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Abstract—A two-way half-duplex communication model is
considered, where two nodes want to exchange a fixed number
of bits with each other, and both nodes are powered by energy
harvesting (EH) sources. The problem of minimizing the sum of
the time required to send the required bits in both the directions
is considered. The model also includes the processing cost at each
node, that models the power needed for nodes to stay powered on
during transmission. In the offline setting, where the EH arrival
profile is known non-causally, an iterative algorithm based on
alternating maximization is shown to be optimal. In the more
realistic setting of causal knowledge of the EH arrival profile,
an online algorithm is shown to be optimal in terms of the
competitive ratio and the optimal competitive ratio is shown to
be 2.

Index Terms—Online algorithms, energy harvesting, two-way
communication.

I. INTRODUCTION

Powering communication devices using renewable energy
via harvesting energy (EH) from nature has attracted huge
interest recently. It not only provides a green option, but also
increases the lifetime of nodes. A canonical problem with EH
is to minimize the time required to successfully transmit a
fixed number of bits [1]. Optimal offline algorithms, where
the energy arrival process is known non-causally, have been
derived for many communication models for this canonical
problem in [1], [6], [3]. The more realistic online case, where
energy arrival process is only known causally, is relatively
less well studied [5], [3]. Several important extensions of this
canonical problem include EH powered receivers [3], multiple
access channel [6], [7], [10], [12] etc.

Typically, under the energy harvesting (EH) paradigm, one-
way communication is studied, where a transmitter is sending
data to a receiver. A more natural communication paradigm is
bi-directional or two-way, where two nodes wish to exchange
data with each other.

Two-way EH model with processing and decoding costs has
been considered in [4], however, with full-duplex capability,
i.e., nodes can simultaneously transmit and receive. An optimal
online policy for MAC channel with processing cost at each
node and common energy source with independent and iden-
tically distributed (i.i.d.) energy arrival processes was derived
in [13]. With full-duplex capability, the problem decomposes
into two separate transmission time completion problems, one
for each direction. In this paper, we consider a half-duplex

two-way EH model, where the two nodes want to transmit
a fixed number of bits to the other node, and the objective
is to minimize the sum of the transmission time in each
direction. The half-duplex restriction adds a new dimensions to
the problem, since it entails finding the optimal choice of time-
sharing between the nodes, since the EH profiles at the two
nodes can be very different, in addition to efficiently exploiting
the arriving energy.

The half-duplex two-way EH model has close connections
with the two-user MAC problem [6], [7], however, the main
difference is with respect to the strict time-sharing requirement
in the half-duplex model compared to MAC, where two users
can also transmit simultaneously. For a fixed time sharing
schedule, MAC with EH has been studied in [10], however,
the general problem considered in this paper, requires an
optimization over the time-sharing schedule as well.

In addition to extending the model from one-way to two-
way communication, we also include the processing costs at
both the nodes, i.e., each node consumes a fixed amount of
power to stay powered on during transmission, along with
the transmission power used to transmit useful data. The
processing cost critically changes the structure of the optimal
algorithms, since transmitting at a slow rate leads to lot of
energy being wasted in just keeping the nodes powered on
for transmission. For a single node, energy harvesting model
with processing cost has been considered in [11], but for a
broadband communication system, modelled as K parallel
sub-channels.

Similar to [3], for analytical tractability, we assume that both
the nodes know each other’s battery states exactly at all times.
This can be accomplished with a small amount of feedback.
Without this assumption, the problem leads to stochastic
control problems with limited information that remain open.

In the first part of the paper, we consider the offline setting
for the two-way problem with the processing cost. Similar to
[6], we show that an iterative algorithm based on alternating
maximization is an optimal algorithm. The basic algorithm
and the ensuing proof are, however, different because of the
inclusion of the processing cost in the rate function, and more
importantly the strict time-sharing requirement, that changes
the optimal power transmission profile in each direction.
Instead of directly finding an algorithm to minimize the sum
of the transmission times, we instead first find the departure
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region, that is the union of the largest pair of bits that can be
sent in the two direction in a given amount of time. Finding
the departure region is the ‘dual’ of the transmission time-
minimization problem. Once the departure region is found,
‘inverting’ it directly gives the optimal solution to the trans-
mission completion time-minimization problem.

In the second part of the paper, we consider the more
realistic online setting, where the energy arrival profile is
only known causally. For the online setting, we consider the
commonly used design metric of competitive ratio, that is
defined as the ratio of the time taken by any online algorithm
and the optimal offline algorithm maximized over all possible
energy arrival sequences. We propose a natural extension of
the lazy online algorithm for one-way communication [3],
and show that it is 2-competitive identical to [3]. Note that
this is a worst case guarantee. Moreover, since no online
algorithm can be better than 2-competitive even in the one-
way communication [3], we conclude that the proposed online
algorithm is optimal in terms of the competitive ratio.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a model in which two energy harvesting nodes, say
Node 1 and Node 2, have a two-way communication link with
each other. Node i wishes to communicate Bi bits to the other
node. The communication modality is half duplex, and hence
the nodes must do time division multiplexing. In addition to
the transmission power required to support datarates, each
node requires a power Pr for transmission operation, i.e. an
extra power Pr is required whenever a node transmits. We
assume perfect battery-state co-ordination between the nodes,
i.e. each node is aware of both the battery states at all times.
The objective is to minimize the completion time by which
both the receivers can completely gather the intended bits. The
minimum transmission completion time is denoted as Tmin.
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Fig. 1: Arrivals at transmitter
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Fig. 2: Arrivals at receiver
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Fig. 3: Total arrivals

Let the energy arrivals at Node i be {Ei0, Ei1 · · · } at time
instants {0, ti1, ti2 · · · }. As shown in Fig 3, let {s1, s2, . . . }

be the arrival instants obtained by combining (superposition)
the energy arrivals at both the nodes. We call the interval
(sj−1, sj) as slot j, with s0 = 0. Let lj , j ≥ 1 be the duration
of slot j. Since the transmissions are in half duplex mode, each
slot length lj , j ≥ 1 will be shared between the two users. Let
θj ∈ [0, 1] be the fraction of slot length lj allotted to node 1,
the remaining is given to node 2. Node k spends energy ekj
in slot j. Then the number of bits sent by user k in slot j is
denoted as Bkj , where,

B1j = θj lj log

(
1− Pr +

e1j
θj lj

)
,

B2j = (1− θj)lj log

(
1− Pr +

e2j
(1− θj)lj

)
.

(1)

where Pr in (1) takes care of the processing cost at each node.
Bk(t) is the total number of bits sent by user k till time t.

We assume a coordinated offline setting, i.e. both nodes
have knowledge of their own and other node’s energy arrivals.
The transmission completion time-minimization problem can
be formulated as follows.

min
e1,e2,θ

T

subject to
n∑
i=1

e1i ≤
n−1∑
i=0

E1i,

n∑
i=1

e2i ≤
n−1∑
i=1

E2i,

B1(T ) ≥ B1,

B2(T ) ≥ B2,

θi ∈ [0, 1].

(2)

where, n = max{i :
∑i
j=1 lj ≤ T}. It turns out that the above

formulation has some connections and applications to the two
user multiple access channel (MAC). In particular, under time
division multiple access, the users in a MAC equivalently
operate in half-duplex. Thus, the formulation in (2) also solves
the transmission completion time for a time shared MAC
problem where the users have identical link conditions. Notice
that the transmission completion time-minimization problem
over a general Gaussian MAC (without time-sharing) can be
realized by removing the dependence on θ of (2). However, the
relation to two-way half duplex is then lost, and the solutions
are totally unrelated. More specifically, the Gaussian MAC
capacity region for a given set of powers is a pentagon [8]
(see Fig 4), whereas under the restriction to time sharing, it
becomes a continuous curve. This is depicted in Fig 4 below,
where the dotted curve is obtained by time sharing, the sum-
rate maximizing point under time-sharing is (b1, b2).

The MAC transmission completion time-minimization prob-
lem, without restriction to time sharing, was solved in [6]. The
solution in [6] makes crucial use of the fact that B1(t)+µB2(t)
can be maximized by operating only at one of the corner
points of the pentagon in each slot (see Fig 4). By employing
a successive cancellation decoder, a natural decoupling of the
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Fig. 4: MAC capacity region with receive powers p1 and p2

users can be obtained. However, under time-sharing, the nodes
need to choose different operating points on the continuous
curve based on the harvesting processes, thus complicating
the problem.

The one-way transmission completion time-minimization
result provides some useful insights for two-way transmission
completion time-minimization problem. We describe the one-
way transmission completion time-minimization result in the
next section.

III. ONE-WAY COMMUNICATION
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Fig. 5: Energy arrivals at transmitter

Consider a transmitter which needs to transmit B0 bits to
its receiver. Assume that E0 amount of energy is available at
time t = 0 at the transmitter, and Ei energy is harvested at
time si, 1 ≤ i ≤ k. Following the earlier notation, we call
the interval (si, si+1) as slot i + 1, and the duration si+1 −
si as li+1. The transmitter employs a transmit power of pi
in slot i, which includes a constant processing power Pr to
stay on during transmission. The transmitter can change its
transmission rate depending on the available energy and the
remaining bits. The one-way transmission completion time-
minimization problem can be cast as,

min
p,l

T

subject to
n∑
i=0

p(i+1)l(i+1) ≤
n−1∑
i=0

Ei

n+1∑
i=1

log(1− Pr + pi)li = B0

(3)

Notice that the rate function g(pi) = log(1− Pr + pi) gives
the AWGN data-rate after deducting the staying ON cost Pr

from the transmit power pi, with pi ≥ Pr. The number of bits
transmitted can also be written as a function of time, viz,

f(t) = log

(
1 +

E − Prt
t

)
t. (4)

where E is the energy spent in time t.

Lemma 1. The rate function f(t) formulated in (4) is strictly
concave in t for a fixed value of E > 0.

Proof: This can be shown by evaluating the second
derivative

f ′′(t) =
−E

t2((1− Pr) + (E/t))
< 0. (5)

Also, since f(t) is zero at t = 0 as well as t = E
Pr

, there
exists some t∗ ∈ (0, EPr

) such that f(t) ≤ f(t∗),∀t > 0.
The optimal solution to (3) will have the following structural
properties.

Lemma 2. For a given initial energy E = E0, and no
further energy arrival, the transmit power which maximizes the
datarate or minimizes transmission time (3) only depends on
Pr which is the power required to stay on during transmission.

Proof: The maxima of f(t) is found by differentiating,

∂f(t)

∂t
= log

(
1 +

E

t
− Pr

)
− E/t

1 + E/t− Pr
= 0. (6)

Replacing (E/t) by p, we get a value of p which depends
only on Pr.

The above lemma suggests that unlike for the rate function
r(t) = log

(
1 + E

t

)
t used in [1] without accounting for on

power, elongating transmission time as far as possible may
not be optimal. For r(t), lowering the power and increasing
the transmission time increases the throughput. But for the
rate function f(t), which attains a maxima at some t, a longer
transmission time may not be optimal. Optimal power for f(t)
is obtained by solving (6). Let this optimal power be denoted
as p∗.

Lemma 3. In the optimal policy for (3), the non-zero values
of the transmit powers are non-decreasing in slots, i.e. p1 ≤
p2 ≤ · · · .

Lemma 4. Under the optimal policy for (3), the non-zero
values of the transmission powers remain unchanged in be-
tween energy harvests, i.e. power may increase only at energy
harvesting instants.

Remark 1. The optimal policy may not have continuous
transmission, i.e., the transmitter can be OFF for certain
durations.

Lemma 5. In the optimal policy for (3), whenever the transmit
power increases from its last non-zero value, all the energy
arrived till that instant is already exhausted.

Proofs of the above three lemmas are based on concavity of
rate function f(t), and follows along similar lines as in [1].
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Compared to the prior with r(t) as rate funtion, for f(t) we
get the following different result.

Lemma 6. In the optimal policy for (3), the non-zero transmit
powers are always greater than or equal to p∗.

Proof. We prove this by contradiction. Consider an optimal
policy S1 which transmits with power p1 < p∗ for duration
l1. Now consider another policy S2 which is same as policy
S1 in all slots except the 1st slot. Instead of p1, policy S2

transmits with power p∗ for a duration of p1l1
p∗ . Note that this

transmission duration is less than l1 and hence is feasible.
Also the energy spent by both the policies in the 1st slot is
same. However, from Lemma 2, the maximum throughput for
E = p1l1 is attained at t = p1l1

p∗ . Thus the number of bits
transmitted by policy S2 is greater than policy S1. Now, by
Lemma 3, we have pl ≥ p∗, l ≥ 1.

Lemma 5 states that there are specific instants at which
the non-zero transmit power strictly increases. In fact, they
are aligned with a subset of the energy arrival instants, let us
denote the set of such instants as ik, k ≥ 1. Characterizing
these points is sufficient to specify the optimal policy, which
is done in the following theorem. We take i0 = 0.

Theorem 1. Let the optimal transmission completion time
Tmin occur in slot M, i.e., the interval (sM , sM+1). Then,
an optimal policy for (3) satisfies

M+1∑
n=1

g(pn)ln = B0 (7)

in = argmin
i:si<T

{∑i−1
j=in−1

Ej

si − sin−1

}
pk = max

{
p∗,

∑in−1
j=in−1

Ej

sin − sin−1

}
,∀k ∈ {in−1 + 1, in}

lk = min

{
(sk − sk−1),

Ek−1
p∗

}
,∀k ∈ {in−1 + 1, in}.

(8)

Proof: The proof is given in Appendix A.
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Fig. 6: Optimal power profile for single user

The above theorem concerns with finding the tightest piece-
wise linear curve that lies below the energy harvesting (EH)
curve, this is shown in Fig 6. But if in any slot, the power given
by the tightest linear curve is less than p∗, then transmission

power for that slot is set at p∗. This is demonstrated in
Slots 1 and 2 of Fig 6. Also, observe that the policy obtained
by using Theorem 1 may have non-continuous transmissions.
Nevertheless, one can defer the transmission times to create a
deferred policy with the same completion time. By moving
all the idle periods to the left, we can have continuous
transmissions till completion.

Remark 2. Among the class of deferred policies, there is a
unique optimal policy. The uniqueness of the deferred policy
follows along the same lines as Lemma 2 of [3].

Theorem 1 enables the computation of the minimum com-
pletion time (3). For this, we need to first find the index M
such that the optimal completion time Tmin lies between sM
and sM+1. This can be obtained by solving the dual problem
of maximizing the throughput in a given time, instead of
the original time minimization. The throughput maximization
problem can be formulated as,

max
p,l

k∑
j=1

g(pj)lj

subject to
k−1∑
i=0

p(i+1)l(i+1) ≤
k−1∑
i=0

Ei

(9)

The idea is to compute maximum throughput B(sk) for every
energy arrival instance sk, till we find an index M , such
that, B(sM ) ≤ B0 and B(sM+1) ≥ B0. This is detailed in
Appendix B.

IV. TWO-WAY COMMUNICATION

Now using the results developed for one-way communica-
tion, the two-way problem can be solved as follows. Recall
that our objective is to solve (2), by choosing appropriate
time sharing parameters and transmit powers for the two
nodes in each slot. As in the case of a MAC, it is more
convenient to compute the weighted throughput till a time
instant, and then infer the minimum transmission completion
time information [6]. In particular, the rate-pairs possible till
time instant T is called the departure region D(T ). Let si
denote the last energy arrival before time T . Then, for a fixed
time sharing schedule {θ},

B1(T ) =
i∑

j=1

g(p1j)θj lj + g(p1(j+1))θj+1(si+1 − T )

B2(T ) =
i∑

j=1

g(p2j)θ̄j lj + g(p2(j+1))θ̄j+1(si+1 − T )

(10)

where θ̄j = (1− θj). More formally, if B1(T ) and B2(T ) are
the respective amounts of bits transmitted in two directions
till time T using a power transmission strategy respecting the
energy harvesting constraints, then D(T ) can be defined as
follows.

Definition 1. For any fixed transmission duration T ,
the region D(T ) is the union of all supported bit-pairs
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(B1(T ), B2(T )) under any feasible time sharing power policy
over the duration [0, T ).

The departure region for any time t = T can be found as,

max
e1,e2,θ

B1(T ) + µB2(T ), (11)

Fig 7 demonstrates D(T ) for an example. Observe that every
point on the boundary of the outermost curve corresponds to
a different value of µ. Since the link is time-shared by the two
users in each slot, changing the priority parameter µ leads to
a different set of optimal values of {θ1, θ2 . . . }.

The departure region as given in (11) till the joint energy
arrival si, i.e. D(si), can be evaluated by,

max
e1,e2,θ

( i∑
j=1

g

(
e1j
θj lj

)
θj lj + µ

i∑
j=1

g

(
e2j
θ̄j lj

)
θ̄j lj

)

subject to
n∑
i=1

e1i ≤
n−1∑
i=0

E1i,

n∑
i=1

e2i ≤
n−1∑
i=0

E2i.

(12)
The following structural results are obvious from the one-

way communication results from Section III.

Lemma 7. For each user, Lemma 3 and Lemma 5 holds true
for an optimal policy solving (12).

The proof follows by observing that in their allotted times,
each user essentially operates in a single user fashion. Thus,
for a given set of time-fractions θ, the single user conditions
have to be met. Notice however that the optimal θ is not only
unknown, but also may lack any particular structure. This is
the key bottleneck in the above optimization. Fortunately, the
optimization turns out to be a convex program, which will be
shown to have an efficient computational solution.

Lemma 8. For a fixed µ and T = si for some i, the objective
function in (12) is jointly concave in e1j , e2j and θj , 0 ≤ j ≤ i.

Proof: The Hessian of (12) is negative semi-definite,
which is sufficient for joint concavity. See Appendix C for
details.

Observe that given the powers (p1j , p2j), 1 ≤ j ≤ i,
finding the optimal time sharing parameter θj in (12) is indeed
possible. This is because the objective is strictly concave in θj
and hence there is a unique θj which maximizes the weighted
throughput B1j+µB2j as given by (1) for slot j ∈ {1, · · · , i}.
The proof for strict concavity of the objective with respect to
θj is given in Appendix C.

On the other hand, given the time sharing parameter θ,
the optimal power allocations can be found by employing an
optimal one-way policy over the total allotted duration for
each user. By limiting to the class of deferred policies, where
the transmitters do not simultaneously idle, we can identify
a unique set of power allocations. This paves the way for an

alternation maximization framework to solve (12).

Algorithm ATMAX
1: For finding D(si), initialize θj , 1 ≤ j ≤ i by uniform

random values in (0, 1). Note that initializing θj to any
value in (0, 1) is feasible.

2: Taking T1 =
∑i
j=1 θj lj and T2 =

∑i
j=1(1 − θj)lj ,

compute the respective optimal single user throughputs
B1(T1), B2(T2) and the power and time duration vector.

3: Using the power and time duration vector from the last
step, compute the unique set of θj which maximizes∑i
j=1B1j + µB2j . In particular, θj solves

log

(
1− Pr +

e1j
θj lj

)
− log

(
1− Pr +

e2j
(1− θj)lj

)
+

e2j
e2j + (1− Pr)(1− θj)lj

− e1j
e1j + (1− Pr)θj lj

= 0
(13)

θj obtained by solving (13) is optimal as it is obtained
by setting the derivative of the objective function to 0.

4: Go back to Step 2 if convergence is not achieved.

Convergence can be checked by measuring whether the
values of θj saturates over consecutive iterations. Since there is
a unique maximum in each direction of the alternating search,
the procedure converges to the optimal solution [9].

Algorithm ATMAX can compute the maximum departure
region D(T ) till any time instant T . We can progressively
compute the departure region for different arrival instants till
sk where D(sk) includes the required bit-rates (B1, B2) for
the first time. Then, sk−1 and sk are the upper and the lower
bounds to the optimal transmission completion time Tmin. To
find Tmin we can do a linear search in the interval (sk−1, sk),
such that for t = Tmin, (B1, B2) lies on the boundary of
D(Tmin).

The optimal departure region for different arrival instants
for an example situation is illustrated in Figure 7.

Fig. 7: Departure region for different arrival instants

For the illustration, we consider a band-limited additive
white Gaussian noise channel, with bandwidth W = 1MHz
and noise power spectral density N0 = 10−19W/Hz,
and a pathloss of −110dB. Then, we have g(p) =
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W log
(

1− Pr + ph
N0W

)
Mbps. For the energy harvesting pro-

cess, we assume that at times, t = [0, 2, 4] we have energy
harvested with amounts, E1 = [6, 7, 4]mJ for the first user. At
instants t = [0, 1, 3], we have energy harvested with amounts
E2 = [8, 7, 5]mJ for the second user. For Pr = 0.5mW , the
departure regions D(s1), D(s2), D(s3), D(s4) are shown in
Figure 7.

Until now we have considered offline policies in this paper.
A more realistic setting is when both the users only have causal
information about energy arrivals and make their decisions
only dependent on that, this is called the online setting.

V. ONLINE POLICY FOR TWO-WAY COMMUNICATION

The offline model to solve (2), considered availability of
information about energy harvests a-priori at both the nodes.
This is to some extent unrealistic assumption of non-causal
information. The online model considers more realistic sce-
nario where the two nodes have only causal information about
the energy arrivals. With no information about future energy
arrivals, our aim is to derive an online algorithm to solve (2).
Let σ be the energy arrival sequence at both the nodes, and let
TA(σ) and Toff(σ) be the total transmission completion time
(2) taken by the online algorithm A and the optimal offline
algorithm. We use the competitive ratio as the performance
metric for online algorithms, that is defined for an online
algorithm A as

µA = max
σ

TA(σ)

Toff(σ)
, (14)

where the maximum is over all possible energy arrival se-
quences σ, that can be chosen even adversarily. Thus, by
definition, an online algorithm with low competitive ratio has
good performance even against adversarial inputs.

Let εi(t) denote the sum of the energy harvested at Node i
till time t, Bi,rem(t) denote the number of bits remaining to
be transmitted for Node i after time t, and Ei,rem(t) denote
the energy remaining for Node i at time t.

Online Algorithm: Let Tj , j = 1, 2 be the minimum time
such that

log

(
1− Pr +

ε1(Tj)

t

)
t ≥ Bj , for some t. (15)

i.e. energy available at Tj is sufficient to transmit Bj bits. The
algorithm starts transmission only at time Tstart = minj Tj
for the node i = arg minj Tj with power Pi1 which is the
solution of,

εi(Tstart)

Pi1
log(1− Pr + Pi1) = Bi. (16)

Note that the starting condition (15), can be checked using
only causal information about energy arrivals. Node i will con-
tinue transmission with Pi1 till it completes its transmission
of Bi bits or there is an energy arrival at either of the nodes.
In the latter case, at every energy arrival instant sk, the node
which harvested energy that also satisfies (15) with Tj = sk,
starts transmission with power Pij which is the solution of,

Ei,rem(sk)

Pij
log(1− Pr + Pij) = Bi,rem(sk). (17)

For example, if T1 < T2, then node 1 starts transmitting first.
Then if there is an energy arrival at Node 2 at time sk > T1,
such that (15) is satisfied, then node 2 will start transmitting
its bits, until a new energy arrival happens at Node 1 or till it
finishes its own B2 bits.

Theorem 2. The proposed online algorithm is 2-competitive.

Proof: The proof is given in Appendix D.

Remark 3. An algorithm that finishes transmission in one
direction and only then starts the transmission in second
direction is 3-competitive.

Theorem 3. The proposed online algorithm is optimal.

Proof. From [3], we know that even for one-way communi-
cation, no online algorithm can have better competitive ratio
than 2− δ for any δ > 0.

VI. CONCLUSION

We have presented optimal communication schemes for a
two-way half duplex model sharing an AWGN medium. The
alternating maximization framework helps in characterizing
the departure region, which enables the computation of the
minimum transmission completion time for delivering all the
data to the intended receivers. Incidentally, this also solves
the problem of a MAC with time-sharing users under energy
harvesting, without any additional receiver processing costs.

We are currently working on incorporating receiver pro-
cessing cost along with the transmitter processing cost to the
two-way model. Multi-node system employing relaying is of
further interest.

APPENDIX A
PROOF OF THEOREM 1

We need to prove the necessity and sufficiency of the
structure stated in Theorem 1. The proof falls on similar
lines as proof of Theorem 1 in [1]. We prove the necessity
by contradiction. Consider an optimal policy which follows
Lemmas 1, 2, 3, 4 and 5 but does not have a structure given
in the theorem. Specifically, the policy is same as described in
theorem 1 till the time instant sin−1 . However the power policy
after this i.e., power pn is not the smallest average power. We
can find another si′ ≤ sM such that

pn >

∑i′−1
j=in−1

Ej

si′ − sin−1

. (18)

Transmission with power pn for duration of (si′−sin−1
) is not

feasible, as pn(si′−sin−1
) is greater than the energy harvested

till si′ and the energy causality constraint is violated. Such a
policy is therefore not feasible.
Now we prove that if a policy X with power vector p and
time duration vector l has the above given structure, then it
is optimal. We assume that another policy Y with p’ and l’
which has a lower completion time. We assume the policies
are same except for slots in−1 + 1 to in. Policy X has power
pin−1+1, . . . , pin over these slots, while policy Y has power
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pin−1+1
′, . . . , p′in . In policy X, pin−1+1 = pin−1+2 = · · · =

pin . With same energy being spent by both policies in these
slots, if policy Y allocates different powers in these slots, due
to concavity of the rate function, policy X transmits more bits
than Y. If policy Y also allocates same power in all slots, but
with smaller time duration, even then the throughput of policy
X will be higher.
Thus a policy is optimal if and only if it has the structure
given in (8).

APPENDIX B
TRANSMISSION COMPLETION TIME T FOR SINGLE USER

The algorithm to find maximum throughput till nth arrival
is as follows,
Initialize k = 1, i0 = 0, B(si0) = 0

1) Find ik as mentioned in Theorem 1, which is the last
energy arrival instance where all energy was used up.

2) Compute power for the slots ik−1 + 1 to ik, i.e.,
pik−1+1, . . . , pik , again as in Theorem 1.

3) Update

B(sik) = B(sik−1
) +

ik∑
j=ik−1+1

log(1− Pr + pj)lj .

4) If ik = n, then exit. Else update k → k + 1 and go to
step 1.

The power policy obtained for maximum throughput till
sM+1 can be modified to obtain the optimal policy for the
transmission completion time.
Notice that for the optimal throughput policy till sM+1, the
powers pik−1+1, . . . , pik are equal. Progressively increase each
of these powers by the same amount till the following equation

log

(
1− Pr +

∑ik−1
j=ik−1

Ej

t1

)
t1 − (B0 −Bik−1

) = 0

is satisfied, or the value of ik changes. In the latter case, repeat
the power incrementing step starting from the newly obtained
value of ik.

APPENDIX C
PROOF OF LEMMA 8

Consider the maximization problem (12). For the ith slot,
the objective is,

M = θi log

(
1−Pr+

e1i
liθi

)
+(1−θi) log

(
1−Pr+

e2i
li(1− θi)

)
.

(19)
The second derivative of the objective function with respect
to to θi, e1i and e2i are,

d2M
dθ2i

=− e1i
2

θi((1− Pr)liθi + e1i)
2

− e2i
2

(1− θi)((1− Pr)li(1− θi) + e2i)
2 ,

d2M
de21i

=− θi
((1− Pr)liθi + e1i2)

,

d2M
de22i

=− (1− θi)
((1− Pr)li(1− θi) + e1i)2

.

(20)

Since e1i, e2i and θi are non-negative, the objective is concave
in all the three variables, as the derivatives are strictly negative.
To prove joint concavity of the objective function, we need to
show that the Hessian of the objective function is negative
semi-definite. Hessian matrix, in terms of θi, e1i, e2i for (19)
is,

H =

 α a b
a β 0
b 0 γ


where, from (20),

α =
d2M
dθ2i

, β =
d2M
de21i

, γ =
d2M
de22i

. (21)

a =
∂2M
∂θi∂e1i

=
e1i

(e1i + (1− Pr)liθi)2
,

b =
∂2M
∂θi∂e2i

= − e2i
(e2i + (1− Pr)li(1− θi))2

.

Observe that the cross term ∂2M
∂e1i∂e2i

= 0. The conditions for
H to be negative semi-definite are (−1)

k
∆k ≥ 0, where ∆ks

are the kth order principal minors of H .
The first order minors, ∆1, α ≤ 0, β ≤ 0, γ ≤ 0. The second
order minors ∆2 are αβ − a2 =

ei
2θi

(1− θi)(e1i + (1− Pr)liθi)2(e2i + (1− Pr)li(1− θi))2
≥ 0

αγ − b2 =

e1i
2(1− θi)

θi(e1i + (1− Pr)liθi)2(e2i + (1− Pr)li(1− θi))2
≥ 0

βγ =

θi(1− θi)
(e1i + (1− Pr)liθi)2(e2i + (1− Pr)li(1− θi))2

≥ 0.

and the determinant αβγ − a2γ − b2β = 0. This proves that
H is negative semi-definite and hence the objective function
is jointly concave in θi, e1i and e2i.

APPENDIX D
PROOF OF THEOREM 2

Consider the optimal offline transmission completion times
for both the nodes,

T1,off =
M+1∑
j=1

θj lj and T2,off =
M+1∑
j=1

(1− θj)lj ,

where the definition of M, θ and l follow from Section II. For
Node i, let Ti,s be the time at which Node i begins to transmit
its bits for the first time with the proposed online policy.
Claim: Ti,s < Ti,off for both i = 1, 2.

Proof. We prove this by contradiction. Recall that with the
proposed online policy, any node begins to transmit its bits
only at the time when a new energy arrival happens. Let that
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time be Ti,s = sk. To prove the contradiction, assume that
Ti,s > Ti,off.

From the definition of the online algorithm,

log

(
1− Pr +

εi(sk−1)

t

)
t < Bi ∀ t and (22)

log

(
1− Pr +

εi(sk)

t

)
t > Bi for some t.

For the optimal offline policy, Bi =∑M+1
j=1 θj lj log(1− Pr + pij). Let g(pij) =

log(1− Pr + pij). Then, by Jenson’s inequality,

M+1∑
j=1

θj ljg(pij) ≤ (
∑M+1
j=1 lj)g

(∑M+1
j=1 pj ljθj∑M+1

j=1 lj

)
,

(a)

≤ (
∑M+1
j=1 lj)g

(
εi(Ti,off)∑M+1

j=1 lj

)
,

(b)
< (
∑M+1
j=1 lj)g

(
εi(sk−1)∑M+1

j=1 lj

)
. (23)

(a) follows since
∑M+1
j=1 pj ljθj ≤ εi(Ti,off), the total energy

arrived till then, and (b) follows because of our hypothesis that
the optimal offline policy finishes at time Ti,off that is less than
sk. Combining (22) and (23), we get

M+1∑
j=1

θj lj log(1− Pr + pij) < Bi.

Thus, if Ti,s < Ti,off, then the transmission of Bi bits is not
feasible with the optimal offline policy by time Ti,off.

Let bi,k be the last energy arrival instant at Node i before the
optimal offline algorithm finishes its transmission at time Ti,off.
It is easy to argue that the worst case input for the proposed
online algorithm that maximizes its competitive ratio is when
the online algorithm can begin its transmission only at time
bi,k. We consider this scenario henceforth to upper bound the
competitive ratio of the proposed online algorithm.

Let the online algorithm transmit with power Pik at T−1i,off
1,

and bi,k be the time when the transmission with power Pik
started. Using the claim that Ti,s < Ti,off for i = 1, 2, we
know that Pik > 0 and bi,k < Ti,off for some i.

Since the optimal offline algorithm can use only the energy
that has arrived till time bi,k, necessarily the following has to
be satisfied

Bi ≤ Ti,offg

(
εi(bk)

Ti,off

)
. (24)

Let Ti,on be the transmission completion (actual time for
which Bi bits are transmitted) time for the online policy of
Node i. Then Ti,on can be upper bounded by the completion
time T ′on of a policy which starts from bi,k and does not use
any energy arrival after bi,k

T ′ong

(
εi(bk)

T ′on

)
= Bi. (25)

1Just before Ti,off

From (24) and (25)),

T ′ong

(
εi(bk)

T ′on

)
≤ Ti,offg

(
εi(bk)

Ti,off

)
. (26)

Thus, Ti,on ≤ T ′on ≤ Ti,off. Note that even though the
transmission is interspersed for the two nodes, even then
the time at which both the nodes finish their transmission is
T1,s + T1,on + T2,s + T2,on. Hence, the competitive ratio of
the proposed online algorithm can be upper bounded by

µ = maxσ

(
TA
Toff

)
=
T1,s + T1,on + T2,s + T2,on

T1,off + T2,off

≤ 2(T1,off) + 2(T2,off)

T1,off + T2,off
= 2.

(27)
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