skip to main content
10.1145/2660193.2660226acmconferencesArticle/Chapter ViewAbstractPublication PagessplashConference Proceedingsconference-collections
research-article

Using web corpus statistics for program analysis

Published: 15 October 2014 Publication History

Abstract

Several program analysis tools - such as plagiarism detection and bug finding - rely on knowing a piece of code's relative semantic importance. For example, a plagiarism detector should not bother reporting two programs that have an identical simple loop counter test, but should report programs that share more distinctive code. Traditional program analysis techniques (e.g., finding data and control dependencies) are useful, but do not say how surprising or common a line of code is. Natural language processing researchers have encountered a similar problem and addressed it using an n-gram model of text frequency, derived from statistics computed over text corpora.
We propose and compute an n-gram model for programming languages, computed over a corpus of 2.8 million JavaScript programs we downloaded from the Web. In contrast to previous techniques, we describe a code n-gram as a subgraph of the program dependence graph that contains all nodes and edges reachable in n steps from the statement. We can count n-grams in a program and count the frequency of n-grams in the corpus, enabling us to compute tf-idf-style measures that capture the differing importance of different lines of code. We demonstrate the power of this approach by implementing a plagiarism detector with accuracy that beats previous techniques, and a bug-finding tool that discovered over a dozen previously unknown bugs in a collection of real deployed programs.

References

[1]
A. V. Aho, M. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools: Second Edition. Addison-Wesley, 2007.
[2]
T. Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean. Large language models in machine translation. In EMNLP-CoNLL, pages 858--867, 2007.
[3]
D. Cai and M. Kim. An empirical study of long-lived code clones. In FASE, pages 432--446, 2011.
[4]
W. S. Evans, C. W. Fraser, and F. Ma. Clone detection via structural abstraction. Software Quality Journal, 17(4):309--330, 2009.
[5]
J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319--349, July 1987. ISSN 0164-0925. URL http://doi.acm.org/10.1145/24039. 24041.
[6]
M. Gabel, L. Jiang, and Z. Su. Scalable detection of semantic clones. In Software Engineering, 2008. ICSE'08. ACM/IEEE 30th International Conference on, pages 321--330. IEEE, 2008.
[7]
P. Green, P. C. Lane, A. Rainer, S. Bennett, and S.-B. Scholz. Same difference: Detecting collusion by finding unusual shared elements. In Proceedings of the Fifth International Plagiarism Conference, 2012.
[8]
A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In Proceedings of the 34th International Conference on Software Engineering, ICSE '12, pages 837--847, Piscataway, NJ, USA, 2012. IEEE Press. ISBN 978-1-4673-1067-3. URL http://dl.acm.org/citation.cfm?id=2337223.2337322.
[9]
A. Islam and D. Inkpen. Real-word spelling correction using google web 1tn-gram data set. In Proceedings of the 18th ACM conference on Information and knowledge management, CIKM, pages 1689--1692, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-512-3. URL http://doi.acm.org/10.1145/1645953.1646205.
[10]
L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and accurate tree-based detection of code clones. In Proceedings of the 29th international conference on Software Engineering, ICSE '07, pages 96--105, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2828-7. URL http://dx.doi.org/10.1109/ICSE.2007.30.
[11]
E. Juergens, F. Deissenboeck, B. Hummel, and S.Wagner. Do code clones matter? In Proceedings of the 31st International Conference on Software Engineering, ICSE '09, pages 485--495, Washington, DC, USA, 2009. IEEE Computer Society. ISBN 978-1-4244-3453-4. URL http://dx.doi.org/10.1109/ICSE.2009.5070547.
[12]
W. M. Khoo, A. Mycroft, and R. Anderson. Rendezvous: a search engine for binary code. In Proceedings of the Tenth International Workshop on Mining Software Repositories, pages 329--338. IEEE Press, 2013.
[13]
R. Komondoor and S. Horwitz. Using slicing to identify duplication in source code. In Static Analysis, pages 40--56. Springer, 2001.
[14]
Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: finding copy-paste and related bugs in large-scale software code. Software Engineering, IEEE Transactions on, 32(3):176--192, 2006. ISSN 0098-5589.
[15]
B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable statistical bug isolation. In Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and implementation, PLDI '05, pages 15--26, New York, NY, USA, 2005. ACM. ISBN 1-59593-056-6. URL http://doi.acm.org/10.1145/1065010.1065014.
[16]
C. Liu, C. Chen, J. Han, and P. S. Yu. Gplag: detection of software plagiarism by program dependence graph analysis. In KDD, pages 872--881, 2006.
[17]
B. Lucia, B. P. Wood, and L. Ceze. Isolating and understanding concurrency errors using reconstructed execution fragments. In Proceedings of the 32nd ACM SIGPLAN conference on Programming language design and implementation, PLDI '11, pages 378--388, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0663-8. URL http://doi.acm.org/10.1145/1993498.1993543.
[18]
C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. Cambridge University Press, New York, 2008.
[19]
J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, S. Pinker, M. A. Nowak, and E. L. Aiden. Quantitative Analysis of Culture Using Millions of Digitized Books. Science, 331:176--, Jan. 2011.
[20]
S. S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997. ISBN 1-55860-320-4.
[21]
T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pages 532--542, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2237-9. URL http://doi.acm.org/10.1145/2491411.2491458.
[22]
L. Prechelt, G. Malpohl, and M. Philippsen. Finding plagiarisms among a set of programs with jplag. Journal of Universal Computer Science, 8:1016--1038, 2001.
[23]
M. Ravallion. The two poverty enlightenments: Historical insights from digitized books spanning three centuries. Poverty and Public Policy, 3(2):1--46, 2011. ISSN 1944-2858.
[24]
V. Raychev, M. Vechev, and E. Yahav. Code completion with statistical language models. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation, page 44. ACM, 2014.
[25]
S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: Local algorithms for document fingerprinting. In SIGMOD Conference, pages 76--85, 2003.
[26]
K. Sparck Jones. A statistical interpretation of term specificity and its application in retrieval. In P.Willett, editor, Document retrieval systems, pages 132--142. Taylor Graham Publishing, London, UK, UK, 1988. ISBN 0-947568-21-2.
[27]
L. Thomas, S. Valluri, and K. Karlapalem. Margin: Maximal frequent subgraph mining. In Data Mining, 2006. ICDM '06. Sixth International Conference on, pages 1097--1101, 2006.
[28]
D. Williams, J. Huan, and W. Wang. Graph database indexing using structured graph decomposition. In Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on, pages 976--985, 2007.
[29]
X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent structure-based approach. In Proceedings of the 2004 ACM SIGMOD international conference on Management of data, SIGMOD '04, pages 335--346, New York, NY, USA, 2004. ACM. ISBN 1-58113-859-8. URL http://doi.acm.org/10.1145/1007568.1007607.
[30]
L. Zou, L. Chen, J. X. Yu, and Y. Lu. A novel spectral coding in a large graph database. In Proceedings of the 11th international conference on Extending database technology: Advances in database technology, EDBT '08, pages 181--192, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-926-5. URL http://doi.acm.org/10.1145/1353343.1353369.
[31]
L. Zou, L. Chen, andM. T. Özsu. Distance-join: pattern match query in a large graph database. Proc. VLDB Endow., 2(1): 886--897, Aug. 2009. ISSN 2150-8097. URL http://dl.acm.org/citation.cfm?id=1687627.1687727.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
OOPSLA '14: Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications
October 2014
946 pages
ISBN:9781450325851
DOI:10.1145/2660193
  • cover image ACM SIGPLAN Notices
    ACM SIGPLAN Notices  Volume 49, Issue 10
    OOPSLA '14
    October 2014
    907 pages
    ISSN:0362-1340
    EISSN:1558-1160
    DOI:10.1145/2714064
    • Editor:
    • Andy Gill
    Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 15 October 2014

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. copy-paste bug
  2. corpus-driven
  3. javascript
  4. plagiarism detection
  5. programmatic n-gram

Qualifiers

  • Research-article

Funding Sources

Conference

SPLASH '14
Sponsor:

Acceptance Rates

OOPSLA '14 Paper Acceptance Rate 52 of 186 submissions, 28%;
Overall Acceptance Rate 268 of 1,244 submissions, 22%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)1
Reflects downloads up to 07 Nov 2024

Other Metrics

Citations

Cited By

View all

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media