skip to main content
10.1145/3005422.3005426acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

Ubiquitous real-time geo-spatial localization

Published: 31 October 2016 Publication History

Abstract

Rapidly growing technologies like autonomous navigation require accurate geo-localization in both outdoor and indoor environments. GNSS based outdoor localization has limitation of accuracy, which deteriorates in urban canyons, forested region and is unavailable indoors. Technologies like RFID, UWB, WiFi are used for indoor localization. These suffer limitations of high infrastructure costs, and signal transmission issues like multi-path, and frequent replacement of transciever batteries. We propose an alternative to localize an individual or a vehcile that is moving inside or outside a building. Instead of mobile RF transceivers, we utilize a sensor suite that includes a video camera and an inertial measurement unit. We estimate a motion trajectory of this sensor suite using Visual Odometery. Instead of preinstalled transceivers, we use GIS map for outdoors, or a BIM model for indoors. The transport layer in GIS map or navigable paths in BIM are abstracted as a graph structure. The geo-location of the mobile platform is inferred by first localizing its trajectory. We introduce an adaptive probabilistic inference approach to search for this trajectory in the entire map with no initialization information. Using an effective graph traversal spawn-and-prune strategy, we can localize the mobile platform in real-time. In comparison to other technologies, our approach requires economical sensors and the required map data is typically available in the public domain. Additionally, unlike other technologies which function exclusively indoors or outdoors, our approach functions in both environments. We demonstrate our approach on real world examples of both indoor and outdoor locations.

References

[1]
P. Aggarwal, D. Thomas, L. Ojeda, and J. Borenstein. Map matching and heuristic elimination of gyro drift for personal navigation systems in GPS-denied conditions. Measurement Science and Technology, 22(2):025205, 2011.
[2]
I. P. Alonso, D. F. Llorca, M. Gavilan, S. a. Pardo, M. a. Garcia-Garrido, L. Vlacic, and M. a. Sotelo. Accurate Global Localization Using Visual Odometry and Digital Maps on Urban Environments. Ieee Transactions on Intelligent Transportation Systems, 13(4):1535--1545, 2012.
[3]
S. Ardeshir, A. R. Zamir, A. Torroella, and M. Shah. GIS-Assisted Object Detection and Geospatial Localization. In D. Fleet and T. Pajdla, editors, European Conference on Computer Vision, pages 602--617. Springer, 2014.
[4]
M. S. Asher, S. J. Stafford, R. J. Bamberger, A. Q. Rogers, D. Scheidt, and R. Chalmers. Radionavigation Alternatives for US Army Ground Forces in GPS Denied Environments. In International Technical Meeting of The Institute of Navigation, pages 508--532, San Diego, CA, 2011. ION.
[5]
H. Badino, D. Huber, and T. Kanade. Visual topometric localization. IEEE Intelligent Vehicles Symposium, Proceedings, pages 794--799, 2011.
[6]
M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller. An Atlas framework for scalable mapping. 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), 2(September):1899--1906, 2003.
[7]
M. Brubaker, A. Geiger, and R. Urtasun. Map-Based Probabilistic Visual Self-Localization. IEEE Transactions on Pattern Analysis and Machine Intelligence, (99):1--1, 2015.
[8]
J. Civera, O. G. Grasa, A. J. Davison, and J. M. M. Montiel. 1-Point RANSAC for EKF Filtering. Application to Real-Time Structure from Motion and Visual Odometry. Journal of Field Robotics, 27(5):609--631, 2010.
[9]
L. E. Clement, V. Peretroukhin, J. Lambert, and J. Kelly. The Battle for Filter Supremacy: A Comparative Study of the Multi-State Constraint Kalman Filter and the Sliding Window Filter. In Proceedings -2015 12th Conference on Computer and Robot Vision, CRV 2015, pages 23--30. IEEE, 2015.
[10]
J. Dong and S. Soatto. Domain-Size Pooling in Local Descriptors: DSP-SIFT. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), number 1, pages 5097--5106. IEEE, 2015.
[11]
M. Emery and M. Denko. Ieee 802.11 wlan based real-time location tracking in indoor and outdoor environments. In Electrical and Computer Engineering, 2007. CCECE 2007. Canadian Conference on, pages 1062--1065, April 2007.
[12]
P. Enge. Local area augmentation of gps for the precision approach of aircraft. Proceedings of the IEEE, 87(1):111--132, Jan 1999.
[13]
J. Engel, T. Sch, and D. Cremers. LSD-SLAM: Large-Scale Direct Monocular SLAM. In European Conference on Computer Vision, pages 1--16, 2014.
[14]
G. Floros, B. Van Der Zander, and B. Leibe. OpenStreetSLAM: Global vehicle localization using OpenStreetMaps. Proceedings --- IEEE International Conference on Robotics and Automation, pages 1054--1059, 2013.
[15]
M. Hentschel and B. Wagner. Autonomous robot navigation based on OpenStreetMap geodata. Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on, pages 1645--1650, 2010.
[16]
B. Kitt, A. Geiger, and H. Lategahn. Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme. In IEEE Intelligent Vehicles Symposium, Proceedings, pages 486--492, 2010.
[17]
R. Kumar, M. G. Petovello, and C. Engineering. A Novel GNSS Positioning Technique for Improved Accuracy in Urban Canyon Scenarios using 3D City Model. In ION GNSS+, pages 1--10, Tampa, FL, 2014. Institute of Navigation.
[18]
H. Lategahn, A. Geiger, and B. Kitt. Visual SLAM for autonomous ground vehicles. Proceedings --- IEEE International Conference on Robotics and Automation, pages 1732--1737, 2011.
[19]
J. Levinson, M. Montemerlo, and S. Thrun. Map-Based Precision Vehicle Localization in Urban Environments. Robotics: Science and Systems III, pages 121--128, 2008.
[20]
G. Ligorio and A. Sabatini. Extended Kalman Filter-Based Methods for Pose Estimation Using Visual, Inertial and Magnetic Sensors: Comparative Analysis and Performance Evaluation. Sensors, 13(2):1919--1941, 2013.
[21]
D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2):91--110, 2004.
[22]
R. Mautz. Indoor Positioning Technologies. (February 2012):127, 2012.
[23]
A. I. Mourikis and S. I. Roumeliotis. A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation. In IEEE Int. Conf. on Robotics and Automation (ICRA), number April, pages 3565--3572, Rome, 2007. IEEE.
[24]
D. T. Nguyen, H. Chi, and M. City. A Novel Chamfer Template Matching Method Using Variational Mean Field. In Computer Vision and Pattern Recognition, pages 2425--2432, 2014.
[25]
I. Parra, M. Ángel Sotelo, D. F. Llorca, C. Fernández, A. Llamazares, N. Hernández, and I. García. Visual odometry and map fusion for GPS navigation assistance. In Proceedings of 2011 IEEE International Symposium on Industrial Electronics, pages 832--837, 2011.
[26]
R. Paul and P. Newman. FAB-MAP 3D: Topological mapping with spatial and visual appearance. Proceedings --- IEEE International Conference on Robotics and Automation, pages 2649--2656, 2010.
[27]
K. M. Pesyna, R. W. Heath, and T. E. Humphreys. Centimeter Positioning with a Smartphone-Quality GNSS Antenna. In ION GNSS+, pages 1--10, Tampa, FL, 2014. Institute of Navigation.
[28]
M. Psiaki and H. Jung. Extended Kalman filter methods for tracking weak GPS signals. In ION GNSS+, pages 2539--2553, Portland, Oregon, 2002. ION.
[29]
A. Ranganathan, E. Menegatti, and F. Dellaert. Bayesian inference in the space of topological maps. IEEE Transactions on Robotics, 22(1):92--107, 2006.
[30]
D. Scaramuzza and R. Siegwart. Appearance-guided monocular omnidirectional visual odometry for outdoor ground vehicles. IEEE Transactions on Robotics, 24(5):1015--1026, 2008.
[31]
S. Shekhar and H. Xiong. Encyclopedia of GIS. Springer Publishing Company, Incorporated, 1st edition, 2007.
[32]
D. Strelow and S. Singh. Motion estimation from image and inertial measurements. The International Journal of Robotics Research, 23(12):1157--1195, 2004.
[33]
S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and P. Mahoney. Stanley: The robot that won the darpa grand challenge: Research articles. J. Robot. Syst., 23(9):661--692, Sept. 2006.
[34]
L. Wei, C. Cappelle, Y. Ruichek, and F. Zann. GPS and Stereovision-Based Visual Odometry: Application to Urban Scene Mapping and Intelligent Vehicle Localization. International Journal of Vehicular Technology, 2011:1--17, 2011.
[35]
B. Williams and I. Reid. On combining visual SLAM and visual odometry. Proceedings --- IEEE International Conference on Robotics and Automation, pages 3494--3500, 2010.
[36]
A. D. Wu, E. N. Johnson, M. Kaess, F. Dellaert, and G. Chowdhary. Autonomous Flight in GPS-Denied Environments Using Monocular Vision and Inertial Sensors. Journal of Aerospace Information Systems, 10(4):172--186, 2013.
[37]
J. Yang, K. Yu, and T. Huang. Efficient Highly Over-Complete Sparse Coding using a Mixture Model. In European Conference on Computer Vision, pages 113--126, Crete, 2010.
[38]
A. Yilmaz, O. Javed, and M. Shah. Object tracking: A Survey. ACM Computing Surveys, 38(4):1--44, dec 2006.
[39]
M. Zaman. High precision relative localization using a single camera. In Robotics and Automation, 2007 IEEE International Conference on, pages 3908--3914, April 2007.

Cited By

View all

Index Terms

  1. Ubiquitous real-time geo-spatial localization

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ISA '16: Proceedings of the Eighth ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness
    October 2016
    56 pages
    ISBN:9781450345859
    DOI:10.1145/3005422
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 31 October 2016

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. BIM
    2. GIS
    3. GNSS
    4. SLAM
    5. visual odometry

    Qualifiers

    • Research-article

    Conference

    SIGSPATIAL'16
    Sponsor:

    Acceptance Rates

    ISA '16 Paper Acceptance Rate 5 of 7 submissions, 71%;
    Overall Acceptance Rate 5 of 7 submissions, 71%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)8
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 06 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media