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Abstract—Cache-enabled base station (BS) densification, de-
noted as a fog radio access network (F-RAN), is foreseen as
a key component of 5G cellular networks. F-RAN enables
storing popular files at the network edge (i.e., BS caches), which
empowers local communication and alleviates traffic congestions
at the core/backhaul network. The hitting probability, which is
the probability of successfully transmitting popular files request
from the network edge, is a fundamental key performance
indicator (KPI) for F-RAN. This paper develops a scheduling
aware mathematical framework, based on stochastic geometry, to
characterize the hitting probability of F-RAN in a multi-channel
environment. To this end, we assess and compare the performance
of two caching distribution schemes, namely, uniform caching and
Zipf caching. The numerical results show that the commonly used
single channel environment leads to pessimistic assessment for the
hitting probability of F-RAN. Furthermore, the numerical results
manifest the superiority of the Zipf caching scheme and quantify
the hitting probability gains in terms of the number of channels
and cache size.

Keywords—Caching system, Stochastic geometry, Multi-
channel, F-RAN.

I. INTRODUCTION

The fifth generation (5G) of cellular networks dictates

tangible performance leap in terms of network capacity (100

fold) and transmission rate (1000 fold) [1]. Such performance

requirement is expected to be fulfilled by an unprecedented

network densification phase, in which the small BS (SBS)

density can reach hundreds of SBSs per km2 [2], [3]. Deploy-

ing more SBSs in the same geographical location improves

the spatial frequency reuse and reduces the number of users

associated to the same BS, thus fostering light loaded BSs with

high data rate links. However, supplying this large number

of SBSs with real-time data services imposes a huge burden

on the backhaul links. Consequently, backhauling represents

a non-trivial bottleneck to attain the foreseen network densi-

fication gains.

Exploiting the common interests among users located within

the same geographical location, proactive caching is recent-

ly proposed to solve the backhauling problem. With the

emergence of social networking, it is expected that a non-

negligible percentage of the mobile traffic will be produced

from downloading/viewing similar contents [4], denoted as

popular files. Proactive caching exploits such phenomena and

brings popular files to the network edge (i.e., SBS caches).

Consequently, popular files requests are directly served from

the caches of the SBS and are not repeatedly requested from

the core network via backhaul links, which reliefs the backhaul

and core network congestion. Particularly, a user that requests

a popular file is directly served from the SBS that stores the

requested file. Such networking scheme is currently known as

fog radio access networks (F-RANs) [5]–[7].

The performance of F-RAN is mainly determined by the hit

probability, which is defined as the probability that a popular

file request is successfully catered from the network edge.

Hence, maximizing the hitting probability has been a focal re-

search point in the context of F-RAN. For instance, the authors

in [8] propose an optimal caching distribution that maximizes

the hitting probability in order to alleviate core network delay

and achieve minimal file downloading time. However, [8] does

not account for the uncertainties in SBSs and users locations.

The authors in [9] use stochastic geometry to characterize

the hitting probability considering SBSs and users locations

uncertainties. However, the proposed paradigm in [9] limits

the popular file request to the nearest SBS. Hence, caching

diversity among different SBSs is not exploited. The work in

[10]–[12] propose optimal file placement in SBSs and allow

users to download popular files from the nearest SBS that store

them, which is not limited to the geographically nearest SBS to

the user. However, only a single channel system is considered,

which leads to a pessimistic performance assessment of the

hitting probability caused by strong interference of the SBSs

closer to the user than its serving SBS. In [13], the authors

propose a distributed algorithm to balance the cache-related

traffic among the SBSs in a fair way in order to efficiently

utilize the available resources assuming that the user may be

covered by multiple SBSs. A joint optimal file placement

and frequency reuse is proposed in for multi-cast popular

file download. However, [14] follows a rigid frequency reuse

scheme, which is well-known to underutilize the spectrum

resources [15].

In contrast to prior work, this paper exploits the multi-

channel system which is well-known in wireless cellular

networks [15]–[17]. In the multi-channel system, the total

available bandwidth is divided into a set of orthogonal
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channels that is shared among all SBSs. Each SBS assigns

a subset of channels to its associated users according to

the applied spectrum access policy. In particular, this paper

develops a mathematical framework to characterize the

hitting probability in multi-channel F-RAN with universal

frequency reuse and dynamic channel assignment. The

proposed framework assumes Zipf distributed file popularity

and allows users to be served by the nearest SBS that

stores the requested popular file, which is denoted as the

file catering SBS. Furthermore, the catering SBS exploits

opportunistic spectrum access to transmit the popular file to

the user. Specifically, if there are vacant channels that are not

used by SBSs closer to the user, the catering SBS randomly

chooses one of these vacant channels to transmit the file.

Otherwise, the catering SBS schedules the file on a randomly

selected channel from the complete set of channels. Such

transmission scheme aims to avoid dominant interfering SBSs,

which significantly reliefs the aggregate interference and

improves the hitting probability. To this end, we assess and

compare the performance of two caching schemes, namely,

the uniform and Zipf caching. The developed mathematical

model is based on stochastic geometry, which is a widely

used tool for modeling and analyzing cellular networks [18].

Closed-form expressions are obtained for the coverage and

hitting probability for a multi-channel caching scenario. These

expressions generalize the single channel scenario that is

widely adopted in the literature. All theoretical results in this

paper are verified via independent Monte Carlo simulations.

The numerical results manifest the pessimistic results of the

single channel F-RAN and quantify the hitting probability

gains in terms of the number of channels, cache size, and

caching distribution.

The model under study is presented in Section II, where

the performance metric is introduced. In Section III, we find

the free channel probability. Service distance distributions

are presented in Section IV, which are used to derive the

coverage probability expressions in Section V. The proposed

mathematical paradigm is verified by the numerical analysis

in Section VI. Finally, we conclude the paper in Section VII.

II. SYSTEM MODEL

A. Network Model

We consider an F-RAN in which the SBSs are spatially

deployed in a given geographic area according to a ho-

mogenous two-dimensional (2D) Poisson point process (PPP)

Ψb = {yi, i = 1, 2, 3, ....} with intensity λb, where yi is the

location of the ith SBS. Also, the users are modeled as an

independent PPP Ψu with intensity λu. It is assumed that

all SBSs transmit with the same power P and share a set of

channels S to serve their associated users. It is assumed that

the signal power decays at a rate r−η with the transmission

distance r between a generic SBS and its associated user,

where η > 2 is the path loss exponent. The channels between

the SBSs and their tagged users are assumed to be independent

Rayleigh fading channels with unit mean power gains. Without

loss of generality, we will focus our analysis on a typical user

u0 located at the origin of the geographical area under study.

B. Caching Model

Consider a finite set of J popular multimedia files J =
{c1, c2, ...., cJ}. We assume that all files are of the same

length. However, our analysis can still be applied with files of

different length, by chopping such files into equal length pack-

ets. The file popularity is assumed to follow the well-known

Zipf’s distribution [19], i.e., aj = j−γ

∑
J
i=1

i−γ , j = 1, 2, ..., J ,

where aj reflects the probability that a generic user requests

file cj , and γ is the Zipf parameter that controls the skewness

of the popularity distribution. Without loss of generality, it is

assumed that the files are indexed according to their popularity,

i.e., a1 ≥ a2 ≥ · · · ≥ aJ . Each SBS is equipped with

a cache memory of size K < J files. Thus, it stores a

combination of K different files out of the total J files. A set

X , {1, 2, ...., X} denotes all possible combinations with set

cardinality X =
(

J
K

)

. Caching copies of a file at the same SBS

is avoided because it comes with no benefit but clearly restricts

the SBS options to store and thus deliver other files. Let px
denotes the probability that a generic SBS stores a combination

x ∈ X . Thus, the probability that it stores a particular file cj
is given by

bj =
∑

x∈Xj

px (1)

where Xj is the set of all possible combinations that have file

cj , which is a subset of the set J with cardinality
(

J−1
K−1

)

.

The probability px is defined according to the applied caching

scheme. This paper focuses on the uniform and Zipf caching

schemes. In the uniform caching, the K-files combinations

are cached randomly and uniformly into the SBSs. Thus,

px = 1
X

and from (1), bj =
(J−1

K−1)
(J
K)

= K
J

. On the other hand,

the Zipf caching follows the popularity of files, i.e., the Zipf

distribution. Thus, the probability that a combination x ∈ X
to be stored at a generic SBS is px = 1

K

∑

j∈x aj .

C. Association Model

Without loss of generality, we assume that the indices

of SBSs are ordered according to their distances from the

typical user. The typical user is assumed to be served by the

nearest SBS that stores the requested file. We also assume that

the other users surrounding the typical user are traditionally

associated to their geographically closest SBSs based on the

maximum received power. It is assumed that each SBS picks

a channel at random from the pool S to serve each of its

associated users. A SBS does not assign the same channel

to two of its associated users to avoid overwhelming intra-

cell interference. Nonetheless, different SBSs can assign the

same channel to one of their tagged users and thus inter-

cell interference exists between BSs with scheduling ties.

According to Slivnyak-Mecke theorem [20], evaluating the

network performance for the typical user at the origin is

sufficient and applicable to any generic location in the 2D
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Fig. 1. A realization of the network. The red diamond represents the typical
user at the origin and the black dots are the other users. The blue triangles
represent the SBSs that store the requested file while the black squares are
the others. The red and black lines show the association policies of both the
typical user and the other users in the network, respectively. The dashed red
circle encloses the SBSs that the file catering SBS should avoids their used
channels when assigning channel to serve the typical user.

plane. A realization of the considered system model is shown

in Fig. 1.

D. Performance Metric

The average hit probability is the main performance metric
of the system. It is defined as the probability that the typical
user’s request of a popular file is successfully fulfilled by
the closest SBS that caches that file. Assuming independent
caching at the SBSs, the hit probability depends on both the
coverage and the free channel existence probabilities and it
can be expressed by

H =
∑

j∈J

aj

∞
∑

n=1

bj(1− bj)
(n−1)

(

C Pfree,n + C′ (1− Pfree,n)

)

(2)

where aj is the probability that the typical user requests the

file cj ; bj (1−bj)
n−1 indicates that the desired file is available

at the nth SBS and is not stored in the enclosed (n−1) SBSs;

and C denotes the coverage probability when a free channel

is available to serve the typical user, while C′ is the coverage

probability when there is no available free channel. Pfree,n

represents the probability that there is a channel that is not

used by closer SBSs to the user than the catering SBS.

III. FREE CHANNEL EXISTENCE PROBABILITY

The probability of free channel existence at the file catering

nth SBS is equivalent to the probability that the number of

occupied channels by the (n− 1) SBSs that are closer to the

typical user than its file catering SBS is less than the total

number of available channels |S|. The free channel existence

probability Pfree,n is given by

Pfree,n =

|S|−1
∑

κ=0

Pn−1(κ) = 1− Pn−1(|S|) (3)

where Pn−1(κ) denotes the probability mass function (PMF)

of the number of channels used by the (n−1) SBSs. Similar to

[21], it can be expressed by the following recursive equation

Pn−1(κ) =
κ
∑

v=0

Pn−2(v)
κ
∑

w=κ−v

P[Nu = w]

(

w

w − (κ− v)

)

·

(

v

|S|

)w−(κ−v)(

1−
v

|S|

)κ−v

, 0 ≤ κ ≤ |S| (4)

where P[Nu = k] is the PMF of the number of users associated

to a generic SBS. Based on the maximum received power

association policy, P[Nu = k] =
ccΓ(c+k)(λu

λb
)k

Γ(k+1)Γ(c)(c+λu
λb

)k+c
, where

c = 3.575 is a constant related to the PPP Voronoi cell area

distribution.

IV. SERVICE DISTANCE DISTRIBUTION

The first step to analyze the coverage probability of the

multi-channel F-RANs is to characterize the service distance

which highly affects the signal-to-interference-plus-noise-ratio

(SINR). As we assume in the system model, the file catering

SBS is the nth nearby SBS to the typical user at the origin

with a serving distance rn. Exploiting the null property of

the PPP, the probability density function (PDF) of the serving

distance rn is given by [22, Lemma 3]

frn(r) =
2(πλbr

2)n

rΓ(n)
e−πλbr

2

, 0 ≤ r ≤ ∞ (5)

As aforementioned, the typical user is served over a random-

ly chosen used channel if there is no available free channel at

its file catering SBS. Thus, it suffers from κ interfering SBSs

that use the same channel where κ , 1 ≤ κ ≤ n−1. It is worth

noting that in the single-channel scenario κ = n−1. To quan-

tify this interference, the conditional distribution fri(x|rn) is

needed, where ri is the distance between the typical user and

the interfering SBS. fri(x|rn) is given by [23]

fri(x|rn) =
2x

r2n
, 0 ≤ x ≤ rn (6)

V. THE COVERAGE PROBABILITY

The coverage probability is defined as the probability that

the typical user can successfully achieve a specified SINR

threshold β. Under the adopted system model, it depends

on whether a free channel exists at the catering file SBS or

not. Firstly, we need to find the set of SBSs that use the

same channel as the serving channel of the typical user. By

exploiting the random channel selection policy at the SBSs

and the independent thinning property of the PPP, the set of

SBSs that interfere with the typical user forms a thinning PPP

Ψb,P with intensity Pλb. The thinning parameter P is the

probability that a generic SBS randomly selects a particular

channel from S , which is given by [24]:

P = 1−

|S|
∑

k=1

P[Nu = k]
|S| − k

|S|
(7)

Then, the coverage probabilities C and C′ are given by
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C = P[SINR ≥ β]

= P
[ Phnr

−η
n

σ2
n +

∑

yi∈Ψb,P ,ri>rn
Phir

−η
i

≥ β
]

= P
[ Phnr

−η
n

σ2
n + Iout

≥ β
]

C′ = P
[ Phnr

−η
n

σ2
n +

∑

yi∈Ψb,P ,ri<rn
Phir

−η
i + Iout

≥ β
]

= P
[ Phnr

−η
n

σ2
n + Iin + Iout

≥ β
]

(8)

where hn(resp. hi) is the channel gain between the typical

user and its file catering SBS (resp. the ith interfering SBS).

rn(resp. ri) is the Euclidean distance between the typical user

and its file catering SBS (resp. the ith interfering SBS). σ2
n is

the serving channel noise. Iin and Iout represent the aggregate

interference of the SBSs closer to and farther to the typical

user from its file catering SBS, respectively.

Conditioning on the distance rn between the typical user at

the origin and its file catering SBS, the conditional coverage

probabilities are given by

C(rn) = e
−βr

η
nσ2

n
P LIout

(βrηn
P

)

C′(rn) = e
−βr

η
nσ2

n
P LIout

(βrηn
P

)

LIin

(βrηn
P

)

(9)

where LI(t) = E[e−tI ] denotes the Laplace transform (LT)

of I. LIin
and LIout

are the Laplace transforms (LTs) of Iin
and Iout, respectively.

the LT of the interference from the outside rn SBSs can be
obtained similar to [23] with considering only the SBSs that
use the same channel of the typical user. Thus, LIout

is given
by

LIout

(

βrηn

P

)

= exp

(

− πPλbr
2
nβ

2
η

∫ ∞

z=β
−2
η

1

1 + z
η
2

dz

)

(10)

On the other hand, the LT of the interference from the SBSs

inside rn LIin
if there is no available channel is given by the

following Lemma

Lemma 1: The LT of the interference from the inner SBSs

is given by

LIin

(

βrηn
P

)

=

(

2P

r2n

∫ rn

r=0

1

1 + βr
η
n r−η

rdr + 1− P

)n−1

− (1− P)n−1 (11)

Proof: See Appendix A

By averaging over the PDF of the serving distance rn
between the typical user at the origin and its file catering SBS,

frn(r), the unconditional coverage probabilities are given by

(12).

In the special case of interference-limited network (i.e.,

σ2
n = 0) and path loss exponent η = 4 (which is common

for wireless networks), and with integral manipulations, the

unconditional coverage probabilities in (12) turn to the simple

closed-form expressions explained in the following corollary

Corollary 1: The closed-form for the general expressions

of the coverage probabilities are given by

C =

(

1 + P
√

β arctan(
√

β)

)−n

C′ =

[

(

1− P
√

β arctan(
1√
β
)

)n−1

−
(

1− P
)n−1

]

·
(

1 + P
√

β arctan(
√

β)

)−n

(13)

Finally, by substituting from (12) and (13) into (2), we end

up with the general and closed-form expressions of the hit

probability for the proposed multi-channel system.

It is worth noting that the hit probability of the single-

channel F-RAN, which is widely used in the literature can be

derived from the multi-channel system. In the single-channel

scenario, all the SBSs use the same channel to serve their

associated users. Therefore, the typical user suffers from inter-

ference from all SBSs except its file catering SBS. Following

the previous analysis, P is omitted and k is deterministic with

value n − 1. Thus, the single-channel system hit probability

Hsingle is given by the following Lemma.
Lemma 2: The hit probability of the single-channel system

is given by

Hsingle =
∑

j∈J

aj

∞
∑

n=1

bj(1− bj)
(n−1) Csingle

Csingle =
2(πλb)

n

Γ(n)

∫ ∞

0

v
2n−1

(

2

v2

∫ v

w=0

1

1 + βvη w−η
wdw

)(n−1)

· exp
(

− πλbv
2
β

2
η

∫ ∞

z=β
−2
η

1

1 + z
η
2

dz

)

e
−βvησ2

n
P e

−πλbv
2

dv

(14)

In the special case of interference-limited network and
η = 4, the coverage probability in (14) turns to a closed-form
expression that is given by

Csingle =

(

1+
√

β arctan(
√

β)

)−n (

1−
√

β arctan(
1√
β
)

)n−1

(15)

VI. NUMERICAL RESULTS

In this section, the proposed multi-channel system model

is compared with the single-channel system. The parameters

λb = 4 SBSs/Km2 and λu = 40 users/Km2 were chosen to

conduct the analysis. All the SBSs have the same transmitted

power P = 1 watt. The path loss exponent η = 4 is

considered. Both the uniform caching and the Zipf caching

are considered.

Fig. 2 illustrates the hit probability versus the SINR thresh-

old for both the multi-channel and the single-channel systems

using uniform and Zipf caching schemes considering the

requested file is cj = 1. A clear match can be noticed

between our derived expressions and the simulation results,

for both single and multi-channel systems. Furthermore, Fig.

2 quantifies the gain of the multi-channel system over the

single-channel one and reveals the significant improvement of

system performance using the Zipf caching compared with the

uniform caching scheme. However, focusing on the first pop-

ular file of the highest popularity a1 results in an unfair study.
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C =
2(πλb)

n

Γ(n)

∫ ∞

0

v
2n−1

e
−βvησ2

n
P exp

(

− πPλbv
2
β

2
η

∫ ∞

z=β
−2
η

1

1 + z
η
2

dz

)

e
−πλbv

2

dv

C′ =
2(πλb)

n

Γ(n)

∫ ∞

0

v
2n−1

e
−βvησ2

n
P exp

(

− πPλbv
2
β

2
η

∫ ∞

z=β
−2
η

1

1 + z
η
2

dz

)

e
−πλbv

2

·
{

(

1− P +
2P
v2

∫ v

w=0

1

1 + βvη w−η
wdw

)n−1

− (1− P)n−1

}

dv (12)

Therefore, Fig. 3 shows the hit probability versus the requested

file index. It can be observed that the hitting probability is

independent from the file index for uniform caching scheme.

This is because the uniform caching scheme distributes the

files into SBSs randomly and uniformly irrespective to their

popularity. On the other hand, the hit probability of the

Zipf caching scheme highly depends on the requested file

popularity. The hitting probability dramatically degrades when

the typical user requests any other files rather than the first

one in the case of high Zipf parameter. This figure also

indicates that the multi-channel system always outperforms

the single-channel scenario. In addition, the uniform caching

slightly outperforms the Zipf caching when the files with low

popularity are requested.
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N
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=30

N
ch

=1 (Single−channel)

Fig. 2. The hit probability vs. the SINR with J = 15 & K = 5 &
λu
λb

= 10

and cj = 1

Fig. 4 illustrates the hit probability versus the cache size. It

can be noticed that the performance of the system improves as

the cache size increases. This highlights the tradeoff between

the F-RAN performance and the network storage resources.

Based on the SINR threshold, the hit probability shows differ-

ent trends with the cache size. Such SINR threshold dependent

behavior can be explained by the fact that at most m SBSs

can have signal-to-interference ratio (SIR) greater than 1
m

for

any positive integer m [25]. Thus, there are at most 10 SBSs

have SIR −10 dB and only one SBS with SIR 0 dB. This

fact explains the non-linearity of the hit probability at −10
dB scenario for all the displayed number of channels. On

the other hand, almost all the trends are linear at the 0 dB
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Zipf: N
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=1 & γ=1.8

Fig. 3. The hit probability vs. the requested file cj with J = 15 & K =

5 &
λu
λb

= 10 at different values of Zipf parameter.

scenario. The dependency on the number of channels comes

from the fact that increasing the number of channels enhances

the chance that typical user is served by multiple SBSs and

this combination ends up with the non-linear trend.
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Fig. 4. The hit probability vs. the cache size K with β = 0 dB & J =

15 & γ = 0.9 &
λu
λb

= 10 at different number of channels.

VII. CONCLUSION

This paper considers an opportunistic spectrum access ap-

proach for F-RANs. We adopt multi-channel scenario with op-

portunistic spectrum access to improve the F-RANs’s overall
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performance. We develop a tractable mathematical model for

the hit probability, which is reduced to closed form expression

in special cases. Our numerical results both verify the derived

analytical paradigms and quantify the gains of the considered

multi-channel model. We end up by the achieved improvement

of the joint multi-channel cached-enabled F-RAN over the

single-channel system.

APPENDIX A: PROOF OF LEMMA 1

In the scenario of no available free channel, the typical user
is served over a randomly chosen channel by the file catering
SBS. Thus, the number of inside rn interfering SBSs κ is a
random variable with a maximum value (n− 1). The PMF of
κ is given by

P[κ = a] =

(

n− 1

a

)

Pa (1−P)n−a−1
, 1 ≤ a ≤ (n− 1) (16)

Given that the number of the inside rn interfering SBSs κ =
a, the LT Iin,κ is given by

LIin,κ(t) = EIin,κ

[

e
−tIin

∣

∣κ = a

]

= Eκ

[

Eyi∈Ψb,κ,ri<rn

[

e
−t

∑
i Phir

−η
i

]

∣

∣κ = a

]

(a)
= Eκ

[

Ern−1

[

Eh[e
−tPhr−η

| r = rn]

]κ
∣

∣κ = a

]

(b)
= Eκ

[

[
∫ rn

r=0

1

1 + tPr−η
frn−1

(r|rn)dr
]κ
∣

∣κ = a

]

(17)

The equality (a) is by the fact that the PPP consists of

uniformly distributed nodes, so intuitively the conditional PDF

of the κ nodes on the nth node is equivalent to the κ times

the conditional PDF of two consecutive nodes. Equality (b)
from the channel gain exponential distribution with averaging

over the conditional PDF frn−1
(r|rn) that is given in (6).

Replacing t in the above equation with (
βrηn
P

) and averaging

over the random variable κ, the unconditional LT LIin
can be

obtained. Finally, by applying the binomial theorem, Lemma

1 can easily verified.
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