skip to main content
research-article

Tactile mesh saliency

Published: 11 July 2016 Publication History

Abstract

While the concept of visual saliency has been previously explored in the areas of mesh and image processing, saliency detection also applies to other sensory stimuli. In this paper, we explore the problem of tactile mesh saliency, where we define salient points on a virtual mesh as those that a human is more likely to grasp, press, or touch if the mesh were a real-world object. We solve the problem of taking as input a 3D mesh and computing the relative tactile saliency of every mesh vertex. Since it is difficult to manually define a tactile saliency measure, we introduce a crowdsourcing and learning framework. It is typically easy for humans to provide relative rankings of saliency between vertices rather than absolute values. We thereby collect crowdsourced data of such relative rankings and take a learning-to-rank approach. We develop a new formulation to combine deep learning and learning-to-rank methods to compute a tactile saliency measure. We demonstrate our framework with a variety of 3D meshes and various applications including material suggestion for rendering and fabrication.

Supplementary Material

ZIP File (a52-lau-supp.zip)
Supplemental files.
MP4 File (a52.mp4)

References

[1]
Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating Articulated Characters from Skinned Meshes. ACM Trans. Graph. 31, 4 (July), 47:1--47:9.
[2]
Bohg, J., Morales, A., Asfour, T., and Kragic, D. 2014. Data-Driven Grasp Synthesis -- A Survey. IEEE Transactions on Robotics 30, 2, 289--309.
[3]
Borji, A., Sihite, D. N., and Itti, L. 2012. Salient Object Detection: A Benchmark. ECCV, 414--429.
[4]
Bylinskii, Z., Judd, T., Borji, A., Itti, L., Durand, F., Oliva, A., and Torralba, A., 2015. MIT Saliency Benchmark. http://saliency.mit.edu/.
[5]
Chapelle, O., and Keerthi, S. S. 2010. Efficient Algorithms for Ranking with SVMs. Information Retrieval 13, 3, 201--215.
[6]
Chen, D. Y., Tian, X.-P., Shen, Y.-T., and Ouhyoung, M. 2003. On Visual Similarity Based 3D Model Retrieval. Computer Graphics Forum 22, 3, 223--232.
[7]
Chen, X., Golovinskiy, A., and Funkhouser, T. 2009. A Benchmark for 3D Mesh Segmentation. ACM Trans. Graph. 28, 3 (July), 73:1--73:12.
[8]
Chen, X., Saparov, A., Pang, B., and Funkhouser, T. 2012. Schelling Points on 3D Surface Meshes. ACM Trans. Graph. 31, 4 (July), 29:1--29:12.
[9]
Cignoni, P., Pietroni, N., Malomo, L., and Scopigno, R. 2014. Field-aligned Mesh Joinery. ACM Trans. Graph. 33, 1 (Feb.), 11:1--11:12.
[10]
Dorsey, J., and Hanrahan, P. 1996. Modeling and Rendering of Metallic Patinas. In Proceedings of SIGGRAPH 96, Annual Conference Series, 387--396.
[11]
Gal, R., and Cohen-Or, D. 2006. Salient Geometric Features for Partial Shape Matching and Similarity. ACM Trans. Graph. 25, 1 (Jan.), 130--150.
[12]
Garces, E., Agarwala, A., Gutierrez, D., and Hertzmann, A. 2014. A Similarity Measure for Illustration Style. ACM Trans. Graph. 33, 4 (July), 93:1--93:9.
[13]
Gingold, Y., Shamir, A., and Cohen-Or, D. 2012. Micro Perceptual Human Computation for Visual Tasks. ACM Trans. Graph. 31, 5 (Sept.), 119:1--119:12.
[14]
Gingold, Y., Vouga, E., Grinspun, E., and Hirsh, H. 2012. Diamonds from the Rough: Improving Drawing, Painting, and Singing via Crowdsourcing. Proceedings of the AAAI Workshop on Human Computation (HCOMP).
[15]
Goferman, S., Zelnik-Manor, L., and Tal, A. 2012. Context-Aware Saliency Detection. PAMI 34, 10, 1915--1926.
[16]
Goldfeder, C., Ciocarlie, M., Dang, H., and Allen, P. K. 2009. The Columbia Grasp Database. ICRA, 3343--3349.
[17]
Hildebrand, K., Bickel, B., and Alexa, M. 2013. Orthogonal Slicing for Additive Manufacturing. SMI 37, 6, 669--675.
[18]
Hisada, M., Belyaev, A. G., and Kunii, T. L. 2002. A Skeleton-based Approach for Detection of Perceptually Salient Features on Polygonal Surfaces. CGF 21, 4, 689--700.
[19]
Horn, B. 1984. Extended Gaussian Images. Proceedings of the IEEE 72, 12, 1671--1686.
[20]
Howlett, S., Hamill, J., and O'Sullivan, C. 2005. Predicting and Evaluating Saliency for Simplified Polygonal Models. ACM Trans. on Applied Perception 2, 3 (July), 286--308.
[21]
Hu, J., Lu, J., and Tan, Y. P. 2014. Discriminative Deep Metric Learning for Face Verification in the Wild. CVPR, 1875--1882.
[22]
Hu, J., Lu, J., and Tan, Y. P. 2015. Deep Transfer Metric Learning. CVPR, 325--333.
[23]
Itti, L., Koch, C., and Niebur, E. 1998. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. PAMI 20, 11, 1254--1259.
[24]
Itti, L., 2000. Models of Bottom-Up and Top-Down Visual Attention. PhD Thesis, California Institute of Technology Pasadena.
[25]
Jain, A., Thormählen, T., Ritschel, T., and Seidel, H.-P. 2012. Material Memex: Automatic Material Suggestions for 3D Objects. ACM Trans. Graph. 31, 6 (Nov.), 143:1--143:8.
[26]
Järvelin, K., and Kekälänen, J. 2002. Cumulated Gain-based Evaluation of IR Techniques. ACM Trans. on Information Systems 20, 4, 422--446.
[27]
Kalogerakis, E., Hertzmann, A., and Singh, K. 2010. Learning 3D Mesh Segmentation and Labeling. ACM Trans. Graph. 29, 4 (July), 102:1--102:12.
[28]
Kim, Y., Varshney, A., Jacobs, D. W., and Guimbretière, F. 2010. Mesh Saliency and Human Eye Fixations. ACM Trans. on Applied Perception 7, 2 (Feb.), 12:1--12:13.
[29]
Klank, U., Pangercic, D., Rusu, R., and Beetz, M. 2009. Real-time CAD Model Matching for Mobile Manipulation and Grasping. IEEE-RAS Int'l Conf. on Humanoid Robots, 290--296.
[30]
Lau, M., Ohgawara, A., Mitani, J., and Igarashi, T. 2011. Converting 3D Furniture Models to Fabricatable Parts and Connectors. ACM Trans. Graph. 30, 4 (July), 85:1--85:6.
[31]
Lee, C. H., Varshney, A., and Jacobs, D. W. 2005. Mesh Saliency. ACM Trans. Graph. 24, 3 (July), 659--666.
[32]
Liu, Y., Zhu, H., Liu, X., and Wu, E. 2005. Real-time Simulation of Physically based On-Surface Flow. The Visual Computer 21, 8-10, 727--734.
[33]
Liu, T., Hertzmann, A., Li, W., and Funkhouser, T. 2015. Style Compatibility for 3D Furniture Models. ACM Trans. Graph. 34, 4 (July), 85:1--85:9.
[34]
Liu, Z., Wang, X., and Bu, S. 2015. Human-Centered Saliency Detection. IEEE Trans. on Neural Networks and Learning Systems.
[35]
Mérillou, S., and Ghazanfarpour, D. 2008. A Survey of Aging and Weathering Phenomena in Computer Graphics. Computers & Graphics 32, 2, 159--174.
[36]
O'Donovan, P., Libeks, J., Agarwala, A., and Hertzmann, A. 2014. Exploratory Font Selection Using Crowd-sourced Attributes. ACM Trans. Graph. 33, 4 (July), 92:1--92:9.
[37]
Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. 2001. Matching 3D Models with Shape Distributions. Shape Modeling International, 154--166.
[38]
Parikh, D., and Grauman, K. 2011. Relative Attributes. International Conference on Computer Vision (ICCV), 503--510.
[39]
Plaisier, M. A., Tiest, W. M. B., and Kappers, A. M. L. 2009. Salient Features in 3-D Haptic Shape Perception. Attention, Perception, & Psychophysics 71, 2, 421--430.
[40]
Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make It Stand: Balancing Shapes for 3D Fabrication. ACM Trans. Graph. 32, 4 (July), 81:1--81:10.
[41]
Sahbani, A., and El-Khoury, S. 2009. A Hybrid Approach for Grasping 3D Objects. IROS, 1272--1277.
[42]
Sahbani, A., El-khoury, S., and Bidaud, P. 2012. An Overview of 3D Object Grasp Synthesis Algorithms. Robotics and Autonomous Systems 60, 3, 326--336.
[43]
Saxena, A., Driemeyer, J., Kearns, J., and Ng, A. Y. 2007. Robotic Grasping of Novel Objects. NIPS, 1209--1216.
[44]
Schwartzburg, Y., and Pauly, M. 2013. Fabrication-aware Design with Intersecting Planar Pieces. CGF 32, 2, 317--326.
[45]
Shilane, P., and Funkhouser, T. 2007. Distinctive Regions of 3D Surfaces. ACM Trans. Graph. 26, 2 (June), 7.
[46]
Shilane, P., Min, P., Kazhdan, M., and Funkhouser, T. 2004. The Princeton Shape Benchmark. SMI, 167--178.
[47]
Shtrom, E., Leifman, G., and Tal, A. 2013. Saliency Detection in Large Point Sets. ICCV, 3591--3598.
[48]
Song, R., Liu, Y., Martin, R. R., and Rosin, P. L. 2014. Mesh Saliency via Spectral Processing. ACM Trans. Graph. 33, 1 (Feb.), 6:1--6:17.
[49]
Su, H., Maji, S., Kalogerakis, E., and Learned-Miller, E. 2015. Multi-view Convolutional Neural Networks for 3D Shape Recognition. ICCV.
[50]
Surazhsky, T., Magid, E., Soldea, O., Elber, G., and Rivlin, E. 2003. A Comparison of Gaussian and Mean Curvatures Estimation Methods on Triangular Meshes. International Conference on Robotics and Automation, 1021--1026.
[51]
Tao, P., Cao, J., Li, S., Liu, X., and Liu, L. 2015. Mesh Saliency via Ranking Unsalient Patches in a Descriptor Space. Computers and Graphics 46, C, 264--274.
[52]
Varadarajan, K., Potapova, E., and Vincze, M. 2012. Attention driven Grasping for Clearing a Heap of Objects. IROS, 2035--2042.
[53]
Wang, J., Song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J., Chen, B., and Wu, Y. 2014. Learning Fine-Grained Image Similarity with Deep Ranking. CVPR, 1386--1393.
[54]
Watanabe, K., and Belyaev, A. G. 2001. Detection of Salient Curvature Features on Polygonal Surfaces. CGF 20, 3, 385--392.
[55]
Wei, L., Huang, Q., Ceylan, D., Vouga, E., and Li, H. 2015. Dense Human Body Correspondences Using Convolutional Networks. CVPR.
[56]
Xu, M., Ni, B., Dong, J., Huang, Z., Wang, M., and Yan, S. 2012. Touch Saliency. ACM International Conference on Multimedia, 1041--1044.
[57]
Zagoruyko, S., and Komodakis, N. 2015. Learning to Compare Image Patches via Convolutional Neural Networks. CVPR.
[58]
Zhou, Q., Panetta, J., and Zorin, D. 2013. Worst-case Structural Analysis. ACM Trans. Graph. 32, 4 (July), 137:1--137:12.
[59]
Zimmer, H., Lafarge, F., Alliez, P., and Kobbelt, L. 2014. Zometool Shape Approximation. Graphical Models 76, 5, 390--401.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 35, Issue 4
July 2016
1396 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2897824
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 July 2016
Published in TOG Volume 35, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. crowdsourcing
  2. deep learning
  3. fabrication material suggestion
  4. perception
  5. saliency

Qualifiers

  • Research-article

Funding Sources

  • NSF grants
  • Microsoft Research PhD program

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)57
  • Downloads (Last 6 weeks)8
Reflects downloads up to 06 Nov 2024

Other Metrics

Citations

Cited By

View all

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media