skip to main content
10.1145/2591796.2591852acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Minimum bisection is fixed parameter tractable

Published: 31 May 2014 Publication History

Abstract

In the classic Minimum Bisection problem we are given as input a graph G and an integer k. The task is to determine whether there is a partition of V (G) into two parts A and B such that ||A| -- |B|| ≤ 1 and there are at most k edges with one endpoint in A and the other in B. In this paper we give an algorithm for Minimum Bisection with running time O(2O(k3) n3 log3 n). This is the first fixed parameter tractable algorithm for Minimum Bisection. At the core of our algorithm lies a new decomposition theorem that states that every graph G can be decomposed by small separators into parts where each part is "highly connected" in the following sense: any cut of bounded size can separate only a limited number of vertices from each part of the decomposition.
Our techniques generalize to the weighted setting, where we seek for a bisection of minimum weight among solutions that contain at most k edges.

Supplementary Material

MP4 File (p323-sidebyside.mp4)

References

[1]
T. N. Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser. Graph bisection algorithms with good average case behavior. Combinatorica, 7(2):171--191, 1987.
[2]
T. N. Bui, C. Heigham, C. Jones, and F. T. Leighton. Improving the performance of the Kernighan-Lin and simulated annealing graph bisection algorithms. In DAC, pages 775--778, 1989.
[3]
T. N. Bui and A. Peck. Partitioning planar graphs. SIAM J. Comput., 21(2):203--215, 1992.
[4]
T. N. Bui and L. C. Strite. An ant system algorithm for graph bisection. In GECCO, pages 43--51, 2002.
[5]
J. Carmesin, R. Diestel, F. Hundertmark, and M. Stein. Connectivity and tree structure in finite graphs. CoRR, abs/1105.1611, 2011.
[6]
J. Chen, Y. Liu, and S. Lu. An improved parameterized algorithm for the minimum node multiway cut problem. Algorithmica, 55(1):1--13, 2009.
[7]
R. H. Chitnis, M. Cygan, M. Hajiaghayi, M. Pilipczuk, and M. Pilipczuk. Designing FPT algorithms for cut problems using randomized contractions. In FOCS, pages 460--469, 2012.
[8]
M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Minimum bisection is fixed parameter tractable. CoRR, abs/1311.2563, 2013.
[9]
R. Diestel. Graph Theory. Springer, 2005.
[10]
U. Feige and R. Krauthgamer. A polylogarithmic approximation of the minimum bisection. SIAM J. Comput., 31(4):1090--1118, 2002.
[11]
U. Feige, R. Krauthgamer, and K. Nissim. Approximating the minimum bisection size (extended abstract). In STOC, pages 530--536, 2000.
[12]
U. Feige and M. Mahdian. Finding small balanced separators. In STOC, pages 375--384, 2006.
[13]
M. R. Garey and D. S. Johnson. Computers and intractability, volume 174. Freeman New York, 1979.
[14]
M. Grohe, K. Kawarabayashi, D. Marx, and P. Wollan. Finding topological subgraphs is fixed-parameter tractable. In STOC, pages 479--488, 2011.
[15]
M. Grohe and D. Marx. Structure theorem and isomorphism test for graphs with excluded topological subgraphs. In STOC, pages 173--192, 2012.
[16]
K. Jansen, M. Karpinski, A. Lingas, and E. Seidel. Polynomial time approximation schemes for max-bisection on planar and geometric graphs. SIAM J. Comput., 35(1):110--119, 2005.
[17]
K. Kawarabayashi and M. Thorup. The minimum k-way cut of bounded size is fixed-parameter tractable. In FOCS, pages 160--169, 2011.
[18]
S. Khot and N. K. Vishnoi. The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into l1. In FOCS, pages 53--62, 2005.
[19]
D. Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394--406, 2006.
[20]
D. Marx, B. O'Sullivan, and I. Razgon. Finding small separators in linear time via treewidth reduction. ACM Transactions on Algorithms, 9(4):30, 2013.
[21]
D. Marx and I. Razgon. Fixed-parameter tractability of multicut parameterized by the size of the cutset. In L. Fortnow and S. P. Vadhan, editors, STOC, pages 469--478. ACM, 2011.
[22]
H. Nagamochi and T. Ibaraki. A Linear-Time Algorithm for Finding a Sparse k-Connected Spanning Subgraph of a k-Connected Graph. Algorithmica, 7(5&6):583--596, 1992.
[23]
H. Räcke. Optimal hierarchical decompositions for congestion minimization in networks. In STOC, pages 255--264, 2008.
[24]
N. Robertson and P. D. Seymour. Graph minors XIII. The disjoint paths problem. J. Comb. Theory, Ser. B, 63(1):65--110, 1995.
[25]
R. van Bevern, A. E. Feldmann, M. Sorge, and O. Suchý. On the parameterized complexity of computing graph bisections. In A. Brandstädt, K. Jansen, and R. Reischuk, editors, WG, volume 8165 of Lecture Notes in Computer Science, pages 76--87. Springer, 2013.

Cited By

View all

Index Terms

  1. Minimum bisection is fixed parameter tractable

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    STOC '14: Proceedings of the forty-sixth annual ACM symposium on Theory of computing
    May 2014
    984 pages
    ISBN:9781450327107
    DOI:10.1145/2591796
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 31 May 2014

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. fixed-parameter tractability
    2. minimum bisection
    3. randomized contractions
    4. tree decomposition

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    STOC '14
    Sponsor:
    STOC '14: Symposium on Theory of Computing
    May 31 - June 3, 2014
    New York, New York

    Acceptance Rates

    STOC '14 Paper Acceptance Rate 91 of 319 submissions, 29%;
    Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

    Upcoming Conference

    STOC '25
    57th Annual ACM Symposium on Theory of Computing (STOC 2025)
    June 23 - 27, 2025
    Prague , Czech Republic

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)25
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 17 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media