-Gago. 2016. Collection and Processing of Data fromWristWearable Devices in Heterogeneous and Multiple-User Scenarios. Sensors 16, 9 (Sept. 2016), 1538. https://doi.org/10. 3390/s16091538
[16]
Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami. 2013. Internet of Things (IoT): A vision, architectural elements, and future directions. Future generation computer systems 29, 7 (2013), 1645--1660.
[17]
Yin-Fu Huang. 2018. Mobile Health-monitoring System with Inference, Fall Detection, and Cardiovascular Prediction. INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 17, 2 (Sept. 2018), 7284--7296. https://doi.org/10.24297/ ijct.v17i2.7621
[18]
Ala' F. Khalifeh, Adham Saleh, Mahmoud AL-Nuimat, Dhiah el Diehn I. Abou- Tair, and Nasim Alnuman. 2019. Design and Implementation of Internet of Things and Cloud Based Platform for Remote Health Monitoring and Fall Detection. In New Technologies to Improve Patient Rehabilitation, Habib M. Fardoun, Ahlam A. M. Hassan, and M. Elena de la Guía (Eds.). Vol. 1002. Springer International Publishing, Cham, 84--97. https://doi.org/10.1007/978--3-030--16785--1_7
[19]
Christine E. King and Majid Sarrafzadeh. 2018. A Survey of Smartwatches in Remote Health Monitoring. Journal of Healthcare Informatics Research 2, 1--2 (June 2018), 1--24. https://doi.org/10.1007/s41666-017-0012--7
[20]
Shancang Li, Li Da Xu, and Shanshan Zhao. 2015. The internet of things: a survey. Information Systems Frontiers 17, 2 (April 2015), 243--259. https://doi.org/10.1007/ s10796-014--9492--7
[21]
Xue Li, Lanshun Nie, Hanchuan Xu, and Xianzhi Wang. 2018. Collaborative Fall Detection Using Smart Phone and Kinect. Mobile Networks and Applications 23, 4 (Aug. 2018), 775--788. https://doi.org/10.1007/s11036-018-0998-y
[22]
Sumit Majumder, Tapas Mondal, and M. Deen. 2017. Wearable Sensors for Remote Health Monitoring. Sensors 17, 12 (Jan. 2017), 130. https://doi.org/10. 3390/s17010130
[23]
Georgios Mastorakis and Dimitrios Makris. 2014. Fall detection system using Kinect's infrared sensor. Journal of Real-Time Image Processing 9, 4 (Dec. 2014), 635--646. https://doi.org/10.1007/s11554-012-0246--9
[24]
Natthapon Pannurat, Surapa Thiemjarus, and Ekawit Nantajeewarawat. 2014. Automatic Fall Monitoring: A Review. Sensors 14, 7 (July 2014), 12900--12936. https://doi.org/10.3390/s140712900
[25]
A. Pantelopoulos and N.G. Bourbakis. 2010. A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 40, 1 (Jan. 2010), 1--12. https://doi.org/10.1109/TSMCC.2009.2032660
[26]
Rainer Planinc and Martin Kampel. 2013. Introducing the use of depth data for fall detection. Personal and Ubiquitous Computing 17, 6 (Aug. 2013), 1063--1072. https://doi.org/10.1007/s00779-012-0552-z
[27]
Tifenn Rault, Abdelmadjid Bouabdallah, and Yacine Challal. 2014. Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks 67 (July 2014), 104--122. https://doi.org/10.1016/j.comnet.2014.03.027
[28]
Réseau francophone de prévention des traumatismes et de promotion de la sécurité. 2005. Prévention des chutes chez les personnes âgées à domicile: référentiel de bonnes pratiques. Institut national de prévention et d'éducation pour la santé, Saint-Denis. OCLC: 890849547.
[29]
Erik E. Stone and Marjorie Skubic. 2015. Fall Detection in Homes of Older Adults Using the Microsoft Kinect. IEEE Journal of Biomedical and Health Informatics 19, 1 (Jan. 2015), 290--301. https://doi.org/10.1109/JBHI.2014.2312180
[30]
Thi-Thanh-Hai Tran, Thi-Lan Le, and Jeremy Morel. 2014. An analysis on human fall detection using skeleton from Microsoft kinect. In 2014 IEEE Fifth International Conference on Communications and Electronics (ICCE). IEEE, Danang, Vietnam, 484--489. https://doi.org/10.1109/CCE.2014.6916752
[31]
Zhihong Yang, Yingzhao Yue, Yu Yang, Yufeng Peng, Xiaobo Wang, and Wenji Liu. 2011. Study and application on the architecture and key technologies for IOT. In 2011 International Conference on Multimedia Technology. 747--751. https: //doi.org/10.1109/ICMT.2011.6002149
[32]
Y. Zigel, D. Litvak, and I. Gannot. 2009. A Method for Automatic Fall Detection of Elderly People Using Floor Vibrations and Sound-Proof of Concept on Human Mimicking Doll Falls. IEEE Transactions on Biomedical Engineering 56, 12 (Dec. 2009), 2858--2867. https://doi.org/10.1109/TBME.2009.2030171

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
MobiWac '19: Proceedings of the 17th ACM International Symposium on Mobility Management and Wireless Access
November 2019
125 pages
ISBN:9781450369053
DOI:10.1145/3345770
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 25 November 2019

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. elderly
  2. fall detection
  3. healthcare monitoring
  4. iot
  5. kinect v2

Qualifiers

  • Research-article

Conference

MSWiM '19
Sponsor:

Acceptance Rates

Overall Acceptance Rate 83 of 272 submissions, 31%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)30
  • Downloads (Last 6 weeks)4
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media