Abstract
The conformal prediction framework allows for specifying the probability of making incorrect predictions by a user-provided confidence level. In addition to a learning algorithm, the framework requires a real-valued function, called nonconformity measure, to be specified. The nonconformity measure does not affect the error rate, but the resulting efficiency, i.e., the size of output prediction regions, may vary substantially. A recent large-scale empirical evaluation of conformal regression approaches showed that using random forests as the learning algorithm together with a nonconformity measure based on out-of-bag errors normalized using a nearest-neighbor-based difficulty estimate, resulted in state-of-the-art performance with respect to efficiency. However, the nearest-neighbor procedure incurs a significant computational cost. In this study, a more straightforward nonconformity measure is investigated, where the difficulty estimate employed for normalization is based on the variance of the predictions made by the trees in a forest. A large-scale empirical evaluation is presented, showing that both the nearest-neighbor-based and the variance-based measures significantly outperform a standard (non-normalized) nonconformity measure, while no significant difference in efficiency between the two normalized approaches is observed. The evaluation moreover shows that the computational cost of the variance-based measure is several orders of magnitude lower than when employing the nearest-neighbor-based nonconformity measure. The use of out-of-bag instances for calibration does, however, result in nonconformity scores that are distributed differently from those obtained from test instances, questioning the validity of the approach. An adjustment of the variance-based measure is presented, which is shown to be valid and also to have a significant positive effect on the efficiency. For conformal regression forests, the variance-based nonconformity measure is hence a computationally efficient and theoretically well-founded alternative to the nearest-neighbor procedure.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml
Boström, H.: Forests of probability estimation trees. IJPRAI 26(2) (2012)
Boström, H., Linusson, H., Löfström, T., Johansson, U.: Evaluation of a variance-based nonconformity measure for regression forests. In: Conformal and Probabilistic Prediction with Applications - 5th International Symposium, COPA 2016, Madrid, Spain, April 20-22, 2016, Proceedings, pp. 75–89 (2016)
Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)
Gammerman, A., Vovk, V., Vapnik, V.: Learning by transduction. In: Proceedings of the Fourteenth conference on Uncertainty in Artificial Intelligence, pp. 148–155. Morgan Kaufmann (1998)
Johansson, U., Boström, H., Löfström, T., Linusson, H.: Regression conformal prediction with random forests. Mach. Learn. 97(1-2), 155–176 (2014)
Löfström, T., Johansson, U., Boström, H.: Effective utilization of data in inductive conformal prediction. In: The 2013 international joint conference on neural networks (IJCNN). IEEE (2013)
Papadopoulos, H.: Inductive conformal prediction: Theory and application to neural networks. Tools in Artificial Intelligence 18(315-330), 2 (2008)
Papadopoulos, H., Gammerman, A., Vovk, V.: Normalized nonconformity measures for regression conformal prediction In: Proceedings of the IASTED International Conference on Artificial Intelligence and Applications (AIA 2008), pp. 64–69 (2008)
Papadopoulos, H., Haralambous, H.: Reliable prediction intervals with regression neural networks. Neural Netw. 24(8), 842–851 (2011)
Papadopoulos, H., Proedrou, K., Vovk, V., Gammerman, A.: Inductive confidence machines for regression. In: Machine Learning: ECML 2002, pp. 345–356. Springer (2002)
Papadopoulos, H., Vovk, V., Gammerman, A.: Regression conformal prediction with nearest neighbours. J. Artif. Intell. Res. 40(1), 815–840 (2011)
Rasmussen, C.E., Neal, R.M., Hinton, G., van Camp, D., Revow, M., Ghahramani, Z., Kustra, R., Tibshirani, R.: Delve data for evaluating learning in valid experiments (1996). www.cs.toronto.edu/delve
Vovk, V.: Cross-conformal predictors. Ann. Math. Artif. Intell. 74(1-2), 9–28 (2015)
Vovk, V., Gammerman, A., Shafer, G.: Algorithmic learning in a random world. Springer (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Boström, H., Linusson, H., Löfström, T. et al. Accelerating difficulty estimation for conformal regression forests. Ann Math Artif Intell 81, 125–144 (2017). https://doi.org/10.1007/s10472-017-9539-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10472-017-9539-9