skip to main content
research-article

Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays

Published: 25 July 2011 Publication History

Abstract

We develop tomographic techniques for image synthesis on displays composed of compact volumes of light-attenuating material. Such volumetric attenuators recreate a 4D light field or high-contrast 2D image when illuminated by a uniform backlight. Since arbitrary oblique views may be inconsistent with any single attenuator, iterative tomographic reconstruction minimizes the difference between the emitted and target light fields, subject to physical constraints on attenuation. As multi-layer generalizations of conventional parallax barriers, such displays are shown, both by theory and experiment, to exceed the performance of existing dual-layer architectures. For 3D display, spatial resolution, depth of field, and brightness are increased, compared to parallax barriers. For a plane at a fixed depth, our optimization also allows optimal construction of high dynamic range displays, confirming existing heuristics and providing the first extension to multiple, disjoint layers. We conclude by demonstrating the benefits and limitations of attenuation-based light field displays using an inexpensive fabrication method: separating multiple printed transparencies with acrylic sheets.

Supplementary Material

Supplemental material. (a95-wetzstein.zip)
MP4 File (tp101_11.mp4)

References

[1]
Agocs, et al. 2006. A large scale interactive holographic display. In IEEE Virtual Reality, 311--312.
[2]
Akeley, K., Watt, S. J., Girshick, A. R., and Banks, M. S. 2004. A stereo display prototype with multiple focal distances. ACM Trans. Graph. 23, 804--813.
[3]
Barnum, P. C., Narasimhan, S. G., and Kanade, T. 2010. A multi-layered display with water drops. ACM Trans. Graph. 29, 76:1--76:7.
[4]
Bell, G. P., Craig, R., Paxton, R., Wong, G., and Galbraith, D. 2008. Beyond flat panels: Multi-layered displays with real depth. SID Digest 39, 1, 352--355.
[5]
Bell, G. P., Engel, G. D., Searle, M. J., and Evanicky, D., 2010. Method to control point spread function of an image. U.S. Patent 7,742,239.
[6]
Blanche, P.-A., et al. 2010. Holographic 3-d telepresence using large-area photorefractive polymer. Nature 468, 80--83.
[7]
Blundell, B., and Schwartz, A. 1999. Volumetric Three-Dimensional Display Systems. Wiley-IEEE Press.
[8]
Bracewell, R. N., and Riddle, A. C. 1967. Inversion of fan-beam scans in radio astronomy. Astrophysical Journal 150, 427--434.
[9]
Chai, J.-X., Tong, X., Chan, S.-C., and Shum, H.-Y. 2000. Plenoptic sampling. In ACM SIGGRAPH, 307--318.
[10]
Chaudhury, K. N., Muñoz-Barrutia, A., and Unser, M. 2010. Fast space-variant elliptical filtering using box splines. IEEE Trans. Image 19, 9, 2290--2306.
[11]
Coleman, T., and Li, Y. 1996. A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM Journal on Optimization 6, 4, 1040--1058.
[12]
Cossairt, O. S., Napoli, J., Hill, S. L., Dorval, R. K., and Favalora, G. E. 2007. Occlusion-capable multiview volumetric three-dimensional display. Applied Optics 46, 8, 1244--1250.
[13]
Disney, W. E., 1940. Art of animation. U.S. Patent 2,201,689.
[14]
Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29, 62:1--62:10.
[15]
Drebin, R. A., Carpenter, L., and Hanrahan, P. 1988. Volume rendering. ACM SIGGRAPH 22, 65--74.
[16]
Favalora, G. E. 2005. Volumetric 3D displays and application infrastructure. IEEE Computer 38, 37--44.
[17]
Gotoda, H. 2010. A multilayer liquid crystal display for autostereoscopic 3D viewing. In SPIE-IS&T Stereoscopic Displays and Applications XXI, vol. 7524, 1--8.
[18]
Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. 29, 61:1--61:10.
[19]
Hecht, E. 2001. Optics. Addison Wesley.
[20]
Herman, G. T. 1995. Image reconstruction from projections. Real-Time Imaging 1, 1, 3--18.
[21]
Ives, F. E., 1903. Parallax stereogram and process of making same. U.S. Patent 725,567.
[22]
Jacobs, A., et al. 2003. 2D/3D switchable displays. Sharp Technical Journal, 4, 1--5.
[23]
Jones, A., McDowall, I., Yamada, H., Bolas, M., and Debevec, P. 2007. Rendering for an interactive 360° light field display. ACM Trans. Graph. 26, 40:1--40:10.
[24]
Kak, A. C., and Slaney, M. 2001. Principles of Computerized Tomographic Imaging. Society for Industrial Mathematics.
[25]
Kanolt, C. W., 1918. Photographic method and apparatus. U.S. Patent 1,260,682.
[26]
Klug, M., Holzbach, M., and Ferdman, A., 2001. Method and apparatus for recording one-step, full-color, full-parallax, holographic stereograms. U.S. Patent 6,330,088.
[27]
Kooi, F. L., and Toet, A. 2003. Additive and subtractive transparent depth displays. In SPIE Enhanced and Synthetic Vision, vol. 5081, 58--65.
[28]
Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization. ACM Trans. Graph. 29, 163:1--163:10.
[29]
Levoy, M., and Hanrahan, P. 1996. Light Field Rendering. In ACM SGGRAPH, 31--42.
[30]
Lippmann, G. 1908. Épreuves réversibles donnant la sensation du relief. Journal of Physics 7, 4, 821--825.
[31]
Lipton, L. 1982. Foundations of the Stereoscopic Cinema. Van Nostrand Reinhold.
[32]
Loukianitsa, A., and Putilin, A. N. 2002. Stereodisplay with neural network image processing. In SPIE-IT&T Stereoscopic Displays and Virtual Reality Systems IX, vol. 4660, 207--211.
[33]
Maeda, H., Hirose, K., Yamashita, J., Hirota, K., and Hirose, M. 2003. All-around display for video avatar in real world. In IEEE/ACM ISMAR, 288--289.
[34]
Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P. A., Pellacini, F., and Rusinkiewicz, S. 2009. Printing spatially-varying reflectance. ACM Trans. Graph. 28, 128:1--128:9.
[35]
Mitra, N. J., and Pauly, M. 2009. Shadow art. ACM Trans. Graph. 28, 156:1--156:7.
[36]
Nayar, S., and Anand, V. 2007. 3D display using passive optical scatterers. IEEE Computer Magazine 40, 7, 54--63.
[37]
Perlin, K., and Han, J. Y., 2006. Volumetric display with dust as the participating medium. U.S. Patent 6,997,558.
[38]
Putilin, A. N., and Loukianitsa, A., 2006. Visualization of three dimensional images and multi aspect imaging. U.S. Patent 6,985,290.
[39]
Reinhard, E., Ward, G., Debevec, P., Pattanaik, S., Heidrich, W., and Myszkowski, K. 2010. High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting. Morgan Kaufmann.
[40]
Sabella, P. 1988. A rendering algorithm for visualizing 3D scalar fields. ACM SIGGRAPH 22, 51--58.
[41]
Sagi, O., 2009. PolyJet Matrix Technology: A new direction in 3D printing. http://www.objet.com, June.
[42]
Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Ghosh, A., and Vorozcovs, A. 2004. High dynamic range display systems. ACM Trans. Graph. 23, 3, 760--768.
[43]
Slinger, C., Cameron, C., and Stanley, M. 2005. Computer-generated holography as a generic display technology. Computer 38, 8, 46--53.
[44]
Sullivan, A. 2003. A solid-state multi-planar volumetric display. In SID Digest, vol. 32, 207--211.
[45]
Suyama, S., Ohtsuka, S., Takada, H., Uehira, K., and Sakai, S. 2004. Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths. Vision Research 44, 8, 785--793.
[46]
Yendo, T., Kawakami, N., and Tachi, S. 2005. Seelinder: the cylindrical lightfield display. In ACM SIGGRAPH Emerging Technologies.
[47]
Z Corporation, 2010. ZPrinter 650. http://www.zcorp.com, January.
[48]
Zwicker, M., Matusik, W., Durand, F., and Pfister, H. 2006. Antialiasing for automultiscopic 3D displays. In Eurographics Symposium on Rendering.

Cited By

View all

Index Terms

  1. Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 30, Issue 4
          July 2011
          829 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2010324
          Issue’s Table of Contents
          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          Published: 25 July 2011
          Published in TOG Volume 30, Issue 4

          Permissions

          Request permissions for this article.

          Check for updates

          Author Tags

          1. autostereoscopic 3D displays
          2. computational displays
          3. high dynamic range displays
          4. light fields
          5. tomography

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)32
          • Downloads (Last 6 weeks)5
          Reflects downloads up to 28 Dec 2024

          Other Metrics

          Citations

          Cited By

          View all

          View Options

          Login options

          Full Access

          View options

          PDF

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media