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Abstract—We introduce a new optimization framework, built
over a discounted-rate metric, that captures the sensitivities of
wireless users to time-variations in their fairness measure of
rate allocations. The resulting, so-called, Discounted-Rate Util-
ity Maximization (DRUM) formulation not only accommodates
traditional long-term and less-explored instant fairness concepts
in its extremes, but also encompasses all intermediate degrees of
sensitivity to fluctuations in the users’ rate allocations.

After introducing the versatile DRUM formulation, we fully
characterize its solution in the instantly-fair and long-term-fair
extremes for the general class of ω-weighted α-fair utility func-
tions. These solutions reveal the non-trivial impact of fading
channel statistics and the utility function parameters on the rate
allocations, even under perfectly symmetric network conditions.
In particular, we demonstrate that the rate allocations lie between
the maximum and the harmonic mean of the fading-channel rates.

To achieve rates in-between these extremes, we also address the
general solution of DRUM by proposing a novel low-complexity
dynamic rate allocation algorithm that does not require the
knowledge of the channel statistics. This algorithm is proven to
achieve the optimal performance of the instantly-fair and long-
term-fair solutions as the discount parameter approaches its lower
and upper limits, respectively. We also study the fairness and rate
allocation characteristics of our algorithm for intermediate values
of the discount parameter in a Rayleigh-Fading environment.

I. INTRODUCTION

Fair allocation of shared resources in a multi-user communi-

cation system has been a topic of great interest and activity

over decades. The core objective of these efforts has been

to obtain comprehensive models and systematic means for

sharing heterogeneous resources amongst multiple users so

that each user is satisfied (according to varying concepts of

“satisfaction”) with its relative share in the long-run. This paper

releases this implicit assumption on the long-term measure of

fairness in order to accommodate varying degrees of short-term
sensitivities of users to their received share.

Initial breakthroughs in the well-founded formulation and

systematic solution of the fair resource allocation problem

has been made in the seminal works of [1], [2] (see [3] for

more references). These works formulated the problem of fair

resource allocation in wired communication networks, with

Internet in mind, through a static utility optimization problem
subject to link capacity constraints. Through the use of dual
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ICN-WEN-1719371; the DTRA grant HDTRA1-15-1-0003; and the QNRF
Grant NPRP 7-923-2-344.

optimization methods, they have also developed decentralized

rate allocation (also called, congestion control) and scheduling

strategies that converge to the optimal fair allocation. The

unifying work of [4] expanded the reach of this approach by

introducing a common class of, so called, ω-weighted α-fair
utility functions (cf. (6)) that encapsulates all important fairness

concepts, including proportional fairness, MaxMin fairness,
sum-rate fairness (cf. Def. 2) within a common formulation.

This comprehensive mathematical optimization framework

for fair allocation is later embraced by the wireless networking

research community in the fruitful development of efficient and

fair allocation of wireless network resources (see, for example,

[5], [6], [7], [8], [9]). These, and many subsequent works have

unified previously-designed queue-length-based backpressure
routing and max-weight scheduling strategies (developed in

the seminal works of [10], [11]) with the fair rate allocation

framework under the common umbrella of Network Utility
Maximization (NUM) [12], also called Cross-Layer Design [13]

or Stochastic Network Optimization [14] in different contexts.

These works have revealed that queue-lengths in the previous

works can be viewed as Lagrange multipliers of related con-

straints of an associated static utility maximization problem,

and vice versa. This revelation has led to many interesting

follow-up efforts, which are still very active today, that utilize

this connection to develop new adaptive policies by intro-

ducing different queue-lengths and virtual queue-lengths that

accommodate new constraints of interest, such as reliability

constraints, delay constraints, deadline constraints, etc.

However, throughout this development the measure of

fairness in the utility function has remained to be based on

long-term average rates. While this may be an acceptable

measure in a wired communication network whereby the

resources are essentially static, it is no longer the case in

mobile wireless networks whereby resources are time-varying

and possibly highly heterogeneous. Since the mobile users

will be subject to time-varying channel conditions, their

measure of fairness will typically depend on their rates in the

short-run rather than the long-run. With increasingly mobile

and increasingly delay-sensitive applications in the horizon,

therefore, it is essential that the fair resource allocation

framework in wireless networks accommodates varying delay-

sensitivities into its formulation and solution. In this work, we

addresses this need as follows:
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Fig. 1. Channel fading and rate allocation model for a two-user setting: In each fading-block t of duration D seconds, the maximum achievable rate Cn[t] for

each user n ∈ {1, 2} is randomly realized from its corresponding set Cn � {c1n, · · · , cKn
n } of rates according to a distribution pn � {p1n, · · · , pKn

n }. This
determines the achievable rate region RC[t] for the block, from which individual rates r[t] = (r1[t], r2[t]) can be allocated to individual users. These rates are
achieved through a time-sharing strategy whereby ρn[t] determines the fraction of the block allocated to user n, as illustrated in slots t and t+ 1.

• We introduce (cf. Section II) a Discounted-Rate Utility

Maximization (DRUM) formulation that uses β-discounted

user rates. DRUM not only encapsulates NUM as a special

case but also extends it significantly by allowing different

degrees of sensitivity to time-variations in the user rates.

• We fully characterize (cf. Section III) the solutions of DRUM

for the two extremes of so-called long-term fair and instantly
fair allocations for the general class of ω-weighted α-fair

utility functions, and also explicitly describe the impact of

channel statistics on these allocations.

• We develop (cf. Section IV) a novel Dynamic-DRUM (D-
DRUM) Algorithm for solving the DRUM problem not only

at the extremes of β ∈ {0, 1} but for the general case of any

β ∈ [0, 1). We then prove that D-DRUM achieves the optimal

instantly-fair and long-term-fair allocations at the extremes

of β = 0 and β ↑ 1, and show that it stably spans rates in

between these extremes with intermediate choices of β.
• We present (cf. Section V) comprehensive investigations

of the performance characteristics of the Dynamic DRUM

Algorithm that go beyond average rates. In particular, we

present several interesting observations on the distribution
of, correlation between individual user rates with varying β.

Throughout the paper, we consistently denote: random vari-

ables with upper-case letters, e.g., X; realizations with lower-

case letters, e.g., x; sets with script letters, e.g., X ; vectors with

boldface letters, e.g, X or x; component-wise inequalities with

� and �; and the non-negative real numbers with R+.

II. SYSTEM MODEL AND DRUM PROBLEM FORMULATION

A. Channel and Network Model

We consider the service of N users over wireless fading

channels which are block-fading in time (see Fig. 1). For each

user, the channel state is constant over blocks of duration of

D seconds that are synchronized among all users so that the

network operates in a common slotted time t aligned with these

blocks. While the results of this work hold when the channel

states are dependent across users and dependent but ergodic

over time, for simplicity of exposition, we will assume that

channel states change independently from one block to the next.

User n ∈ {1, · · · , N} has a set of Kn possible non-negative-

valued channel states Cn � {c1n, · · · , cKn
n } which are observed

with corresponding probabilities pn � {p1n, · · · , pKn
n }. In par-

ticular, the channel state of user n at time t is a random variable

Cn[t] ∈ Cn with distribution pn, i.e., Pr(Cn[t] = ckn) = pkn,

and indicates the maximum achievable rate for that user in that

block. Without loss of generality, we assume that E[Cn] > 0,
since otherwise we can omit such a user from the network.

The network state at time t is given by the realizations of

all user states at that time, i.e., C[t] � (C1[t], · · · , CN [t]) ∈
C �

∏N
n=1 Cn where

∏ · indicates the Cartesian product of

sets. Hence, a given network state c � (c1, · · · , cN ) ∈ C is

observed with p.m.f. π � (πc)c, where πc � Pr(C[t] = c).

B. Instantaneous and Average Achievable Rate Regions

The channel state of a user indicates the highest rate that

can be achieved during the given block duration, if the channel
is used by that user alone. If multiple users are utilizing the
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channel simultaneously, interference prevents either user from

achieving their highest rate. In that case, we consider a time-

sharing in which users access the channel at disjoint sub-

intervals of the block duration. While time-sharing is a com-

monly used strategy and allows us to get closed-form solutions

to various optimization problems in the sequel, we note that

it is also possible to accommodate more sophisticated multi-

access rate regions with efficient allocation strategies as in [15].

If user n utilizes the channel during a ρn[t] fraction of the

block t, it can achieve a maximum rate of Rn[t] = ρn[t]Cn[t].
Accordingly, each vector ρ[t] � (ρn[t])n in the set of fractions

Ψ � {ρ � 0 :
∑N

n=1 ρn ≤ 1} corresponds achieving the

point (ρ1[t]C1[t], · · · , ρN [t]CN [t]) in the multi-user rate region.

Thus, for each network state C[t] = c = (cn)
N
n=1 ∈ C, the

instantaneous achievable rate region at time t is:

RC[t] = Rc � Conv({0, c1e1, · · · , cNeN}) ⊂ R
N
+ , (1)

where Conv(·) indicates the convex hull of a set, and en is the

nth standard unit vector. The lower part of Fig. 1 illustrates the

time-varying rate region RC[t] and the concept of time-sharing

for a two-user setting. The average achievable rate region R,

also called the capacity region, is obtained by averaging the

achievable rate region over all possible network states c ∈ C:

R =
∑
c∈C

πc · Rc, (2)

where the summation is set addition.

The following example illustrates the concepts we have

introduced so far in a key two-state setting that will be revisited

in later sections to demonstrate important characteristics of our

new framework as we develop them.

Example 1 (Two-User and Two-State Channel Setting). We
consider a two user scenario with independent and identically
distributed (i.i.d.) maximum achievable rates {Cn[t]}n=1,2 tak-
ing values from a two-state set C = {cH , cL} with cH > cL ≥
0, and p � P(Cn[t] = cH) = 1− P(Cn[t] = cL) ∈ (0, 1).
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Fig. 2. Average rate region R for a two-user network with i.i.d. maximum
achievable rates {Cn[t]}n taking values from C = {cH , cL} with cH >
cL ≥ 0, and p � P (Cn[t] = cH) ∈ [0, 1].

Thus, the network state C[t] has four possible realizations
C = {(cH , cH), (cH , cL), (cL, cH), (cL, cL)} with probabilities
p2, p(1−p), p(1−p) and (1−p)2, respectively. For each realiza-
tion of the network state C[t], the instantaneous achievable rate
region RC[t] at time t is given by a corresponding triangular

area illustrated on the left side of Fig. 2. Then, the average
achievable rate region R is obtained from (2) by averaging
these four triangular regions, resulting in a symmetric pentagon
that is illustrated on the right side of Fig. 2 for the particular
set of values p = 0.6, cH = 10 and cL = 5.

C. Discounted-Rate Utility Maximization (DRUM) Problem

Def. 1 (β-Discounted Rate). For a given β ∈ [0, 1], we define

the β-discounted rate of user n at time t ≥ 0 as

R(β)
n [t] �

t∑
τ=−Ts+1

βt−τ Rn[τ ]

t∑
τ=−Ts+1

βt−τ

, t > −Ts, (3)

where Ts ∈ {0, 1, · · · } denotes the starting time of the system

operation. Also, define the accumulated1 β-discounted rate
∞
R

(β)
n [t] at time t as the limit of R

(β)
n [t] with Ts → ∞, i.e.,

∞
R(β)

n [t] �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Rn[t], if β = 0

(1− β)

t∑
τ=−∞

βt−τRn[τ ], if β ∈ (0, 1)

lim inf
Ts→∞

1

t+ Ts

t∑
τ=−Ts+1

Rn[τ ], if β = 1

(4)

Finally, let
∞
r
(β)
n [t] � E

[∞
R

(β)
n [t]

]
∈ R+ be the mean accumu-

lated β-discounted rate for user n at time t.

This definition provides an effective means of capturing

varying degrees of delay sensitivity to service rates within a

common framework. The numerator in (3) adds the rates from t
backwards by decreasing the weights by a factor of β each time

the time index is decremented. As such, by choosing different

values of β ∈ [0, 1], this operation allows us to emphasize or

de-emphasize the past values of Rn[·] in the measure of rate at

time t. The denominator in (3) serves as a normalization factor

to balance the effect of β in the numerator.

We can see the versatility of this discounted-rate metric from

(4): when β = 0 the accumulated β-discounted rate
∞
R

(0)
n [t]

reduces to the instantaneous rate Rn[t] achieved in the same

slot; and when β = 1 the β-discounted rate
∞
R

(1)
n [t] becomes

the long-term time-average rate received since the beginning

of time. In-between these extremes, the parameter β ∈ (0, 1)
allows us to put different emphasis on the rates received in the

recent and remote past.

This versatile metric lies at the center of a new utility

maximization framework that we introduce next, which can

accommodate delay sensitivities in the fair allocation. Using

appropriate choices of the discount parameter β ∈ [0, 1], this

new formulation will be able to capture the sensitivity of

users to delayed service within a unified framework, whereby

β = 0 corresponds to extreme delay-sensitivity, while β ↑ 1
approaches the delay-insensitive case.

1We note that, even though we use the qualification accumulated for this

metric due to its discounted time-averaging nature,
{∞
R

(β)
n [t]

}
t

can in general

be a sequence of random variables that need not converge to a single value.
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Def. 2 (Discounted-Rate Utility Maximization (DRUM)). Sup-

pose that the system starts at time −Ts ≤ 0. Given a set of

user utility functions {Un(x)}Nn=1, the Discounted-Rate Utility

Maximization (DRUM) problem is given by:

max

N∑
n=1

un

(
{R(β)

n [t]}t
)

(5)

s.t. R[t] ∈ RC[t], t > −Ts,

with un({R(β)
n [t]}t) � lim inf

T→∞
1

T + Ts

T∑
t=−Ts+1

E
[
Un

(
R(β)

n [t]
)]

measuring the average utility achieved by user n over time

with respect to its β-discounted rate performance.

In particular, we will study DRUM for the wide class of

ω-weighted α-fair utility functions defined as:

U [α]
n (x) �

{
ωn

x1−α

1−α , α ≥ 0, α �= 1

ωn log(x) α = 1,

}
, x > 0, (6)

for a given weight vector ω � (ωn)n � 0, i.e., ωn > 0 for all n.
Depending on the value of α these utility functions span a wide

range fairness from sum-rate (when α = 0) to proportional
(when α = 1) to MinMax-fair (as α ↑ ∞) allocations [3], [4].

III. CHARACTERIZATION AND COMPARISON OF OPTIMAL

INSTANTLY-FAIR & LONG-TERM-FAIR DRUM SOLUTIONS

In Def. 2, we have introduced our discounted-rate utility

maximization (DRUM) problem for a set of utility function

parameters: α ≥ 0, ω � 0; and discount parameter: β ∈ [0, 1].
In this section, our goal is to characterize the complete solution

of DRUM, for all α ≥ 0 and ω � 0, under the two tractable

cases of β = 0 and β = 1, corresponding, respectively, to the

instantly and long-term ω-weighted α-fair rate allocations.

The investigation in this section will reveal (cf. Proposi-

tions 1 and 2) how the statistics of channel state processes factor

into the solution of DRUM for different choices of α,ω, and β
parameters, even under perfectly symmetric utility functions

and channel conditions (cf. Corollary 1). These results will

act as benchmarks in the next section when we design and

investigate a dynamic policy that will work for all α,ω, β.

First, we characterize the instantly-fair, i.e., β = 0, DRUM

solution for all allowed values of (ω, α) parameters of {U [α]
n }n.

Proposition 1 (Complete Instantly-Fair Solution of DRUM).
� For α = 0, an2 optimal instantly-fair rate allocation
�

R(0)[t] �
(

�

R
(0)
n [t]

)
n

when C[t] = c = (cn)n is given by:

�

R(0)
n [t] =

�

R(0)
n (c) =

cn I
(
n ∈ argmax

m∈{1,··· ,N}
{ωmcm}

)
∣∣∣∣∣ argmax
m∈{1,··· ,N}

{ωmcm}
∣∣∣∣∣

, (7)

for each n. In the last expression, I(A) denotes the indicator
function of event A, and |A| is the cardinality of set A.

2We note that in both of these cases of β = 0 and β = 1, when α = 0
there are possibly multiple solutions to DRUM, including the one we provide.

� For α > 0, the optimal instantly-fair rate allocation
�

R(0)[t] �
(

�

R
(0)
n [t]

)
n

for any C[t] = c � 0 is given by3:

�

R(0)
n [t] =

�

R(0)
n (c) =

(ωncn)
1/α

N∑
m=1

(ωmcm)1/α

cm

, ∀n, (8)

Consequently, the accumulated rates
�∞
R(0)[t] �

( �∞
R

(0)
n [t]

)
n

(cf.
(4)) achieved under the instantly-fair allocation are given by
�∞
R

(0)
n [t] =

�

R
(0)
n (C[t]) with the right-hand-side given by (7) and

(8) when α = 0 and α > 0, respectively.

Proposition 1 (see [16] for the proof) explicitly provides

the optimal instantly-fair DRUM solution for a given (ω, α)
pair as a function of the network state random vector C[t].

As such, the optimal rate allocation
�

R(0)(C[t]) is a random
vector that is governed by the distribution π = (πc)c of C and

does not converge to a constant as t diverges. This comes from

the highly delay-sensitive nature of the instantly-fair allocation

due to the choice β = 0. In contrast, we will see in the next

proposition that in the long-term-fair case when β = 1, the

optimal allocation will be a constant vector. The above solution

of the instantly-fair allocation also captures the impact of ω and

α parameters on the DRUM solution. We shall comment further

on this impact in contrast with the long-term case after we

provide the characteristics of the long-term ω-weighted α-fair

DRUM solution, i.e., when β = 1, in the following proposition.

Proposition 2 (Complete Long-Term-Fair Solution of DRUM).
For any α ≥ 0, the optimal long-term-fair rates

�∞
R(1)[t] �( �∞

R
(1)
n [t]

)
n

converge to a constant average accumulated rate

vector
�∞
r (1) (cf. Def. 1) that solves:

�∞
r (1) ∈ argmax

r�(rn)n∈R

N∑
n=1

U [α]
n (rn), (9)

where U
[α]
n (·) is the ω-weighted α-fair function given in (6),

and R is the average achievable rate region defined in (2).
The solution of (9) exists for α ≥ 0 and is unique for α > 0.

Given the solution of
�∞
r (1) from (9), we can now characterize

the optimal long-term-fair rate allocation
�

R(1)[t] at each time
t for different choices of α.
� For α = 0, an3 optimal long-term-fair rate allocation
�

R(1)[t] �
( �

R
(1)
n [t]

)
n

when C[t] = c = (cn)n is given by
the same allocation (7) as in the instantly-fair case.
� For α > 0, the optimal long-term-fair rate allocation
�

R(1)[t] =
�

R(1)(c) = ρ�n(c) cn when C[t] = c = (cn)n, is
found by solving for {ρ�(c)}c∈C that satisfies, for each n:

∑
c∈C

πc ρ
�
n(c) cn I

⎛
⎝n ∈ argmax

m∈{1,··· ,N}

ωmcm( �∞
r
(1)
m

)α

⎞
⎠ =

�∞
r (1)
n , (10)

where (ρ�n(c))n ∈ Ψ � {ρ � 0 :
∑N

n=1 ρn ≤ 1}, ∀c ∈ C.
3Note that in this case, if any cn = 0, then the utility function value of that

user becomes −∞, hence that scenario is excluded.
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Proposition 2 (see [16] for the proof) characterizes the

optimal long-term-fair DRUM solution implicitly through the

solutions of (9) and (10) for a given (ω, α) pair. These equa-

tions can in general be difficult to solve and require knowledge

of the network statistics π. While we defer the solution of these

equations through simple updates to the next section, next we

consider an important special case of the network scenario that

allow us to explicitly solve them and provide an interesting

comparison between the accumulated rate performances of

instantly-fair and long-term-fair optimal allocations.

Corollary 1 (Comparison of Instantly and Long-Term-Fair

Allocations under Symmetry). Suppose that: (i) each channel
Cn[t] ∈ C � {c1, · · · , cK} is independently and identically
distributed4 (i.i.d.) according to a common distribution p �
(p1, · · · , pK) with P(Cn[t] = 0) = 0; and (ii) the {U [α]

n (·)}n
weights are ωn = 1, ∀n. Then, we can write the average

accumulated discounted rate
�∞
r
(β)
n [t] � E

[
�∞
R

(β)
n [t]

]
(cf. Def. 1)

for the instantly and long-term-fair optimal allocations as
follows: for each slot t,

�∞
r (0)
n [t] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
N E

[
max

m∈{1,··· ,N}
Cm[t]

]
, if α = 0

E

⎡
⎢⎢⎣ (Cn[t])

1
α

N∑
m=1

(Cm[t])
1
α−1

⎤
⎥⎥⎦ , if α > 0.

(11)

�∞
r (1)
n [t] =

1

N
E

[
max

m∈{1,··· ,N}
Cm[t]

]
, ∀α ≥ 0. (12)

It is insightful to rewrite (11) for proportionally-fair (α = 1)
and MaxMin-fair (α ↑ ∞) cases:

�∞
r (0)
n [t] =

⎧⎪⎨
⎪⎩

1
N E [Cn[t]] , if α = 1

E

[(
N∑

m=1

1
Cm[t]

)−1
]
, as α ↑ ∞.

(13)

Corollary 1 reveals the non-trivial impact of the fairness pa-

rameter α on the average accumulated rates under the instantly

and long-term fair allocations. In particular, (12) reveals that

the long-term-fair optimal allocation
�

R(1)(c) is insensitive to

the choice of α ≥ 0 value under these symmetric conditions,

and equally shares the service between users that achieve the

maximum achievable rate at the given network state c. In

contrast, the optimal instantly-fair allocation (11) is sensitive to

α values: when α = 0, i.e., when the utility functions are linear,

it performs the same allocation as the optimal long-term-fair

allocation; and when α > 0 it becomes increasingly sensitive

to the network state distribution as α increases.

The above corollary also reveals the interesting impact

of the network state C[t] statistics on the achieved average

accumulated rates. In particular, (12) shows that the average

accumulated rate of long-term-fair allocation is governed by

the maximum of all achievable rates {Cm[t]}m for all α ≥ 0.
In contrast, (11) and (13) reveal that the average accumulated

4Note that until here, we allowed channel states to be correlated across users.

rate of instantly-fair allocation varies from their maximum in

the sum-rate-optimal case (α = 0), to their arithmetic mean in

the proportionally-fair case (α = 1), to their harmonic mean
in the MaxMin-fair case (α ↑ ∞). This relationship is further

demonstrated in the following example.

Example 2 (DRUM Solutions for the Two-User and Two-State

Setting). For the same setting as in Example 1, the long-
term-fair solution of DRUM (cf. Proposition 2) allocates all
resources to the user who sees a good channel (if both users
see a good channel, they share equally) regardless of α due
to symmetry. This scheme achieves a high average rate for
both users at the boundary of the average rate region R as
depicted in Fig. 3. This high rate, however, comes at the risk
of possible high delay since it is insensitive to intermittent and
bursty services. If a user’s channel remains in a bad state for an
extended duration, as it will in many realistic wireless settings,
that user will receive low rates for that duration, resulting in
delays in its average service experience.
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Fig. 3. Average accumulated instantly-fair rates achieved by user 1 in the two-
user, two-state setting of Example 1 with varying α ≥ 0. As α goes from 0 to
∞, the rate ranges between the sum-rate-optimal and MaxMin-fair allocations.

The instantly-fair solution of DRUM (cf. Proposition 1)
achieves the same rates as the long-term-fair case for α = 0.
When α > 0, however, it allocates positive rates to both users
at every block, ensuring a steady distribution of the resources.
Moreover, as α increases the rates of both users will become
more similar, and equal to the average harmonic mean in the
limit. Achieving fairness at each block, however, comes at the
cost of lower rate. Fig. 3 shows how the achieved rate decreases
with increasing α. The figure also shows that the range of
instantly-fair rates lies between the maximum of the channel
rates and the harmonic mean of the channel rates. As such,
these statistics emerge as important measures in characterizing
the largest cost of long-term-fair versus instant-fair in terms of
the statistics of the channel rates.

IV. DYNAMIC ALGORITHM FOR GENERAL SOLUTION OF

DRUM AND ITS OPTIMALITY GUARANTEES

In section III, we have presented the optimal DRUM solu-

tion for instantly-fair and long-term-fair rate allocations which

correspond to the extreme values of the rate-discount parameter

β ∈ [0, 1]. In both cases the solution requires the full knowledge
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of the channel statistics π. It is possible to develop simple

dynamic algorithms that do not require the knowledge of

π, which can be asymptotically long-term-fair-optimal in the

limit as time goes to infinity. In particular, queue-length-based

policies that achieve this goal have been developed in several

works (e.g., [6], [7], [8]). However, we are interested not only

in solving the instantly-fair and long-term fair allocations but in

solving the problem in the range between these extremes, which

calls for a new design. In this section, we address this need by

introducing a dynamic algorithm that provides a solution to

the DRUM problem for values of α ≥ 0 and β ∈ [0, 1), and

does not require the knowledge of the channel statistics π. Our

algorithm is not restricted to symmetric channel conditions and

weights, but applies to the most general setup.

Def. 3 (Dynamic-DRUM (D-DRUM) Algorithm). The

Dynamic-DRUM algorithm starts at an arbitrary time t = −Ts

with the β-discounted rate initialized to R
(β)
n [−Ts] = 0 for

all n ∈ {1, · · · , N}. Then, at time slot t > −Ts, given

R(β)[t − 1] = (R
(β)
n [t − 1])n and the network state C[t], the

algorithm allocates R(β)[t] as:

R[t] ∈ argmax
r∈RC[t]

N∑
n=1

Un

(
βR(β)

n [t− 1] + (1− β)rn

)
(14)

and uses this R[t] to update R(β)[t] from R(β)[t− 1] as:

R(β)[t] = βR(β)[t− 1] + (1− β)R[t] (15)

For the particular class of ω-weighted α-fair utility functions

{U [α]
n (x)}n defined in (6), the solution to the maximization

problem in (14) is given by:

Rn[t] =

((
(1− β)1−αcnωn

λ�

) 1
α

− β ·R(β)
n [t− 1]

1− β

)+

, (16)

where (x)
+ � max{0, x} and λ� > 0 satisfies

N∑
n=1

1

cn

((
(1− β)1−αcnωn

λ�

) 1
α

− β ·R(β)
n [t− 1]

1− β

)+

= 1 (17)

Note that (16) and (17) correspond to a waterfilling solution,

which can be solved exactly with O(N log(N)) computational-

complexity: At each time t, the algorithm determines the

number of users which can be allocated a nonzero rate without

violating the total capacity constraint in (17). Finding this

number requires sorting the N users based on their maximum

λ value that makes Rn[t] zero in (16). The O(N log(N)) com-

plexity follows from noting that this sorting operation governs

the computational complexity of the D-DRUM algorithm.

We note that the update rule (15) bears a similarity to the

update rule in the proportionally-fair rate allocation policy

introduced in [17], but differs from it in two important aspects.

First, the rate allocation decision in (14) differs from that in

[17]. Second, our policy is not specific to the proportionally-

fair case but accommodates all α-fair utility functions, and

integrates the discount parameter β into its allocation. In

this respect, D-DRUM can be viewed as an alternate to the

proportionally-fair scheduler in [17] when α = 1 and β ↑ 1,

and also a generalization in accommodating all other α-fairness

metrics. In the following theorem, we establish this fact that the

rate allocation achieved by our algorithm achieves the optimal

rate allocations for both β = 0 and as β ↑ 1.

Theorem 1 (Instant and Long-Term Optimality of D-DRUM).
D-DRUM achieves the instantly-fair optimal allocation when
β = 0 and converges to the long-term-fair optimal allocation
as β ↑ 1. Specifically, the discounted rates R(β)[t] achieved
under D-DRUM satisfies:

R(0)[t] =
�

R(0)[t], ∀ t > −Ts, (18)

where
�

R(0)[t] is defined in Proposition 1, and

lim
β↑1

lim
t→∞R(β)[t] =

�∞
r (1), w.p. 1, (19)

where
�∞
r (1) is defined in Proposition 2.

While the proof of optimality for instantly-fair allocation is

immediate, the proof of optimality for long-term-fair allocation

requires a more subtle upper and lower-bounding to establish

(see [16] for the complete proof). With this theorem, D-DRUM

yields a new means for solving the long-term fair allocation

problem that is attacked in several earlier works through dual

methods (e.g., [6], [7], [8]). Yet, D-DRUM also provides the

versatility to emphasize short-term fairness experience through

the choice of β parameter. Next, we revisit the two-user and

two-state scenario from Examples 1 and 2 to demonstrate that

our D-DRUM algorithm attains the long-term and instantly-fair

allocations for each α ≥ 0 as its β parameter approaches 0 and

1, and spans all rates in-between by varying β ∈ (0, 1).

Example 3 (D-DRUM Algorithm Performance for the Sym-

metric Two-User and Two-State Setting). For the same setting
as in Example 1, the average rate performance of the D-DRUM
algorithm with varying β is depicted in Fig. 4.
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Fig. 4. Average accumulated β-discounted rates achieved by user 1 in the two-
user, two-state setting of Example 1 with varying β ∈ [0, 1) for α ∈ {0, 1, 10}.
For each α, as β goes from 0 to 1, the average accumulated β-discounted rate
increases from its instantly-fair value to the long-term-fair value as shown in
the plot on the right.

The left plot repeats the right plot in Fig. 3 to indicate the
span between the instantly-fair and long-term-fair allocations
for sum-rate-optimal (α = 0 in green), proportionally-fair (α =
1 in black), and essentially MaxMin-fair (α = 10 in blue) cases.
Then, the right plot gives the average rate that our D-DRUM
algorithm provides to user 1 as its discount parameter β ranges
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from 0 to 1. For each case of α = {0, 1, 10}, we see that
the algorithm achieves the instantly-fair and the long-term-fair
allocations in its extremes, and spans all value in-between as
β spans (0, 1). We also see by comparing the right-hand plots
for α = 1 and α = 10 that as α increases, the average rate
performance becomes less sensitive to low β values and highly
sensitive to changes in β around 1.

Example 3 illustrates the performance of D-DRUM for the

symmetric setting of i.i.d. channel statistics and equal weights

ω in the choice of α-fair utility functions. In the next example,

we consider the case of non-i.i.d. channels and non-uniform
utility weights to show that the optimality characteristics of

D-DRUM continue to hold more generally.

Example 4 (Dynamic-DRUM Algorithm Performance for an

Asymmetric Two-User and Two-State Setting). We consider
an asymmetric two user scenario where both users’ maximum
achievable rates take values from different sets (C1 = {4, 11}
and C2 = {5, 10}) with different probabilities (p1 = (0.6, 0.4)
and p2 = (0.4, 0.6)). Fig. 4 depicts the average rate per-
formance of D-DRUM for a fixed α = 1 (i.e. instantly
proportionally-fair allocation) and a range of β and ω.
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Fig. 5. Trajectories of the average accumulated β-discounted rates achieved by
our Dynamic DRUM Algorithm for the asymmetric two-user, two-state setting
with varying β ∈ [0, 1) and different ω. For the case of α = 1, trajectories
for ω ∈ {(20, 1)T , (19, 2)T , · · · , (1, 20)T } are illustrated as β starts from
0 and as it approaches 1. The rates converge to the long-term optimal rates
indicated at the boundary of the asymmetric average achievable rate region R.

Each trajectory corresponds to a different weight vector ω
while the individual points on each trajectory correspond to a
different discount parameter β. For each trajectory, as β starts
from 0 and approaches 1, the achieved average rates increase
towards the optimal long-term fair allocation on the boundary
of the average achievable rate region R. The particular limit
points depend on how ω weighs one user over the other. For all
sets of parameters, the performance of the D-DRUM algorithm
approaches the optimal long-term rates as β ↑ 1. Here, the
optimal long-term rates are independently calculated using a
dual queue-length-based approach in [8].

Examples 3 and 4 not only confirm the optimality features of

D-DRUM in its extremes (both for symmetric and asymmetric

conditions), but also show how the α and β values can jointly

impact the average rates provided to the users. These show that

D-DRUM is a highly stable and effective strategy for accom-

modating user sensitivities to short-term service variations.

V. FURTHER OBSERVATIONS ON THE STATISTICAL

PERFORMANCE OF THE DYNAMIC-DRUM ALGORITHM

In order to develop a more comprehensive understanding of

D-DRUM performance, in this section we extend our previous

investigations in two aspects: (1) we consider more realistic

continuous-valued fading channels; (2) we study the distribu-
tion of the user rates under D-DRUM rather than their averages.

In particular, we consider a two-user5 i.i.d. Rayleigh fading

scenario where scheduled users transmit at a fixed power P over

additive white Gaussian noise with power N0 and P
N0

= 3dB.
Then, for the channel gain Hn[t] of user n at time t, the max-

imum achievable rate Cn[t] becomes log
(
1 + |Hn[t]|2 P

N0

)
,

where |Hn[t]|2 is exponentially distributed.

• Distribution of Instantaneous User Rates: Until now,

we have focused on the performance of the accumulated β-

discounted user rates R(β)[t] as the metric of interest. However,

R(β)[t] is only a virtual metric to measure the delay sensitivity

of the users, whereas R[t] is the actual amount of service

received. Accordingly, it is important to understand the D-

DRUM performance with respect to the statistics of individual

user rates {R[t]}t. Fig. 6 illustrates the empirical CDF and pdf

of instantaneous rates R1[t] for user-1 achieved under D-DRUM

for varying β ∈ {0, 0.5, 0.99} values and α = 1.
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Fig. 6. Distribution (pdf and CDF) of user-1 rates under the Dynamic DRUM
algorithm for α = 1 and β varying over {0, 0.5, 0.99}.

When β = 0, not surprisingly, the distribution of {R1[t]}t
resembles a Rayleigh distribution since the scheduler aims for

5See [16] for further results including scenarios with more than two users.
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instant-fairness. As β increases towards a mid-level of 0.5, we

see that the allocation to the user spreads to a wider range for

positive values and a strictly positive probability emerges where

the user receives 0 rate. This trend becomes even stronger as

β approaches 1, whereby the user receives 0 rate half of the

time and receives high rates at other times. This reveals the cost

of achieving high long-term rates in opportunistic scheduling,

namely, high variability in the instantaneous rates so that good

conditions of users can be exploited. These results show that,

by adjusting the discount parameter β, the D-DRUM Algorithm

provides the means to optimize the tradeoff between achieving

high long-term rates and low instantaneous rate variability.

• Correlation between Individual User Rates: Another in-

teresting characteristic-of-interest is the relationship between

individual user rates that share the common medium. To that

end, Fig. 7 depicts the correlation coefficient between the two

user rates under D-DRUM for different α values and β ∈ [0, 1).
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Fig. 7. Correlation coefficient for different α values over β.

For each α, this correlation decreases as β increases, because

D-DRUM exploits the time-varying channel capacities more

aggressively to achieve higher discounted-rate levels. Accord-

ingly, it increasingly favours the user with high achievable

rates while the other tends to receive lower rates, which causes

a decrease in the correlation. Also, as α increases, i.e., the

fairness requirement gets stronger, the starting correlation level

gets higher, reaching 1 in the limit. This is because higher

α values enforce increasingly equal instantaneous allocations

(under symmetric channel conditions) when β is small. Yet, in

all cases, as β increases the averaging affect kicks in (albeit at

different rates) to provide sufficient flexibility for D-DRUM to

take advantage of the channel variations.

VI. CONCLUSIONS

We introduced a new optimization-based framework for

measuring and accommodating the sensitivities of users to

time-variations in their received service in a shared wireless

fading communication environment. Our framework utilizes

discounting of received service rates over time in order to

incorporate such sensitivities into a utility maximization formu-

lation. This, so-called Discounted-Rate-Utility-Maximization

(DRUM), formulation enables a unified treatment of varying

degrees of sensitivities to service rate fluctuations between the

extremes of instantly-fair (i.e., highly delay-sensitive) and long-
term-fair (i.e., delay-insensitive) allocations.

Within this new framework, we first characterized the optimal

instantly-fair and long-term-fair allocations for the general class

of ω-weighted α-fair utility functions. Then, we developed a

novel, low complexity Dynamic-DRUM (D-DRUM) Algorithm

for the general solution of DRUM for any discount parameter

β. We proved that D-DRUM achieves the optimal solutions of

the instantly-fair and long-term-fair allocations as β approaches

its extremes. We illustrated through extensive numerical in-

vestigations that D-DRUM smoothly and stably achieves rate

allocations between the instant and long-term optimal extremes

by varying β. These investigations also shed light on the

temporal dynamics of D-DRUM allocations for individual users

and the correlation between the rates of different users.
Based on these results and investigations, we believe that

the DRUM framework and the D-DRUM Algorithm show

great promise in providing a well-founded means of modeling

and managing user sensitivities to short-term fluctuations in a

stochastic resource-sharing environment.
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