skip to main content
10.1145/2999572.2999589acmconferencesArticle/Chapter ViewAbstractPublication PagesconextConference Proceedingsconference-collections
research-article

D-Watch: Embracing "bad" Multipaths for Device-Free Localization with COTS RFID Devices

Published: 06 December 2016 Publication History

Abstract

Device-free localization, which does not require any device attached to the target is playing a critical role in many applications such as intrusion detection, elderly monitoring, etc. This paper introduces D-Watch, a device-free system built on top of low cost commodity-off-the-shelf (COTS) RFID hardware. Unlike previous works which consider multipaths detrimental, D-Watch leverages the "bad" multipaths to provide a decimeter level localization accuracy without offline training. D-Watch harnesses the angle-of-arrival (AoA) information from the RFID tags' backscatter signals. The key intuition is that whenever a target blocks a signal's propagation path, the signal power experiences a drop which can be accurately captured by the proposed novel P-MUSIC algorithm. The wireless phase calibration scheme proposed does not interrupt the ongoing communication. Real-world experiments demonstrate the effectiveness of D-Watch. In a rich-multipath library environment, D-Watch can localize a human target at a median accuracy of 16.5 cm. In a table area of 2 m×2 m, D-Watch can track a user's fist at a median accuracy of 5.8 cm. D-Watch is capable of localizing multiple targets which is well known to be challenging in passive localization

References

[1]
Alien tags. www.alientechnology.com/tags/.
[2]
Amazon, Inc. https://www.amazon.com/.
[3]
Ans-900 rfid antenna. rf-links.com/newsite/pdf/ans-900.pdf.
[4]
Epc gen2, epcglobal. www.gs1.org/epcglobal.
[5]
Impinj, Inc. www.impinj.com/products/readers/speedway-revolution/.
[6]
Q900f-900 rfid antenna. www.hrtantenna.com/en/products.
[7]
F. Adib, Z. Kabelac, and D. Katabi. Multi-person localization via rf body reflections. In Proc. Usenix NSDI, pages 279--292, 2015.
[8]
F. Adib and D. Katabi. See through walls with wifi! In Proc. ACM SIGCOMM, volume 43, pages 75--86, 2013.
[9]
M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear programming: theory and algorithms. John Wiley & Sons.
[10]
L. Chang, X. Chen, D. Fang, J. Wang, T. Xing, C. Liu, and Z. Tang. Fale: Fine-grained device free localization that can adaptively work in different areas with little effort. Acm Sigcomm Computer Communication Review, 45(5):601--602, 2015.
[11]
L. Chang, X. Chen, Y. Wang, D. Fang, J. Wang, T. Xing, and Z. Tang. Fitloc: Fine-grained and low-cost device-free localization for multiple targets over various areas. In Proc. IEEE INFOCOM, pages 151--159, 2016.
[12]
B. Chen, V. Yenamandra, and K. Srinivasan. Tracking keystrokes using wireless signals. In Proc. ACM Mobisys, pages 31--44, 2015.
[13]
B. Chen, Z. Zhou, and H. Yu. Understanding rfid counting protocols. IEEE/ACM Trans. on Networking, 24(1):312--327, 2016.
[14]
R. Diamant, H. P. Tan, and L. Lampe. Los and nlos classification for underwater acoustic localization. IEEE Trans. on Mobile Computing, 13(2):311--323, 2014.
[15]
A. EPCglobal Inc. Low level reader protocol, version 1.0. 1. 2007.
[16]
M. Flores, U. Klarman, and A. Kuzmanovic. Wi-fm: Resolving neighborhood wireless network affairs by listening to music. In Proc. IEEE ICNP.
[17]
J. Gjengset, J. Xiong, G. McPhillips, and K. Jamieson. Phaser: enabling phased array signal processing on commodity wifi access points. In Proc. ACM MobiCom, pages 153--164, 2014.
[18]
J. Han, C. Qian, X. Wang, D. Ma, J. Zhao, P. Zhang, W. Xi, and Z. Jiang. Twins: Device-free object tracking using passive tags. In Proc. IEEE INFOCOM, pages 469--476, 2014.
[19]
D. Hauschildt and N. Kirchhof. Advances in thermal infrared localization: Challenges and solutions. In International Conference on Indoor Positioning and Indoor Navigation (IPIN), pages 1--8, 2010.
[20]
P. Jain, J. Manweiler, and R. Roy Choudhury. Overlay: Practical mobile augmented reality. In Proc. ACM Mobisys, pages 331--344, 2015.
[21]
J. Kemper and D. Hauschildt. Passive infrared localization with a probability hypothesis density filter. In Proc. IEEE workshop on Positioning Navigation and Communication (WPNC), pages 68--76, 2010.
[22]
M. Kotaru, K. Joshi, D. Bharadia, and S. Katti. Spotfi: Decimeter level localization using wifi. In Proc. ACM SIGCOMM, pages 269--282, 2015.
[23]
S. Kumar, S. Gil, D. Katabi, and D. Rus. Accurate indoor localization with zero start-up cost. In Proc. ACM MobiCom, pages 483--494, 2014.
[24]
T.-W. Kuo, K.-C. Lee, K. C.-J. Lin, and M.-J. Tsai. Leader-contention-based user matching for 802.11 multiuser mimo networks. IEEE Trans. on Wireless Communications, 13(8):4389--4400, 2014.
[25]
L. Li, P. Hu, C. Peng, G. Shen, and F. Zhao. Epsilon: A visible light based positioning system. In Proc. Usenix NSDI, pages 331--343, 2014.
[26]
T. Li, C. An, Z. Tian, A. T. Campbell, and X. Zhou. Human sensing using visible light communication. In Proc. ACM MobiCom, pages 331--344, 2015.
[27]
X. Li, S. Li, D. Zhang, J. Xiong, Y. Wang, and H. Mei. Dynamic-music: accurate device-free indoor localization. In Proc. ACM UbiComp, pages 196--207, 2016.
[28]
H. Ma, C. Zeng, and C. X. Ling. A reliable people counting system via multiple cameras. ACM Trans. on Intelligent Systems and Technology, 3(2):67--83, 2012.
[29]
T. Mcconaghy, E. Vladislavleva, and R. Riolo. Genetic programming theory and practice 2010: An introduction. Gecco Companion Publication Proceedings of Annual Genetic & Evolutionary Computation Conference, 78(1):3015--3056, 2010.
[30]
R. Mohedano, A. Cavallaro, and N. García. Camera localization using trajectories and maps. IEEE Trans. on Pattern Analysis & Machine Intelligence, 36(4):684--697, 2014.
[31]
F. M. Naini, J. Unnikrishnan, P. Thiran, and M. Vetterli. Where you are is who you are: User identification by matching statistics. IEEE Trans. on Information Forensics & Security, 11(2):358--372, 2016.
[32]
S. J. Orfanidis. Electromagnetic waves and antennas. Rutgers University New Brunswick, NJ, 2002.
[33]
I. Sabek, M. Youssef, and A. V. Vasilakos. Ace: An accurate and efficient multi-entity device-free wlan localization system. IEEE Trans. on Mobile Computing, 14(2):261--273, 2015.
[34]
R. O. Schmidt. Multiple emitter location and signal parameter estimation. IEEE Trans. on Antennas and Propagation, 34(3):276--280, 1986.
[35]
R. O. Schmidt. Multiple emitter location and signal parameter estimation. IEEE Trans. on Antennas and Propagation, 34(3):276--280, 1986.
[36]
T.-J. Shan, M. Wax, and T. Kailath. On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Trans. on Acoustics, Speech, and Signal Processing, 33(4):806--811, 1985.
[37]
C. Shepard, H. Yu, N. Anand, E. Li, T. Marzetta, R. Yang, and L. Zhong. Argos: Practical many-antenna base stations. In Proc. ACM MobiCom, pages 53--64, 2012.
[38]
Y. Shu, K. G. Shin, T. He, and J. Chen. Last-mile navigation using smartphones. In Proc. ACM MobiCom, pages 512--524, 2015.
[39]
L. Sun, S. Sen, D. Koutsonikolas, and K.-H. Kim. Widraw: Enabling hands-free drawing in the air on commodity wifi devices. In Proc. ACM MobiCom, pages 77--89, 2015.
[40]
D. Vasisht, S. Kumar, and D. Katabi. Decimeter-level localization with a single wifi access point. In Proc. Usenix NSDI, pages 165--178, 2016.
[41]
J. Wang, X. Chen, D. Fang, C. Q. Wu, Z. Yang, and T. Xing. Transferring compressive sensing based device-free localization across target diversity. IEEE Trans. on Industrial Electronics, 62(4):2397--2409, 2015.
[42]
J. Wang, D. Fang, X. Chen, Z. Yang, T. Xing, and L. Cai. Lcs: Compressive sensing based device-free localization for multiple targets in sensor networks. In Proc. IEEE INFOCOM, pages 145--149, 2013.
[43]
J. Wang, D. Fang, Z. Yang, H. Jiang, X. Chen, T. Xing, and L. Cai. E-hipa: An energy-efficient framework for high-precision multi-target adaptive device-free localization. IEEE Trans. on Mobile Computing, 12(5):1--12, 2016.
[44]
J. Wang, H. Jiang, J. Xiong, K. Jamieson, X. Chen, D. Fang, and B. Xie. Lifs: Low human-effort, device-free localization with fine-grained subcarrier information. In Proc. ACM MobiCom, pages 243--256, 2016.
[45]
J. Wang and D. Katabi. Dude, where's my card? rfid positioning that works with multipath and non-line of sight. In Proc. ACM SIGCOMM, volume 43, pages 51--62, 2013.
[46]
J. Wang, D. Vasisht, and D. Katabi. Rf-idraw: virtual touch screen in the air using rf signals. In Proc. ACM SIGCOMM, volume 44, pages 235--246, 2014.
[47]
T. Wei and X. Zhang. mtrack: High-precision passive tracking using millimeter wave radios. In Proc. ACM MobiCom, pages 117--129, 2015.
[48]
J. Wilson and N. Patwari. See-through walls: Motion tracking using variance-based radio tomography networks. IEEE Trans. on Mobile Computing, 10(5):612--621, 2011.
[49]
J. Xiao, K. Wu, Y. Yi, L. Wang, and L. M. Ni. Pilot: Passive device-free indoor localization using channel state information. In Proc. IEEE international conference on Distributed computing systems (ICDCS), pages 236--245, 2013.
[50]
J. Xiong and K. Jamieson. Towards fine-grained radio-based indoor location. In Proc. ACM Workshop on Mobile Computing Systems & Applications, pages 13--18, 2012.
[51]
J. Xiong and K. Jamieson. Arraytrack: a fine-grained indoor location system. In Proc. Usenix NSDI, pages 71--84, 2013.
[52]
J. Xiong, K. Jamieson, and K. Sundaresan. Synchronicity: pushing the envelope of fine-grained localization with distributed mimo. In Proc. ACM Workshop on Hot Topics in Wireless, pages 43--48, 2014.
[53]
J. Xiong, K. Sundaresan, and K. Jamieson. Tonetrack: Leveraging frequency-agile radios for time-based indoor wireless localization. In Proc. ACM MobiCom, pages 537--549, 2015.
[54]
C. Xu, B. Firner, R. S. Moore, Y. Zhang, W. Trappe, R. Howard, F. Zhang, and N. An. Scpl: indoor device-free multi-subject counting and localization using radio signal strength. In Proc. ACM/IEEE IPSN, pages 79--90, 2013.
[55]
L. Yang, Q. Lin, X. Li, T. Liu, and Y. Liu. See through walls with cots rfid system! In Proc. ACM MobiCom, pages 1--12, 2015.
[56]
S. Yun, Y.-C. Chen, and L. Qiu. Turning a mobile device into a mouse in the air. In Proc. ACM Mobisys, pages 15--29, 2015.
[57]
D. Zhang, Y. Liu, X. Guo, and L. M. Ni. Rass: A real-time, accurate, and scalable system for tracking transceiver-free objects. IEEE Trans. on Parallel and Distributed Systems, 24(5):996--1008, 2013.
[58]
Y. Zhu, Y. Zhu, B. Y. Zhao, and H. Zheng. Reusing 60ghz radios for mobile radar imaging. In Proc. ACM MobiCom, pages 103--116, 2015.

Cited By

View all

Index Terms

  1. D-Watch: Embracing "bad" Multipaths for Device-Free Localization with COTS RFID Devices

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    CoNEXT '16: Proceedings of the 12th International on Conference on emerging Networking EXperiments and Technologies
    December 2016
    524 pages
    ISBN:9781450342926
    DOI:10.1145/2999572
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 06 December 2016

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. aoa
    2. device-free localization
    3. multipath
    4. music

    Qualifiers

    • Research-article

    Conference

    CoNEXT '16
    Sponsor:

    Acceptance Rates

    CoNEXT '16 Paper Acceptance Rate 30 of 160 submissions, 19%;
    Overall Acceptance Rate 198 of 789 submissions, 25%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)47
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 28 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media