skip to main content
10.1145/1143549.1143751acmconferencesArticle/Chapter ViewAbstractPublication PagesiwcmcConference Proceedingsconference-collections
Article

A spectrally modulated, spectrally encoded analytic framework for carrier interferometry signals

Published: 03 July 2006 Publication History

Abstract

This paper applies a recently introduced general analytic framework for spectrally modulated and spectrally encoded (SMSE) signals to carrier interferometry (CI) signals. The SMSE framework mathematically incorporates the waveform adaptivity and diversity found in SMSE signals. Future fourth generation (4G) radios are likely to operate using cognitive principles whereby the system adapts to changing traffic loads, interfering signals, spectrum availability, and channel conditions. Because 4G architectures are contemplating the use of SMSE techniques to enable cognitive communications, a general analytic framework was recently introduced in which SMSE signals can be derived, analyzed, and implemented. This paper adopts this concise mathematical model and applies it to CI signals, including those that couple CI coding techniques with orthogonal frequency division multiplexing (OFDM), coded OFDM, or multi-carrier code division multiple access (MC-CDMA). As shown herein, the model may be implementable using adaptive software defined radio (SDR) techniques.

References

[1]
I. F. Akyildiz, S. Mohanty, and J. Xie. A ubiquitous mobile communication architecture for next-generation heterogeneous wireless systems. IEEE Commun. Mag., 43(6):S29--S36, June 2005.
[2]
E. Buracchini. The software radio concept. IEEE Commun. Mag., 38(9):138--143, Sept. 2000.
[3]
R. W. Chang. Synthesis of band-limited orthogonal signals for multichannel data transmission. Bell Syst. Tech. J., 45:1775--1796, Dec. 1966.
[4]
R. W. Chang. Orthogonal frequency division multiplexing, Jan. 1970.
[5]
T. Costlow. Cognitive radios will adapt to users. IEEE Intell. Syst., 18(3):7, May-June 2003.
[6]
R. Fantacci, F. Chiti, D. Marabissi, G. Mennuti, S. Morosi, and D. Tarchi. Perspectives for present and future cdma-based communications systems. IEEE Commun. Mag., 43(2):95--100, Feb. 2005.
[7]
H. Futaki and T. Ohtsuki. Low-density parity-check (ldpc) coded ofdm systems. In IEEE Vehicular Tech. Conf. (VTC), volume 1, pages 82--86, Atlantic City, NJ, Oct. 2001.
[8]
A. Gatherer. In 14th VA Tech/MPRG Symposium on Wireless Personal Commun., Blacksburg, VA, June 10, 2004. Speaker's luncheon.
[9]
S. Haykin. Cognitive radio: Brain-empowered wireless communications. IEEE J. Select. Areas Commun., 23(2):201--220, Feb. 2005.
[10]
S. Y. Hui and K. H. Yeung. Challenges in the migration to 4g mobile systems. IEEE Commun. Mag., 41(12):54--59, Dec. 2003.
[11]
A. K. Jain. Fundamentals of Digital Image Processing, pages 141--145. Prentice Hall, Upper Saddle River, NJ, 1989.
[12]
B. LeFloch, M. Alard, and C. Berrou. Coded orthogonal frequency division multiplex. Proc. IEEE, 83(6):982--996, June 1995.
[13]
J.-P. M. G. Linnartz. Performance analysis of synchronous mc-cdma in mobile rayleigh channel with both delay and doppler spreads. IEEE Trans. Veh. Technol., 50(6):1375--1387, Nov. 2001.
[14]
J. Lipman. Wireless enters the 4th(g) dimension. TechOnLine, Apr. 3, 2003.
[15]
C. Matthias. Getting an early handle on 4g. EE Times, Nov. 12, 2001.
[16]
J. Mitola. The software radio architecture. IEEE Commun. Mag., 33(5):26--38, May 1995.
[17]
J. Mitola, III. Cognitive radio for flexible mobile multimedia communications. In IEEE Int'l Workshop Mobile Multimedia Commun. (MoMuC), pages 3--10, San Diego, CA, Nov. 1999.
[18]
A. F. Molisch. Ultrawideband propagation channels-theory, measurement, and modeling. IEEE Trans. Veh. Technol., 54(5):1528--1545, Sept. 2005.
[19]
C. R. Nassar, B. Natarajan, and S. Shattil. Introduction of carrier interference to spread spectrum multiple access. In IEEE Emerging Technologies Symp., pages 4.1--4.5, Richardson, TX, Apr. 1999.
[20]
B. Natarajan, C. R. Nassar, S. Shattil, M. Michelini, and Z. Wu. High-performance mc-cdma via carrier interferometry codes. IEEE Trans. Veh. Technol., 50(6):1344--1353, Nov. 2001.
[21]
B. Natarajan, Z. Wu, C. R. Nassar, and S. Shattil. Large set of ci spreading codes for high-capacity mc-cdma. IEEE Trans. Commun., 52(11):1862--1866, Nov. 2004.
[22]
I. Poole. What exactly is cognitive radio? IEE Commun. Engr., 3(5):42--43, Oct-Nov 2005.
[23]
M. L. Roberts, M. A. Temple, M. E. Oxley, R. F. Mills, and R. A. Raines. A general analytic framework for spectrally modulated, spectrally encoded signals. In IEEE Int'l Conf. on Waveform Diversity and Design, Lihue, HI, Jan. 2006.
[24]
S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper. Ultrawideband radio design: The promise of high-speed, short-range wireless connectivity. Proc. IEEE, 92(2):295--311, Feb. 2004.
[25]
P. Rysavy. The hype and confusion about 4g. MobilePipeline, Nov. 10, 2005.
[26]
B. R. Saltzberg. Performance of an efficient data transmission system. IEEE Trans. Commun. Technol., COM-15:805--813, Dec. 1967.
[27]
K. R. Santhi, V. K. Srivastava, G. SenthilKumaran, and A. Butare. Goals of true broad band's wireless next wave (4g-5g). In IEEE Vehicular Tech. Conf. (VTC), volume 4, pages 2317--2321, Orlando, FL, Oct. 2003.
[28]
N. Taylor, M. A. Cooper, S. M. D. Armour, and J. P. McGeehan. Performance evaluation of carrier interferometry implementations of mc-cdma over a wideband channel suffering phase noise. In IEEE Vehicular Tech. Conf. (VTC), volume 5, pages 3043--3047, Stockholm, Sweden, May 2005.
[29]
S. B. Weinstein and P. M. Ebert. Data transmission by frequency-division multiplexing using the discrete fourier transform. IEEE Trans. Commun. Technol., COM-19(5):628--634, Oct. 1971.
[30]
D. A. Wiegandt and C. R. Nassar. High performance ofdm via carrier interferometry. In IEEE Intl. Conf. 3rd-Generation Wireless and Beyond (3G Wireless '01), pages 404--409, San Francisco, CA, 2001.
[31]
D. A. Wiegandt, C. R. Nassar, and Z. Wu. Overcoming peak-to-average power ratio issues in ofdm via carrier interferometry codes. In IEEE Veh. Tech. Conf. (VTC), pages 660--663, Atlantic City, NJ, 2001.
[32]
D. A. Wiegandt, Z. Wu, and C. R. Nassar. High-throughput, high-performance ofdm via pseudo-orthogonal carrier interferometry spreading codes. IEEE Trans. Commun., 51(7):1123--1134, July 2003.
[33]
Z. Wu and C. R. Nassar. Narrowband interference rejection in ofdm via carrier interferometry spreading codes. IEEE Trans. Wireless Commun., 4(4):1491--1505, July 2005.
[34]
L. Yang and G. B. Giannakis. Ultra-wideband multiple access: Unification and narrowband interference analysis. In IEEE Conf. on UWB Sys. and Tech. (UWBST), pages 320--324, Reston, VA, Nov. 2003.
[35]
L. Yang and G. B. Giannakis. A general model and sinr analysis of low duty-cycle uwb access through multipath with narrowband interference and rake reception. IEEE Trans. Wireless Commun., 4(4):1818--1833, July 2005.
[36]
T. Zahariadis. Trends in the path to 4g. IEE Commun. Engr., 1(1):12--15, Feb. 2003.
[37]
W. Y. Zou and Y. Wu. Cofdm: An overview. IEEE Trans. Broadcast., 41(1):1--8, Mar. 1995.

Cited By

View all
  • (2009)A Unified Multi-Functional Dynamic Spectrum Access Framework: Tutorial, Theory and Multi-GHz Wideband TestbedSensors10.3390/s908065309:8(6530-6603)Online publication date: 21-Aug-2009
  • (2007)A general overlay/underlay analytic expression representing cognitive radio waveform2007 International Waveform Diversity and Design Conference10.1109/WDDC.2007.4339382(69-73)Online publication date: Jun-2007

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
IWCMC '06: Proceedings of the 2006 international conference on Wireless communications and mobile computing
July 2006
2006 pages
ISBN:1595933069
DOI:10.1145/1143549
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 03 July 2006

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. COFDM
  2. MC-CDMA
  3. OFDM
  4. SMSE
  5. carrier interferometry
  6. spectral encoding
  7. spectral modulation

Qualifiers

  • Article

Conference

IWCMC06
Sponsor:

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2009)A Unified Multi-Functional Dynamic Spectrum Access Framework: Tutorial, Theory and Multi-GHz Wideband TestbedSensors10.3390/s908065309:8(6530-6603)Online publication date: 21-Aug-2009
  • (2007)A general overlay/underlay analytic expression representing cognitive radio waveform2007 International Waveform Diversity and Design Conference10.1109/WDDC.2007.4339382(69-73)Online publication date: Jun-2007

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media