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Abstract—We consider the problem of optimal distributed
scheduling for delay minimization in single-hop wireless net-
works. We focus on static scheduling policies, where the CSMA
channel access rates are determined by the long-run traffic
statistics, but not the instantaneous queue states. Such static
scheduling is preferable over dynamic scheduling policies like
max-weight when the traffic flows are heterogeneous. In this
paper, we formulate the problem of optimizing the channel access
rates of different links subject to an upper bound on the access
rate of each link. This is a hard non-convex optimization. We
propose an approximate solution that is asymptotically optimal in
the limit as the maximum permissible channel access rate grows
to infinity. We also study the role of the intra-queue scheduling
policy. Specifically, we consider two policies: first come first
served (FCFS) and pre-emptive last come first served (PLCFS).
Analogous to the case of an M/G/1 queue, we show that PLCFS
is preferable to FCFS for highly variable flows.

I. INTRODUCTION

The design of link scheduling policies for wireless networks
has received widespread attention in the research community
over the past decades. Scheduling in wireless networks is
complicated by interference considerations, which allow only a
subset of the links to be active at any time. The challenge then
is to design distributed medium access protocols that provide
high throughput as well as low delay.

An important design goal for wireless scheduling policies
is throughput optimality. A policy is said to be throughput
optimal if the set of arrival rates it can stably support is
maximal. Broadly, throughput optimal scheduling policies for
wireless networks fall into two distinct categories.

Dynamic policies: In this class of policies, the link schedul-
ing is governed by the queue lengths in the network. The
starting point for the literature on dynamic throughput optimal
scheduling is the classical max-weight policy proposed by
Tassiulas and Ephremides [1], [2]. There is now a substantial
body of literature on evaluating and generalizing the max-
weight policy in a variety of settings; see, for example, [3]–
[9]. In the context of this paper, two aspects of the max-weight
class of policies are worth noting. Firstly, these policies do not
require learning/knowledge of arrival statistics. Secondly, this
class of policies exhibit fairness issues in asymmetric traffic
settings. Specifically, when the network sees a mix of heavy-
tailed (highly bursty) and light-tailed (less bursty) traffic, it can
be shown that the max-weight policy can induce heavy-tailed
delays on the light-tailed flows [10]–[12]. This is because
(relatively frequent) bursts into the heavy-tailed queues can

cause contending light-tailed queues to be starved of service
for extended periods of time.

Static policies: In this class of policies, each flow is associ-
ated with a desired service rate, and the scheduling parameters
are set such that these service rates are achieved whenever
feasible; see, for example, [13]–[16]. These policies are static
in the sense that the scheduling does not depend on the state of
the queues in the network. Note that static policies do require
learning/knowledge of traffic parameters, in order to ensure
that all queues are stable. However, it is important to note that
static policies address the above mentioned fairness issue in
asymmetric traffic settings, since the service process of each
queue is insensitive to the instantaneous queue occupancies.

One issue which, to the best of our knowledge, has remained
unaddressed in the study of static scheduling policies is how
to set the scheduling parameters in order to minimize delay.
The present paper seeks to address this question. Indeed, most
of the prior work on static throughput optimal scheduling
assumes an exogenously defined service rate for each flow.
However, delay minimization entails setting the service rate
of each flow, subject to both queue stability constraints as
well as network capacity constraints.

Specifically, we consider a single-hop wireless network,
where only one link can be active at any time. Links contend
for service according to a distributed, asynchronous, CSMA
protocol. Our model allows for asymmetry in the arrival
process of each link, in terms of the file/job arrival rate,
as well as the file/job size distribution. In this setting, we
formulate the problem of optimizing the CSMA parameters,
namely, the channel access rates, so as to minimize the average
response time. Since it is impractical for nodes to implement
arbitrarily high access rates, we impose the constraint that
the channel access rate of each transmitter is bounded from
above. It turns out that the above optimization is non-convex,
and therefore hard to solve exactly. Accordingly, we propose
an approximate solution that is easy to compute, amenable
to distributed evaluation, and asymptotically optimal as the
maximum channel access rate grows to infinity. Numerical
results show that the proposed solution is near-optimal even
for moderate bounds on the channel access rate.

Additionally, we consider the effect of the intra-queue
scheduling policy, which determines which job from the queue
is served when the corresponding link is active. We consider
two intra-queue scheduling policies: first come first served
(FCFS) and pre-emptive last come first served (PLCFS).
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Analogous to the case of an M/G/1 queue, we show that
PLCFS is preferable to FCFS for highly variable flows. Finally,
we consider the optimization of the channel access rates when
a subset of links employs FCFS intra-queue scheduling, while
the remaining links employ PLCFS scheduling. We provide an
easily computable approximate solution for this non-convex
optimization that is asymptotically optimal as the maximum
channel access rate grows to infinity.

This paper is organised as follows. In Section II, we describe
our model and state some preliminary results. In Section III,
we consider the problem of optimizing channel access rates.
Next, in Section IV, we study the effect of the intra-queue
scheduling policy. We present numerical simulations in Sec-
tion V, and conclude in Section VI.

II. MODEL AND PRELIMINARIES

In this section, we describe our system model and derive
some preliminary results.

Medium access model: We consider a wireless network
composed of l links, labeled 1, 2, · · · , l. We assume that the
links interfere with one another, so that only one link may be
active at any time. The links get served as per the following
asynchronous CSMA protocol, which was first proposed in
[13]. The transmitter of Link i maintains an independent
exponential clock of rate Ri. In other words, the clock-tick
instants at the transmitter of Link i form a Poisson process of
rate Ri. When a clock tick occurs at the transmitter of Link i,
it commences transmission if the channel is sensed to be idle.
Once transmission commences on any link, it continues for a
period of time that is (independently) exponentially distributed
with rate µ.

Note that under the above model, collisions do not occur
(with probability one).1 Moreover, it is easy to see that the
link activations follow a continuous time Markov chain, as
depicted in Figure 1.

Fig. 1: Markov chain describing link activations

Here, State i corresponds to Link i being active, and
State 0 corresponds to a the channel being idle. Define

1Such idealized CSMA modeling is standard in the literature; see, for
example, [8], [13], [16].

Z :=
∑l
i=1Ri + µ. Clearly, the stationary distribution of this

Markov chain is given by

πi =
Ri
Z

(1 ≤ i ≤ l),

π0 =
µ

Z
.

This implies of course that the service rate of Link i equals Ri

Z .
In this paper, we treat the vector of channel access rates R =

(Ri, 1 ≤ i ≤ l) as a control parameter, to be optimized so as
to minimize the average delay in the network. Specifically,
we optimize R under the constraint Ri ≤ r ∀ i. Here, r is
an upper bound on the channel probe rate of each link, and
may be interpreted as a physical constraint of the wireless
transmitters.2

Traffic model: We assume that Link i is equipped with
an infinite buffer. Jobs/files arrive for transmission at Link i
according to a Poisson process of rate λi. The service times
of jobs/files on Link i are i.i.d., with Si denoting a generic
service time requirement on Link i. Note that the service time
of a job/file is simply the time required to transmit it over the
channel. Thus, ρi := λiE [Si] is the traffic intensity at Link i.
Let ρ = (ρi, 1 ≤ i ≤ l). Since Link i is active intermittently,
we assume that jobs/files may be pre-empted and served over
multiple activity periods as needed. Moreover, a single activity
period may support multiple jobs. It is then easy to see that
the queue of Link i is stable if and only if ρi < Ri

Z .
We make the following remarks about the model.
1) Our model allows for a different service time distribution

for each link. This allows us to capture heterogeneous
traffic flows. For example, a subset of links may have
bursty traffic flows (characterized by highly variable
service time distributions).

2) The service process of each queue is independent of
its instantaneous state. In other words, we consider
static scheduling. In contrast, scheduling policies like
max-weight [1] and its variants are dynamic, in that
scheduling decisions are dependent on the states of the
different queues in the network.

Rate region: We now characterize the rate region, which is
the set of traffic rate vectors that can be stably supported by
the network. Define R = {R ∈ Rl : Ri ∈ [0, r] ∀ i}. The
rate region for our system is given by

Θr = {ρ̃ ∈ Rl+ : ∃ R ∈ R such that ρ̃i <
Ri
Z
∀ i}.

Throughout, we assume that ρ ∈ Θr. Clearly, for Θr ⊆ Θr′

for r < r′. Moreover, Θr ⊂ Θ, where

Θ = {ρ̃ ∈ Rl+ :
l∑
i=1

ρ̃i < 1}

is the rate region when the channel access rates are uncon-
strained.

2Such an upper bound is also considered in [13]. Also, it turns out that
the optimization of the channel access rates to minimize delay is ill-posed
without an upper bound on the access rates.
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Delay characterization: We conclude this section with a
characterization of the average (stationary) response time for
jobs on each link under our model. The response time of a job
is the interval between its arrival and its departure. Let T FCFS

i

denote the stationary response time corresponding to Link i,
assuming first-come-first-served (FCFS) scheduling of jobs.3

Lemma 1. If ρi < Ri

Z ,

E[T FCFS
i ] =

1
µ

(
1− (Z+µ)

Z2 Ri
)

Ri

Z − ρi
+

λiE[S2
i ]

2Ri

Z

(
Ri

Z − ρi
) +

E[Si]
Ri

Z

.

The proof of Lemma 1 is given in Appendix A.

III. OPTIMIZING CHANNEL ACCESS RATES FOR MINIMUM
DELAY

In this section, we consider the problem of optimizing
the channel access rates in order to minimize the average
(stationary) job response time. In this, we impose the natural
constraint that all channel access rates are bounded from
above. However, it turns out that the above optimization prob-
lem is non-convex, and therefore hard to solve. We propose
an approximate solution, which is proved to be asymptotically
optimal as the upper bound r on the channel access rates
grows to infinity (see Theorem 1). Moreover, the proposed
approximation is easy to compute. Specifically, it is the solu-
tion of a convex network utility maximization problem [17];
efficient algorithms (including distributed implementations)
are available for this class of optimization problems [17], [18].

We assume throughout this section that all links employ
FCFS scheduling.4 If all links are stable, then the average
(stationary) job response time is given by

1∑l
i=1 λi

l∑
i=1

λiE[T FCFS
i ].

Note that by Little’s law, minimizing the above is equivalent
to minimizing the long-run average number of jobs in the
system. Formally, the optimization problem we consider is the
following.5

min.
l∑
i=1

λi

µ (1− (Z+µ)Ri

Z2 )
Ri

Z − ρi
+

λ2iE[S2
i ]

2Ri

Z (Ri

Z − ρi)
+
Zρi
Ri

s.t. Ri ≤ r ∀i (F )
Ri ≥ 0 ∀i

Recall that Z =
∑l
i=1Ri + µ. Also, note that the optimiza-

tion (F ) has the implicit constraint that ρi < Ri

Z for all i,
so that all queues are stable.6 It is important to note that

3While the channel access rates define the inter-queue scheduling policy,
FCFS is the intra-queue scheduling policy. Note that the response time
distribution depends on both.

4We consider the effect of the intra-queue scheduling policies in Sec-
tion IV.

5WLOG, we omit the constant factor of 1∑l
i=1 λi

from the objective
function.

6We interpret the objective function value to be ∞ if the queue stability
conditions are not satisfied.

performing the optimization (F ) requires that we know/learn
the following traffic statistics for each link i: The arrival rate
λi, as well as the first and second moments of the job/file
size Si. Clearly, each link can learn these quantities from
observed arrival stream.

It is easy to show that (F ) is a non-convex optimization,
making an optimal solution computationally intractable. In
the remainder of this section, we develop an approximate
solution of (F ), which is both easily computable, and also
asymptotically optimal (as r →∞).

Let f(·) denote the objective function of (F ), and let f∗r
denote the optimal value of (F ). The following observation
will be useful.

Lemma 2. If f(R) <∞, then f(βR) < f(R) for any β > 1.

The proof of this lemma is elementary and is omitted. Now,
consider the related optimization

min.
l∑
i=1

λi

µ (1− (Z+µ)Ri

Z2 )
Ri

Z − ρi
+

λ2iE[S2
i ]

2Ri

Z (Ri

Z − ρi)
+
Zρi
Ri

s.t.
l∑
i=1

Ri ≤ r (F ′)

Ri ≥ 0 ∀i

Note that we have replaced the constraint ‖R‖∞ ≤ r in (F )
by the constraint ‖R‖1 ≤ r. It turns out that (F ′) is also
non-convex, but can be convexified using the following obser-
vation.

Lemma 3. Any solution R∗ of (F ′) satisfies

l∑
i=1

R∗i = r.

Proof. The statement is a trivial consequence of Lemma 2.

Lemma 3 allows us to transform the inequality constraint
‖R‖1 ≤ r in (F ′) to the equality constraint ‖R‖1 = r. Now,
making the the substitution Ri = rαi, the problem reduces to
the following.

min.
l∑
i=1

λi

µ (1− αir(r+2µ)
(r+µ)2 )

αir
r+µ − ρi

+
λ2iE[S2

i ]

2 αir
r+µ ( αir

r+µ − ρi)
+

ρi
αir
r+µ

s.t.
l∑
i=1

αi = 1 (F ′′)

αi ≥ 0 ∀i

It is easy to show that (F ′′) is a convex optimization prob-
lem. Moreover, since the objective function is separable with
respect to the components of α = (αi, 1 ≤ i ≤ l), we note
that (F ′′) may be interpreted as a network utility maximization
problem [17], with the ith term in the objective denoting the
‘cost function’ of Link i, and the constraint

∑l
i=1 αi = 1

representing a capacity constraint. As a result, (F ′′) can be
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solved efficiently, in a distributed manner, using standard
techniques [17], [18].

We now develop an approximate solution of (F ) in terms of
the solution of (F ′′). Let α∗(r) denote the optimum of (F ′′).
The proposed approximation R̂ = (R̂i, 1 ≤ i ≤ l) is defined
as follows.

R̂i :=
α∗i (r)

‖α∗(r)‖∞
r (1 ≤ i ≤ l)

Note that R̂ depends on r, although we do not make this
dependence explicit. We first show that R̂ is a feasible solution
of (F ).

Lemma 4. R̂ is a feasible solution of (F ). In particular, the
allocation R̂ keeps all queues stable.

Proof. Since 0 ≤ α∗i (r)
‖α∗‖∞ ≤ 1, we have 0 ≤ R̂i ≤ r for all i.

For stability, we need the following inequality to hold:

R̂i∑l
i=0 R̂i + µ

=

α∗i (r)
‖α∗‖∞ r
r

‖α∗‖∞ + µ
> ρi

We have
α∗i (r)
‖α∗‖∞ r
r

‖α∗‖∞ + µ
=

α∗i (r)r

r + ‖α∗‖∞µ
≥ α∗i (r)r

r + µ
, (1)

where the last inequality holds because ‖α∗‖∞ ≤ 1. Moreover,
as α∗(r) is the solution to the problem F ′′, we have

α∗i (r)r

r + µ
> ρi,

which proves (1).

We are now ready to state the main result of this section,
which asserts the asymptotic optimality of R̂.

Theorem 1. R̂ is asymptotically optimal as r →∞, i.e.,

lim
r→∞

f(R̂) = lim
r→∞

f∗r .

Proof. Let f ′∗r denote the optimal value of (F ′). It is easy to
see that f ′∗r is strictly decreasing in r, and is bounded from
below. Let f ′∗ := limr→∞ f ′∗r .

Now, since

‖R‖1 ≤ r ⇒ ‖R‖∞ ≤ r ⇒ ‖R‖1 ≤ lr,

it follows that
f ′∗lr ≤ f∗r ≤ f ′∗r .

This implies
lim
r→∞

f∗r = f ′∗. (2)

Next, note that from Lemma 3, rα∗(r) is the optimal
solution of (F ′). Moreover, R̂ = r

‖α∗(r)‖∞α
∗(r). It follows

from Lemma 2 that

f(R̂) ≤ f(rα∗(r)) = f ′∗r .

Moreover, since ‖R̂‖1 = r
‖α∗(r)‖∞ , we have

f(R̂) ≥ f ′∗r/‖α∗(r)‖∞ .

Combining the above inequalities, we have

f ′∗r/‖α∗(r)‖∞ ≤ f(R̂) ≤ f ′∗r .

Taking limits as r → ∞, and noting that
limr→∞ r/‖α∗(r)‖∞ =∞, we conclude that

lim
r→∞

f(R̂) = f ′∗. (3)

The statement of the theorem follows from (2) and (3).

To conclude, in this section, we consider the problem of
optimizing the channel access rates to minimize the average
job/file response time. For this non-convex optimization, we
propose an approximate solution in terms of the solution
of a convex network utility maximization problem, which
can be solved efficiently in a distributed fashion. Also, we
show that the proposed allocation of channel access rates is
asymptoticaly optimal, in the limit as the maximum channel
access rate r grows to infinity. Even through our analytical
guarantee for the proposed solution only holds in the limit as
r ↑ ∞, our numerical experiments in Section V demonstrate
that the proposed solution is nearly optimal even for moderate
values of r.

IV. THE EFFECT OF THE INTRA-QUEUE SCHEDULING
POLICY

In the previous section, we considered the optimization of
the inter-queue scheduling, determined by the channel access
rates. In this, we assumed FCFS scheduling within each queue.
In the present section, we focus on the role of the intra-queue
scheduling policy. Specifically, we analyse performance under
an alternate intra-queue scheduling policy, namely PLCFS.
The motivation for considering PLCFS is the following well
known result for the M/G/1 queue: FCFS results in a lower
mean response time when the job size distribution exhibits low
variability, while PLCFS results in a lower mean response time
when the job size distribution is highly variable [19].

We begin by characterizing the mean response time for a
link under PLCFS (Lemma 5). Interestingly, the condition for
PLCFS to produce a lower mean response time than FCFS in
our system is identical to the condition for the M/G/1 queue
(Lemma 6). We then consider the problem of optimizing the
channel access rates assuming PLCFS scheduling within each
queue. As before, this is a non-convex optimization, and we
obtain an asymptotically optimal (as r → ∞) approximation
for this problem (Theorem 2). Remarkably, this approximation
has a closed form. Next, we consider the general setting
wherein a subset of queues employ PLCFS scheduling, while
the remaining employ FCFS. As in Section III, we provide
an asymptotically optimal (as r →∞) approximation for this
non-convex optimization, in terms of the solution of a convex
network utility maximization problem (Theorem 3).

Let T PLCFS
i denote the stationary response time on Link i

under PLCFS intra-queue scheduling.
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Lemma 5. If ρi < Ri

Z ,

E
[
T PLCFS
i

]
=

1
µ

(
1− (Z+µ)

Z2 Ri
)

+ E[Si]
Ri

Z − ρi
.

Lemma 5 can be proved using the same line of arguments
as Lemma 1; we omit the proof due to space constraints. A
key point to note is that unlike in the case of PLCFS, the
mean response time under PLCFS does not depend on the
second moment of the job size distribution. Next, we compare
the mean response time under FCFS and PLCFS. Define, for
a non-negative random variable X, the squared coefficient
of variation (SCV) C2

X := V ar(X)
E[X]2 . Note that the SCV is a

normalized metric of the variability of X [19].

Lemma 6. Assuming ρi < Ri

Z ,

E
[
T PLCFS
i

]
< E

[
T FCFS
i

]
⇐⇒ C2

Si
> 1.

The proof follows easily from the delay characterizations
in Lemmas 1 and 5; we omit the details. Note that the above
comparison of the mean response time under PLCFS and
FCFS in our system is identical to that in an M/G/1 queue [19].
It follows from Lemma 6 that to minimize the mean response
time for the system, one should employ FCFS on links with
lightly variable traffic (file size SCV ≤ 1), and PLCFS on
links with more variable traffic (file size SCV > 1).

A. All links use PLCFS

We now consider the problem of optimizing the channel
access rates with PLCFS scheduling within each queue. This
case is appealing for the following reasons. Firstly, to optimize
the link access rates with PLCFS intra-queue scheduling, we
need to only learn the mean job size (recall that for FCFS,
we need to also learn the second moment). Consequently, the
resulting solution is also insensitive to the variability of the
different job size distributions. Secondly, our approximation
in this case has a closed form.

Formally, the optimization problem under consideration is:

min.
l∑
i=1

λi

µ (1− (Z+µ)
Z2 Ri) + ρi

Ri

Z − ρi
s.t. Ri ≤ r ∀i (P )

Ri ≥ 0 ∀i

As before, this can be shown to be a non-convex optimization.
Let p(·) denote the objective function of (P ), and let p∗r the
optimal value.

We now state the proposed approximation. Define the vector
α∗ ∈ Rl+ as

α∗i (r) :=

(
r + µ

r

)
ρi +

(
r + µ

r

)(
( r
r+µ )− ρt

)
c(r)

√
ci(r),

where

ρt =
l∑
i=1

ρi,

ci(r) =
r

λt(r + µ)

(
λi
µ

(
1− (r + 2µ)

(r + µ)
ρi
)

+ ρi

)
,

c(r) =
l∑
i=1

√
ci(r).

The proposed approximation R̂ is defined in terms of the
vector α∗ as follows.

R̂i =
α∗i (r)

‖α∗‖∞
r (1 ≤ i ≤ l).

The following theorem asserts the asymptotic optimality
of R̂.7

Theorem 2. R̂ is a feasible point of (P ). Moreover, R̂ is
asymptotically optimal as r →∞, i.e.,

lim
r→∞

p(R̂) = lim
r→∞

p∗r .

We omit the proof due to space constraints.

B. A subset of links use PLCFS

In this section, we consider the problem of optimizing the
channel access rates when a subset F of links employs FCFS
scheduling, while the remaining links employ PLCFS. As
before, this problem is non-convex, and we provide an approx-
imate solution that is asymptotically optimal (as r → ∞) in
terms of the solution of a convex network utility maximization
problem. While we allow F to be an arbitrary subset of L,
note that from Lemma 6, it follows that the mean response
time for the system is minimized by taking F to be the set of
links with job size distributions having SCV ≤ 1.

The problem of optimizing the mean response time is
formulated as follows.

min.
∑
i∈F

λi

µ (1− (Z+µ)Ri

Z2 )
Ri

Z − ρi
+

λ2iE[S2
i ]

2Ri

Z (Ri

Z − ρi)
+
Zρi
Ri

+
∑
i∈F\L

λi

µ (1− (Z+µ)
Z2 Ri) + ρi

Ri

Z − ρi

s.t. Ri ≤ r ∀i (G)
Ri ≥ 0 ∀i

This optimization is easily seen to be non-convex. Let g(·)
denote the objective function of (G), and let g∗r denote its
optimal value.

7Note the abuse of notation in our reuse of the symbols α∗ and R̂.
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Following the line of argument in Section III, we propose
an approximate solution to (G) in terms of the solution of the
following optimization.

min.
∑
i∈F

λi

µ (1− αir(r+2µ)
(r+µ)2 )

αir
r+µ − ρi

+
λ2iE[S2

i ]

2 αir
r+µ ( αir

r+µ − ρi)
+

ρi
αir
r+µ

+
∑
i∈F\L

λi

µ (1− (r+2µ)r
(r+µ)2 αi) + ρi
αir
r+µ − ρi

s.t.
l∑
i=1

αi = 1 ∀i (G′′)

αi ≥ 0 ∀i

Let α∗ denote the optimal solution of (G′′). As before, our
approximation R̂ is defined in terms of α∗ as follows.7

R̂i =
α∗i (r)

‖α∗‖∞
r (1 ≤ i ≤ l).

The following result establishes the asymptotic optimality
of R̂.

Theorem 3. R̂ is a feasible point of (G). Moreover, R̂ is
asymptotically optimal as r →∞, i.e.,

lim
r→∞

g(R̂) = lim
r→∞

g∗r .

The proof of Theorem 3 uses the same line of argument
as the proof of Theorem 1. We omit the details due to space
constraints.

V. NUMERICAL EXPERIMENTS

In this section, we evaluate the scheduling policies proposed
in Sections III and IV via simulations. For our experiments,
we set l = 3, µ = 1, and λi = 0.1 for all i.

A. Quality of Approximation

We first quantify the suboptimality of the approximation
proposed in Section III for the optimization (F ). We take
the job size distribution on each link to be exponential with
mean 2, and assume FCFS scheduling on each link. Figure (2)
shows the average response time under the proposed approx-
imation, as well as a lower bound on average response time
under the exact solution, as a function of the the upper bound
r on the channel access rates. The lower bound is computed as
the optimal value of the optimization (F ′′) with the constraint∑3
i=1Ri = 3r; note that this problem has a feasible region

which is a superset of that corresponding to (F ). Note that
the suboptimality of the proposed approximation shrinks as
r increases (as suggested by Theorem 1). Moreover, the
suboptimality is negligible even for moderate values of r.

Fig. 2: Suboptimality of Approximation

B. Static vs Dynamic Scheduling

In this section, we compare the delay characteristics of the
proposed static scheduling strategy with the (dynamic) max-
weight scheduling policy [1]. We assume FCFS intra-queue
scheduling, and set r = 10. For this comparison, we introduce
heterogeneity in the arrival processes. Specifically, we assume
a Pareto job size distribution on Link 1. The Pareto distribution
is heavy-tailed, and is commonly used to model highly variable
phenomenon. A Pareto random variable X is characterized by
the following tail distribution function, for b, α > 0.

P (X > x) =


(
b

x

)α
if x ≥ b

1 otherwise

We hold the mean of the Pareto job size distribution equal
to 8, and study the effect of increasing SCV (i.e., increasing
burstiness). The job size distributions corresponding to the
remaining links are taken to be exponential with mean 0.2.
The mean response time the overall system, for the heavy-
tailed queue alone, and for the light-tailed queues alone, are
shown in Figure 3. We make the following observations.

1) The mean response time is increasing in the SCV C2
S1

of
the (heavy-tailed) job size distribution corresponding to
Link 1. This is to be expected, since the mean response
time corresponding to Link 1 is an increasing function
of C2

S1
. Moreover, as C2

S1
increases, the delay of the

light-tailed links grows as well, since the static policy
increases the service rate of Link 1 in order to minimize
the overall mean response time.

2) As expected, the proposed scheme outperforms the max-
weight policy on overall mean response time. Moreover,
while the heavy-tailed queue sees a lower mean response
time under max-weight, the proposed static policy pro-
vides a far lower mean response time to the light-tailed
traffic. This is because the max-weight policy tends to
throttle the light-tailed queues whenever there is a large
arrival into the heavy-tailed queue [10]–[12]. On the
other hand, the proposed static policy isolates light-tailed
traffic from the burstiness of the heavy-tailed flows,
since the service process of each queue is independent
of the queue occupancies.
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(a) Mean response time for the links with
light-tailed arrivals

(b) Mean response time for the link with
heavy-tailed arrivals

(c) Overall mean response time

Fig. 3: Dynamic Vs Static Scheduling Policy

C. Intra-queue Scheduling

In this section we demonstrate that it is optimal to choose
each intra-queue scheduling policy according to the SCV of
the corresponding job size distribution. Using the same setup
as in the previous section, we vary the SCV of S1 and compare
the mean response time under two schemes: i) A scheme
that employs FCFS on all links, ii) A switching scheme that
employs FCFS on a link if the SCV of the corresponding job
size distribution is ≤ 1, and PLCFS otherwise. The results
are shown in Figure 4. As expected, the switched scheme
performs better, and moreover leads to mean response time
that is insensitive to C2

S1
when C2

S1
> 1.

Fig. 4: Delay

VI. CONCLUDING REMARKS

In this paper, we consider the problem of optimizing the
CSMA channel access rates in a single-hop wireless network
in order to minimize the mean response time (a.k.a. file
transmission time). While this problem is itself non-convex,
we provide an approximate solution that is asymptotically
optimal as the maximum channel access rate grows to infinity.
This work motivates generalizations along the following di-
mensions. Firstly, it would be interesting to consider multi-hop
wireless networks with general interference constraints. In this
setting, one would want to develop distributed mechanisms for
adapting the CSMA access rates to minimize delay. Secondly,

note that the present paper assumes an idealised CSMA system
with no collisions. It would be interesting to generalize this
work to a more realistic model that captures collisions (for
example, along the lines of [20]).
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APPENDIX A
PROOF OF LEMMA 1

This section is devoted to the proof of Lemma 1.
Under our model, the service process of Link i may be

interpreted as that of an M/G/1 queue with an intermittently
available server. Specifically, the server availability follows a
semi-Markov process, availability periods being exponentially
distributed with rate µ, and unavailability periods distributed
as the interval between a departure from State i and the next
arrival into State i for the Markov chain shown in Figure 1.
Let a generic server unavailability period be denoted by Ii.
The following lemma characterizes the first two moments of
the random variable Ii.

Lemma 7.

E[Ii] =
Z

µRi
− µ

E[I2i ] =
2Z

µ2R2
i

− 2(Z + µ)

µ2Ri

The proof of this lemma is elementary and is omitted.
To obtain the mean (stationary) response time for Link i,

we note that Link i may be treated as the low priority class
in the following (fictitious) two-class priority queueing model
analysed in [21]: Jobs of Class i (i ∈ {1, 2}) arrive according
to a Poisson process of rate γi. Each job of Class i has an
independent service requirement distributed as Ci. Class 1 jobs
have pre-emptive priority over Class 2 jobs. It is easy to see
that arrivals into Link i in our system can be thought of as
the Class 2 arrivals in the above (fictitious) priority queueing
model, with γ2 = λi, C2

d
= Si, and γ1 = µ. Moreover, Class 1

busy periods are distributed as Ii. Given this mapping, it is
known (see Page 410 in [21]) that

E[TFCFSi ] =
E[C2]

1− γ1E[C1]

+
λE[C2]

2(1− γ1E[C1])(1− (γ1E[C1] + γ2E[C2]))
,

(4)

where C d
= γ1

γ1+γ2
C1 + γ1

γ1+γ2
C2.

Thus, to obtain an expression for E
[
TFCFSi

]
, it remains to

compute the first two moments of C1. We do this by equating
the first two moments of Ii to the corresponding moments of
a Class 1 busy period B1 (which is simply an M/G/1 busy
period). Thus,

E[Ii] = E[B1] =
E[C1]

1− γ1E[C1]
,

which implies that

E[C1] =
1

µ

(
1− Ri

Z

)
.

Similarly,

E[I2i ] = E[B2
1 ] =

E[C2
1 ]

(1− (γ1E[C1] + γ2E[C2]))3
,

which yields

E[C2
1 ] =

2

µ2

(
Ri
Z
− (Z + µ)R2

i

Z3

)
.

Substituting the above expressions for E [C1] and E
[
C2

1

]
into

(4) gives us the desired result.
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