skip to main content
10.1145/3107411.3107489acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
short-paper
Open access

Deep Recurrent Conditional Random Field Network for Protein Secondary Prediction

Published: 20 August 2017 Publication History

Abstract

Deep learning has become the state-of-the-art method for predicting protein secondary structure from only its amino acid residues and sequence profile. Building upon these results, we propose to combine a bi-directional recurrent neural network (biRNN) with a conditional random field (CRF), which we call the biRNN-CRF. The biRNN-CRF may be seen as an improved alternative to an auto-regressive uni-directional RNN where predictions are performed sequentially conditioning on the prediction in the previous time-step. The CRF is instead nearest neighbor-aware and models for the joint distribution of the labels for all time-steps. We condition the CRF on the output of biRNN, which learns a distributed representation based on the entire sequence. The biRNN-CRF is therefore close to ideally suited for the secondary structure task because a high degree of cross-talk between neighboring elements can be expected. We validate the model on several benchmark datasets. For example, on CB513, a model with 1.7 million parameters, achieves a Q8 accuracy of 69.4 for single model and 70.9 for ensemble, which to our knowledge is state-of-the-art.

References

[1]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Gordon Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. 2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. CoRR abs/1603.04467 (2016). https://arxiv.org/abs/1603.04467 Software available from tensorflow.org.
[2]
D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J. Chen, M. Chrzanowski, A. Coates, G. Diamos, E. Elsen, J. Engel, L. Fan, C. Fougner, T. Han, A. Hannun, B. Jun, P. LeGresley, L. Lin, S. Narang, A. Ng, S. Ozair, R. Prenger, J. Raiman, S. Satheesh, D. Seetapun, S. Sengupta, Y. Wang, Z. Wang, C. Wang, B. Xiao, D. Yogatama, J. Zhan, and Z. Zhu. 2015. Deep Speech 2: End-to- End Speech Recognition in English and Mandarin. CoRR abs/1512.02595 (2015). http://arxiv.org/abs/1512.02595
[3]
J. Ba, J. Kiros, and G. Hinton. 2016. Layer normalization. arXiv preprint arXiv:1607.06450 (2016).
[4]
D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural Machine Translation by Jointly Learning to Align and Translate. CoRR abs/1409.0473 (2014). https://arxiv.org/abs/1409.0473
[5]
C. Bishop. 2006. Pattern recognition and machine learning. Springer.
[6]
A. Busia, J. Collins, and N. Jaitly. 2016. Protein Secondary Structure Prediction Using Deep Multi-scale Convolutional Neural Networks and Next-Step Conditioning. CoRR abs/1611.01503 (2016). http://arxiv.org/abs/1611.01503
[7]
K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio. 2014. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. In Conference on Empirical Methods in Natural Language Processing (EMNLP 2014).
[8]
F. Chollet. 2015. Keras: Theano-based deep learning library. (2015). https://github.com/fchollet/keras
[9]
J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio. 2014. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. CoRR abs/1412.3555 (2014). http://arxiv.org/abs/1412.3555
[10]
X. Glorot, A. Bordes, and Y. Bengio. 2011. Deep Sparse Rectifier Neural Networks. In Aistats, Vol. 15. 275.
[11]
A. Graves. 2012. Supervised sequence labelling with recurrent neural networks. Springer (2012).
[12]
K. He, X. Zhang, S. Ren, and J. Sun. 2015. Deep Residual Learning for Image Recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385
[13]
S. Hochreiter and J. Schmidhuber. 1997. Long Short-Term Memory. Neural Comput. 9, 8 (Nov. 1997), 1735--1780.
[14]
D. Jones. 1999. Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology 292, 2 (1999), 195 -- 202.
[15]
D. Kingma and J. Ba. 2015. Adam: A method for stochastic optimization. International Conference on Learning Representation.
[16]
A. Krizhevsky, I. Sutskever, and G. Hinton. 2012. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.). Curran Associates, Inc., 1097--1105. http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
[17]
J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceedings of the Eighteenth International Conference on Machine Learning (ICML '01). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 282--289. http://dl.acm.org/citation.cfm?id=645530.655813
[18]
Y. LeCun, Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436--444.
[19]
Z. Li and Y. Yu. 2016. Protein Secondary Structure Prediction Using Cascaded Convolutional and Recurrent Neural Networks. arXiv preprint arXiv:1604.07176 (2016).
[20]
B. Monastyrskyy, A. Kryshtafovych, J. Moult, A. Tramontano, and K. Fidelis. 2014. Assessment of protein disorder region predictions in CASP10. Proteins: Structure, Function, and Bioinformatics 82, S2 (2014), 127--137.
[21]
J. Moult, K. Fidelis, A. Kryshtafovych, T. Schwede, and A. Tramontano. 2014. Critical assessment of methods of protein structure prediction (CASP)round x. Proteins: Structure, Function, and Bioinformatics 82, S2 (2014), 1--6.
[22]
D. Ruck, S. Rogers, M. Kabrisky, M. Oxley, and B. Suter. 1990. The multilayer perceptron as an approximation to a Bayes optimal discriminant function. Neural Networks, IEEE Transactions on 1, 4 (1990), 296--298.
[23]
M. Schuster and K. Paliwal. 1997. Bidirectional Recurrent Neural Networks. Trans. Sig. Proc. 45, 11 (Nov. 1997), 2673--2681.
[24]
M. Singh. 2005. Predicting protein secondary and supersecondary structure. Handbook of Computational Molecular Biology, hapman & Hall CRC Computer and Information Science Series (2005).
[25]
S. Sønderby, C. Sønderby, H. Nielsen, and O. Winther. 2015. Convolutional LSTM networks for subcellular localization of proteins. In International Conference on Algorithms for Computational Biology. Springer, 68--80.
[26]
S. Sønderby and O. Winther. 2014. Protein secondary structure prediction with long short term memory networks. arXiv preprint arXiv:1412.7828 (2014).
[27]
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. (2014). http://dl.acm.org/citation.cfm?id=2627435.2670313
[28]
A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. WaveNet: A Generative Model for Raw Audio. CoRR abs/1609.03499 (2016). http://arxiv.org/abs/1609.03499
[29]
S. Wang, J. Peng, J. Ma, and J. Xu. 2016. Protein secondary structure prediction using deep convolutional neural fields. Scientific reports 6 (2016).
[30]
. Wu, M. Schuster, Z. Chen, Q. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, and others. 2016. Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv preprint arXiv:1609.08144 (2016). https://arxiv.org/abs/1609.08144
[31]
J. Zhou and O. Troyanskaya. 2014. Deep Supervised and Convolutional Generative Stochastic Network for Protein Secondary Structure Prediction. In ICML. 745--753.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ACM-BCB '17: Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics
August 2017
800 pages
ISBN:9781450347228
DOI:10.1145/3107411
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 20 August 2017

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. conditional random field
  2. recurrent neural network
  3. secondary protein structure

Qualifiers

  • Short-paper

Conference

BCB '17
Sponsor:

Acceptance Rates

ACM-BCB '17 Paper Acceptance Rate 42 of 132 submissions, 32%;
Overall Acceptance Rate 254 of 885 submissions, 29%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)60
  • Downloads (Last 6 weeks)7
Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media