skip to main content
10.1145/2245276.2245308acmconferencesArticle/Chapter ViewAbstractPublication PagessacConference Proceedingsconference-collections
research-article

Hidden markov model-based time series prediction using motifs for detecting inter-time-serial correlations

Published: 26 March 2012 Publication History

Abstract

This paper presents an approach for time series prediction using a Hidden Markov Model, which bases on inter-time-serial correlations. These correlations between time series of a given database are automatically discovered by hierarchically clustering motif-based time series representations, which can be used for the prediction of the future development of one time series on base of known values from the one and correlated time series. The functionality and the influence of the different parameters of the motif-based representation, the inter-time-serial correlation discovery and the prediction capability are evaluated on two large databases of river level measurements and stock data.

References

[1]
R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items in large databases. In Proc. ACM SIGMOD Int. Conf., pages 207--216, Washington, D.C., 1993.
[2]
P. Anderer et al. An e-health solution for automatic sleep classification according to rechtschaffen and kales: validation study of the somnolyzer 24 x 7 utilizing the siesta database. Neuropsychobiology, 51(3): 115--33, 2005.
[3]
F. Bodon. A trie-based apriori implementation for mining frequent item sequences. In Proc. of ACM SIGKDD International Workshop on Open Source Data Mining (OSDM'05), Chicago, IL, USA, 2005.
[4]
K. Buza and L. Schmidt-Thieme. Motif-based Classification of Time Series with Bayesian Networks and SVMs. In Proc. of 32nd Annual Conf. of the Gesellschaft für Klassifikation (GfKl), 2009.
[5]
N. Castro and P. Azevedo. Time Series Motifs Statistical Significance. In Proc. of the SIAM Int. Conf. on Data Mining, pages 687--698. SIAM, 2011.
[6]
S. Chu, E. Keogh, D. Hart, and M. Pazzani. Iterative deepening dynamic time warping for time series. In Proc. of 2nd SIAM Int. Conf. on Data Mining, 2002.
[7]
G. Cimino, G. D. Duce, L. K. Kadonaga, G. Rotundo, A. Sisani, G. Stabile, B. Tirozzi, and M. Whiticar. Time series analysis of geological data. Chemical Geology, 161(1--3): 253--270, 1999.
[8]
C. S. Daw, C. E. A. Finney, and E. R. Tracy. A review of symbolic analysis of experimental data. Review of Scientific Instruments, 74(2): 915--930, 2003.
[9]
H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow., 1, 2008.
[10]
Dirk Eddelbuette. Beancounter portfolio performance toolkit homepage. Last visited 10/2011, http://dirk.eddelbuettel.com/code/beancounter.html.
[11]
Eamonn Keogh. SAX homepage. Last visited 10/2011, http://www.cs.ucr.edu/~eamonn/SAX.htm.
[12]
P. G. Ferreira and P. J. Azevedo. Protein sequence classification through relevant sequence mining and bayes classifiers. In Portuguese Conf. on Artificial Intelligence, pages 236--247, 2005.
[13]
P. G. Ferreira, P. J. Azevedo, C. G. Silva, and R. M. M. Brito. Mining approximate motifs in time series. In Proc. of the 9th Int. Conf. on Discovery Science, pages 7--10, 2006.
[14]
D. H. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learning, 1987.
[15]
G. D. Fornay. The Viterbi Algorithm. Proc. of the IEEE, 61(3): 268--278, 1973.
[16]
T.-c. Fu, F.-l. Chung, R. Luk, and C.-m. Ng. Stock time series pattern matching: Template-based vs. rule-based approaches. Eng. Appl. Artif. Intell., 20: 347--364, 2007.
[17]
W. Gaul and L. Schmidt-Thieme. Mining generalized association rules for sequential and path data. In ICDM, pages 593--596. IEEE Computer Society, 2001.
[18]
A. Gellert and L. Vintan. Person movement prediction using hidden markov models. Studies in Informatics and Control, 15(1): 17--30, 2006.
[19]
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA data mining software: an update. SIGKDD Explor. Newsl., 11: 10--18, 2009.
[20]
M. R. Hassan and B. Nath. Stockmarket forecasting using hidden markov model: A new approach. Int. Conf. on Intelligent Systems Design and Applications, 0: 192--196, 2005.
[21]
S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 2: 241--254, 1967.
[22]
E. Keogh and M. Pazzani. Derivative dynamic time warping. In Proc. of 1st SIAM Int. Conf. on Data Mining (SDM), 2001.
[23]
E. J. Keogh and C. A. Ratanamahatana. Exact indexing of dynamic time warping. Knowl. Inf. Syst., 7(3): 358--386, 2005.
[24]
S. Kotsiantis and D. Kanellopoulos. Discretization techniques: A recent survey. GESTS Int. Transactions on Computer Science and Engineering, 32(1): 47--58, 2006.
[25]
V. Kunik, Z. Solan, S. Edelman, E. Ruppin, and D. Horn. Motif extraction and protein classification. Computational Systems Bioinformatics Conf. Int. IEEE Computer Society, 0: 80--85, 2005.
[26]
Lawrence Berkeley National Lab. The colt project - open source libraries for high performance scientific and technical computing in java. Last visited 10/2011, http://acs.lbl.gov/software/colt.
[27]
V. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals. In Soviet Physics Doklady, volume 10, 1966.
[28]
J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing sax: a novel symbolic representation of time series. Data Mining and Knowledge Discovery, 15: 107--144, 2007. 10.1007/s10618-007-0064-z.
[29]
J. Lin, E. J. Keogh, S. Lonardi, and B. Y. chi Chiu. A symbolic representation of time series, with implications for streaming algorithms. In DMKD, pages 2--11. ACM, 2003.
[30]
F. Mormann, R. G. Andrzejak, C. E. Elger, and K. Lehnertz. Seizure prediction: the long and winding road. Brain, 2006.
[31]
P. Patel, E. J. Keogh, J. Lin, and S. Lonardi. Mining motifs in massive time series databases. In ICDM, pages 370--377. IEEE Computer Society, 2002.
[32]
Pavel Senin. SAX - jmotif - homepage. Last visited 10/11, http://code.google.com/p/jmotif/wiki/SAX.
[33]
D. J. Pedregal, R. Rivas, V. Feliu, L. Sánchez, and A. Linares. A non-linear forecasting system for the Ebro River at Zaragoza, Spain. Environ. Model. Softw., 24(4): 502--509, 2009.
[34]
A. Poritz. Hidden markov models: a guided tour. In Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP-88), volume 1, pages 7--13, 1988.
[35]
L. Rabiner and B. Juang. An introduction to hidden markov models. ASSP, IEEE, 3(1): 4--16, 1986.
[36]
L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. Proc. of the IEEE, 77(2): 257--286, 1989.
[37]
S. Robin, S. Schbath, and V. Vandewalle. Statistical tests to compare motif count exceptionalities. BMC Bioinformatics, 8(1): 84, 2007.
[38]
H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26: 43--49, 1978.
[39]
H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word recognition. In Readings in speech recognition, 1990.
[40]
S. Salvador and P. Chan. FastDTW: toward accurate dynamic time warping in linear time and space. Intell. Data Anal., 11(5), 2007.
[41]
T. Schlüter and S. Conrad. An approach for automatic sleep stage scoring and apnea-hypopnea detection. In ICDM, pages 1007--1012. IEEE, 2010.
[42]
T. Schlüter and S. Conrad. Tempus: A prototype system for time series analysis and prediction. In Proc. of IADIS Europ. Conf. Data Mining, 2010.
[43]
P. A. Schrodt. Early warning of conflict in southern lebanon using hidden markov models. In The Understanding and Management of Global Violence, pages 131--162. St. Martin's Press, 1997.
[44]
R. H. Shumway and D. S. Stoffer. Time Series Analysis and Its Applications With R Examples. Springer, 2006. ISBN 978-0-387-29317-2.
[45]
G. I. Webb. Discovering significant patterns. Mach. Learn., 68: 1--33, 2007.
[46]
T. Xu, J. Wu, Z. Wu, and Q. Li. Long-term sunspot number prediction based on EMD analysis and AR model. Chin. J. Astron. Astrophys., 8: 337--342, 2008.
[47]
D. Yankov, E. J. Keogh, J. Medina, B. Y. chi Chiu, and V. B. Zordan. Detecting time series motifs under uniform scaling. In KDD, pages 844--853. ACM, 2007.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SAC '12: Proceedings of the 27th Annual ACM Symposium on Applied Computing
March 2012
2179 pages
ISBN:9781450308571
DOI:10.1145/2245276
  • Conference Chairs:
  • Sascha Ossowski,
  • Paola Lecca
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 26 March 2012

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Hidden Markov Model
  2. clustering
  3. motifs
  4. prediction
  5. representation
  6. time series

Qualifiers

  • Research-article

Conference

SAC 2012
Sponsor:
SAC 2012: ACM Symposium on Applied Computing
March 26 - 30, 2012
Trento, Italy

Acceptance Rates

SAC '12 Paper Acceptance Rate 270 of 1,056 submissions, 26%;
Overall Acceptance Rate 1,650 of 6,669 submissions, 25%

Upcoming Conference

SAC '25
The 40th ACM/SIGAPP Symposium on Applied Computing
March 31 - April 4, 2025
Catania , Italy

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)10
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media