skip to main content
research-article

Exact Algorithms for the Maximum Planar Subgraph Problem: New Models and Experiments

Published: 25 April 2019 Publication History

Abstract

Given a graph G, the NP-hard Maximum Planar Subgraph problem asks for a planar subgraph of G with the maximum number of edges. The only known non-trivial exact algorithm utilizes Kuratowski’s famous planarity criterion and can be formulated as an integer linear program (ILP) or a pseudo-Boolean satisfiability problem (PBS). We examine three alternative characterizations of planarity regarding their applicability to model maximum planar subgraphs. For each, we consider both ILP and PBS variants, investigate diverse formulation aspects, and evaluate their practical performance.

References

[1]
Carlo Batini, Maurizio Talamo, and Roberto Tamassia. 1984. Computer aided layout of entity relationship diagrams. Journal of Systems and Software 4, 2--3 (1984), 163--173.
[2]
Giuseppe Di Battista, Ashim Garg, Giuseppe Liotta, Roberto Tamassia, Emanuele Tassinari, and Francesco Vargiu. 1997. An experimental comparison of four graph drawing algorithms. Computational Geometry. Theory and Applications 7, 5-6 (1997), 303--325. 11th ACM Symposium on Computational Geometry (Vancouver, BC, 1995).
[3]
Giuseppe Di Battista and Roberto Tamassia. 1989. Incremental planarity testing. In Proceedings of the 30th Annual Symposium on Foundations of Computer Science (SFCS’89). IEEE Computer Society, 436--441.
[4]
Stephan Beyer, Markus Chimani, Ivo Hedtke, and Michal Kotrbčík. 2016. A practical method for the minimum genus of a graph: Models and experiments. In Proceedings of the 15th International Symposium on Experimental Algorithms (SEA 2016), (St. Petersburg, Russia, June 5--8, 2016), Lecture Notes in Computer Science, Vol. 9685. Andrew V. Goldberg and Alexander S. Kulikov (Eds.). Springer, 75--88.
[5]
John M. Boyer and Wendy J. Myrvold. 2004. On the cutting edge: Simplified O(n) planarity by edge addition. Journal of Graph Algorithms and Applications 8, 3 (2004), 241--273.
[6]
Jiazhen Cai, Xiaofeng Han, and Robert E. Tarjan. 1993. An O(m log n)-time algorithm for the maximal planar subgraph problem. SIAM J. Comput. 22, 6 (1993), 1142--1162.
[7]
Gruia Călinescu, Cristina Gomes Fernandes, Ulrich Finkler, and Howard Karloff. 1998. A better approximation algorithm for finding planar subgraphs. Journal of Algorithms. Cognition, Informatics and Logic 27, 2 (1998), 269--302. 7th Annual ACM-SIAM Symposium on Discrete Algorithms (Atlanta, GA, 1996).
[8]
Gruia Călinescu, Cristina Gomes Fernandes, Howard Karloff, and Alexander Zelikovsky. 2003. A new approximation algorithm for finding heavy planar subgraphs. Algorithmica 36, 2 (2003), 179--205.
[9]
Alberto Caprara, Marcus Oswald, Gerhard Reinelt, Robert Schwarz, and Emiliano Traversi. 2011. Optimal linear arrangements using betweenness variables. Mathematical Programming Computation 3, 3 (2011), 261--280.
[10]
Parinya Chalermsook and Andreas Schmid. 2017. Finding triangles for maximum planar subgraphs. In Proceedings of the 11th International Conference and Workshops on Algorithms and Computation, WALCOM 2017, Hsinchu, Taiwan, March 29--31, 2017, Lecture Notes in Computer Science, Vol. 10167, Sheung-Hung Poon, Md. Saidur Rahman, and Hsu-Chun Yen (Eds.). Springer, 373--384.
[11]
Markus Chimani and Carsten Gutwenger. 2009. Non-planar core reduction of graphs. Discrete Mathematics 309, 7 (2009), 1838--1855.
[12]
Markus Chimani and Carsten Gutwenger. 2012. Advances in the planarization method: Effective mutiple edge insertions. Journal of Graph Algorithms and Applications 16, 3 (2012), 729--757.
[13]
Markus Chimani, Carsten Gutwenger, Michael Jünger, Gunnar W. Klau, Karsten Klein, and Petra Mutzel. 2013. The open graph drawing framework (OGDF). In Handbook on Graph Drawing and Visualization, Roberto Tamassia (Ed.). Chapman and Hall/CRC, 543--569. crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125
[14]
Markus Chimani, Ivo Hedtke, and Tilo Wiedera. 2018. Exact algorithms for the maximum planar subgraph problem: New models and experiments. In Proceedings of the 17th International Symposium on Experimental Algorithms, SEA 2018, June 27--29, 2018, L’Aquila, Italy (LIPIcs), Gianlorenzo D’Angelo (Ed.), Vol. 103. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 22:1--22:15.
[15]
Markus Chimani and Petr Hlinený. 2017. A tighter insertion-based approximation of the crossing number. Journal of Combinatorial Optimization 33, 4 (2017), 1183--1225.
[16]
Markus Chimani, Karsten Klein, and Tilo Wiedera. 2016. A note on the practicality of maximal planar subgraph algorithms. In Graph Drawing and Network Visualization (Lecture Notes in Computer Science), Vol. 9801. Springer, 357--364. arxiv.org/abs/1609.02443
[17]
Markus Chimani, Petra Mutzel, and Jens M. Schmidt. 2007. Efficient extraction of multiple Kuratowski subdivisions. In Proceedings of the 15th International Symposium on Graph Drawing, GD 2007, Sydney, Australia, September 24--26, 2007. Revised Papers (Lecture Notes in Computer Science, Vol. 4875), Seok-Hee Hong, Takao Nishizeki, and Wu Quan (Eds.), Springer, 159--170.
[18]
Markus Chimani and Tilo Wiedera. 2018. Cycles to the rescue! Novel constraints to compute maximum planar subgraphs fast. In Proceedings of the 26th Annual European Symposium on Algorithms, ESA 2018, August 20--22, 2018, Helsinki, Finland (LIPIcs), Yossi Azar, Hannah Bast, and Grzegorz Herman (Eds.), Vol. 112. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 19:1--19:14.
[19]
Robert J. Cimikowski. 1994. Branch-and-bound techniques for the maximum planar subgraph problem. International Journal of Computer Mathematics 53, 3--4 (1994), 135--147.
[20]
Robert J. Cimikowski. 1995. An analysis of some heuristics for the maximum planar subgraph problem. In Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, 22--24 January 1995. San Francisco, California, Kenneth L. Clarkson (Ed.). ACM/SIAM, 322--331. dl.acm.org/citation.cfm?id=313651.313713.
[21]
Hristo Djidjev. 1995. A linear algorithm for the maximal planar subgraph problem. In Proceedings of the 4th International Workshop on Algorithms and Data Structures, WADS’95, Kingston, Ontario, Canada, August 16--18, 1995, (Lecture Notes in Computer Science, Vol. 955), Selim G. Akl, Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Nicola Santoro (Eds.), Springer, 369--380.
[22]
Ben Dushnik and E. W. Miller. 1941. Partially ordered sets. American Journal of Mathematics 63 (1941), 600--610.
[23]
M. E. Dyer, Leslie Richard Foulds, and A. M. Frieze. 1985. Analysis of heuristics for finding a maximum weight planar subgraph. European Journal of Operational Research 20, 1 (1985), 102--114.
[24]
Peter Eades, Leslie Richard Foulds, and J. W. Giffin. 1982. An efficient heuristic for identifying a maximum weight planar subgraph. In Combinatorial Mathematics IX (Lecture Notes in Mathematics, Vol. 952), Elizabeth J. Billington, Sheila Oates-Williams, and Anne Penfold Street (Eds.), 239--251.
[25]
Leslie Richard Foulds, Phillip B. Gibbons, and J. W. Giffin. 1985. Facilities layout adjacency determination: An experimental comparison of three graph theoretic heuristics. Operations Research 33, 5 (1985), 1091--1106.
[26]
Leslie Richard Foulds and D. F. Robinson. 1976. A strategy for solving the plant layout problem. Operational Research Quarterly 27, 4 (1976), 845--855. http://www.jstor.org/stable/3009168.
[27]
H. de Fraysseix and P. Rosenstiehl. 1985. A characterization of planar graphs by Trémaux orders. Combinatorica. An International Journal of the János Bolyai Mathematical Society 5, 2 (1985), 127--135.
[28]
Michael R. Garey and David S. Johnson. 1979. Computers and Intractability. A Guide to the Theory of NP-completeness. W. H. Freeman and Co., San Francisco, Calif. x+338 pages.
[29]
Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten Schaub, and Marius Thomas Schneider. 2011. Potassco: The Potsdam answer set solving collection. AI Communications 24, 2 (2011), 107--124.
[30]
Olivier Goldschmidt and Alexan Takvorian. 1994. An efficient graph planarization two-phase heuristic. Networks 24, 2 (1994), 69--73.
[31]
Latif A. Al-Hakim. 1991. Two graph-theoretic procedures for an improved solution to the facilities layout problem. International Journal of Production Research 29, 8 (1991), 1701--1718.
[32]
Merza Hasan and Ibrahim H. Osman. 1995. Local search algorithms for the maximal planar layout problem. International Transactions in Operational Research 2, 1 (1995), 89--106.
[33]
Ivo Hedtke. 2017. Minimum Genus and Maximum Planar Subgraph: Exact Algorithms and General Limits of Approximation Algorithms. Ph.D. Dissertation. Osnabrück University. repositorium.ub.uos.de/handle/urn:nbn:de:gbv:700-2017082416212
[34]
Jan M. Hochstein and Karsten Weihe. 2007. Maximum s-t-flow with k crossings in O(kn log n) time. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7--9, 2007, Nikhil Bansal, Kirk Pruhs, and Clifford Stein (Eds.). SIAM, 843--847. dl.acm.org/citation.cfm?id=1283383.1283473.
[35]
Wen-Lian Hsu. 2005. A linear time algorithm for finding a maximal planar subgraph based on PC-trees. In Proceedings of the 11th Annual International Conference on Computing and Combinatorics, COCOON 2005, Kunming, China, August 16--29, 2005, (Lecture Notes in Computer Science, Vol. 3595), Lusheng Wang (Ed.). Springer, 787--797.
[36]
Rajagopalan Jayakumar, Krishnaiyan Thulasiraman, and M. N. S. Swamy. 1989. O(n<sup>2</sup>) algorithms for graph planarization. IEEE Trans. on CAD of Integrated Circuits and Systems 8, 3 (March 1989), 257--267.
[37]
Michael Jünger and Petra Mutzel. 1996. Maximum planar subgraphs and nice embeddings: Practical layout tools. Algorithmica. An International Journal in Computer Science 16, 1 (1996), 33--59.
[38]
Goos Kant. 1992. An O(n<sup>2</sup>) Maximal Planarization Algorithm Based on PQ-trees. Technical Report RUU-CS-92-03. Department of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, the Netherlands.
[39]
T. Koch, A. Martin, and S. Voß. 2000. SteinLib: An Updated Library on Steiner Tree Problems in Graphs. Tech. Rep. ZIB-Report 00-37. Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustr. 7, Berlin. elib.zib.de/steinlib.
[40]
Kazimierz Kuratowski. 1930. Sur le problème des courbes gauches en topologie.Fundamenta Mathematicae 15 (1930), 271--283.
[41]
Charles H. C. Little and G. Sanjith. 2010. Another characterisation of planar graphs. Electronic Journal of Combinatorics 17, 1 (2010), Note 15, 7.
[42]
P. C. Liu and R. C. Geldmacher. 1979. On the deletion of nonplanar edges of a graph. In Proceedings of the 10th Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979) (Congress. Numer., XXIII--XXIV). Utilitas Math., Winnipeg, Man., 727--738.
[43]
Édouard Lucas. 1960. Récréations Mathématiques. Librairie Scientifique et Technique Albert Blanchard, Paris. xxv+254 pages. gallica.bnf.fr/ark:/12148/bpt6k3943s/f72.image
[44]
Stephen J. Maher, Tobias Fischer, Tristan Gally, Gerald Gamrath, Ambros Gleixner, Robert Lion Gottwald, Gregor Hendel, Thorsten Koch, Marco E. Lübbecke, Matthias Miltenberger, Benjamin Müller, Marc E. Pfetsch, Christian Puchert, Daniel Rehfeldt, Sebastian Schenker, Robert Schwarz, Felipe Serrano, Yuji Shinano, Dieter Weninger, Jonas T. Witt, and Jakob Witzig. 2017. The SCIP Optimization Suite 4.0. Tech. Rep. 17-12. ZIB, Takustr. 7, 14195 Berlin.
[45]
Jürgen Merker and Gerhard Wäscher. 1997. Two new heuristic algorithms for the maximal planar layout problem. Operations-Research-Spektrum 19, 2 (1997), 131--137.
[46]
Petra Mutzel. 1994. The Maximum Planar Subgraph Problem. Ph.D. Dissertation. Köln University.
[47]
Stephen C. North. 1995. 5114 directed graphs. Manuscript.
[48]
Erwin Pesch, Fred Glover, T. Bartsch, F. Salewski, and Ibrahim H. Osman. 1999. Efficient facility layout planning in a maximally planar graph model. International Journal of Production Research 37, 2 (1999), 263--283.
[49]
Timo T. Poranen. 2004. A simulated annealing algorithm for the maximum planar subgraph problem. International Journal of Computer Mathematics 81, 5 (2004), 555--568.
[50]
Timo T. Poranen. 2008. Two new approximation algorithms for the maximum planar subgraph problem. Acta Cybernetica 18, 3 (2008), 503--527.
[51]
Johannes A. La Poutré. 1994. Alpha-algorithms for incremental planarity testing (preliminary version). In Proceedings of the 26th Annual ACM Symposium on Theory of Computing (STOC’94). ACM, New York, 706--715.
[52]
Mauricio G. C. Resende and Celso C. Ribeiro. 1997. A GRASP for graph planarization. Networks 29, 3 (1997), 173--189.
[53]
Walter Schnyder. 1989. Planar graphs and poset dimension. Order. A Journal on the Theory of Ordered Sets and its Applications 5, 4 (1989), 323--343.
[54]
Angelika Steger and Nicholas C. Wormald. 1999. Generating random regular graphs quickly. Combinatorics, Probability and Computing 8, 4 (1999), 377--396. Random graphs and combinatorial structures (Oberwolfach, 1997).
[55]
Edward Szpilrajn. 1930. Sur l’extension de l’ordre partiel. Fundamenta Mathematicae 16, 1 (1930), 386--389. eudml.org/doc/212499.
[56]
Yoshiyasu Takefuji and Kuo Chun Lee. 1989. A near-optimum parallel planarization algorithm. Science 245, 4923 (1989), 1221--1223.
[57]
Yoshiyasu Takefuji, Kuo Chun Lee, and Yong Beom Cho. 1991. Comments on ‘O(n<sup>2</sup>) algorithms for graph planarization’. IEEE Trans. on CAD of Integrated Circuits and Systems 10, 12 (1991), 1582--1583.
[58]
Roberto Tamassia, Giuseppe Di Battista, and Carlo Batini. 1988. Automatic graph drawing and readability of diagrams. IEEE Trans. Systems, Man, and Cybernetics 18, 1 (1988), 61--79.
[59]
Gaston Tarry. 1895. Le problème des labyrinthes. Nouvelles annales de mathématiques: journal des candidats aux écoles polytechnique et normale, Série 3 14 (1895), 187--190. numdam.org/article/NAM_1895_3_14__187_1.pdf.
[60]
Carsten Thomassen. 1980. Planarity and duality of finite and infinite graphs. Journal of Combinatorial Theory. Series B 29, 2 (1980), 244--271.
[61]
Rong-Long Wang, Z. Tang, and Qi Ping Cao. 2002. An efficient parallel algorithm for planarization problem. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49, 3 (2002), 397--401.
[62]
Jeffery Westbrook. 1992. Fast incremental planarity testing. In Proceedings of the 19th International Colloquium on Automata, Languages and Programming, ICALP92, Vienna, Austria, July 13-17, 1992, (Lecture Notes in Computer Science, Vol. 623), Werner Kuich (Ed.). Springer, 342--353.
[63]
Li-Quing Zhao, Cui Zhang, and Rong-Long Wang. 2012. An effective ant colony algorithm for graph planarization problem. In Bio-Inspired Computing and Applications (Lecture Notes in Computer Science, Vol. 6840), De-Shuang Huang, Yong Gan, Prashan Premaratne, and Kyungsook Han (Eds.). Springer, Berlin, 418--425.

Cited By

View all

Index Terms

  1. Exact Algorithms for the Maximum Planar Subgraph Problem: New Models and Experiments

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Journal of Experimental Algorithmics
    ACM Journal of Experimental Algorithmics  Volume 24, Issue
    Special Issue ESA 2016, Regular Papers and Special Issue SEA 2018
    2019
    622 pages
    ISSN:1084-6654
    EISSN:1084-6654
    DOI:10.1145/3310279
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 25 April 2019
    Accepted: 01 February 2019
    Revised: 01 January 2019
    Received: 01 September 2018
    Published in JEA Volume 24

    Author Tags

    1. Maximum planar subgraph
    2. algorithm engineering
    3. graph drawing
    4. integer linear programming
    5. pseudo Boolean satisfiability

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)12
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 06 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media