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44 avenue de la République, 92320 Chatillon, France

Email: mustapha.bouhtou@orange.com

Abstract—We propose a model of incentives for data pricing
in large mobile networks, in which an operator wishes to balance
the number of connexions (active users) of different classes of
users in the different cells and at different time instants, in order
to ensure them a sufficient quality of service. We assume that
each user has a given total demand per day for different types
of applications, which he may assign to different time slots and
locations, depending on his own mobility, on his preferences
and on price discounts proposed by the operator. We show
that this can be cast as a bilevel programming problem with
a special structure allowing us to develop a polynomial time
decomposition algorithm suitable for large networks. First, we
determine the optimal number of connexions (which maximizes
a measure of balance); next, we solve an inverse problem and
determine the prices generating this traffic. Our results exploit
a recently developed application of tropical geometry methods
to mixed auction problems, as well as algorithms in discrete
convexity (minimization of discrete convex functions in the sense
of Murota). We finally present an application on real data
provided by Orange and we show the efficiency of the model
to reduce the peaks of congestion.

I. INTRODUCTION

With the development of new mobile data technologies (3G,
4G), the demand for using the Internet with mobile phones
has increased rapidly. Mobile service providers (MSP) have to
confront congestion problems in order to guarantee a sufficient
quality of service (QoS).

Several approaches have been developed to improve the
quality of service, coming from different fields of the telecom-
munication engineering and economics. For instance, one
can refer to Bonald and Feuillet [1] for some models of
performance analysis to optimize the network in order to
improve the QoS. One of the promising alternatives to solve
such problems consists in using efficient pricing schemes
in order to encourage customers to shift their mobile data
consumption. In [2], Maillé and Tuffin describe a mechanism
of auctions based on game-theoretic methods for pricing an
Internet network, see also [3]. In [4], Altman et al. study how
to price different services by using a noncooperative game.
These different approaches are based on congestion games. In
the present work, we are interested in how a MSP can improve
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the QoS by balancing the traffic in the network. We wish to
determine in which locations, and at which time instants, it
is relevant to propose price incentives, and to evaluate the
influence of these incentives on the quality of service.

This kind of problem belongs to smart data pricing. We
refer the reader to the survey of Sen et al. [5] and also to the
collection of articles [6]. Finding efficient pricing schemes is
a revenue management issue. The first approach consists in
usage-based pricing; the prices are fixed monthly by analysing
the use of the former months. It is possible to improve this
scheme by identifying peak hours and non-peak hours and
proposing incentives in non-peak hours in order to decrease the
demand at peak hours and to better use the network capacity
at non-peak hours. This leads to time-dependent pricing. Such
a scheme for mobile data is developed by Ha et al. in [7].
The prices are determined at different time slots and based on
the usage of the previous day in order to maximize the utility
of the customers and the revenue of the MSP. This pricing
scheme was concretely implemented by AT&T, showing the
relevance of such a model. In another approach, Tadrous et
al. propose a model in which the MSP anticipates peak hours
and determines incentives for proactive downloads [8].

The latter models concern only the time aspects. One must
also take into account the spatial aspect in order to optimize
the demand between the different locations. In [9], Ma, Liu
and Huang present a model depending on time and location of
the customers where the MSP proposes prices and optimizes
his profit taking into account the utility of the customers.

Here, we assume (as in [9]) that the MSP proposes incen-
tives at different time and places. Then, customers optimize
their data consumption by knowing these incentives and the
MSP optimizes a measure of the QoS. In this way, we
introduce a bilevel model in which the provider proposes
incentives in order to balance the traffic in the network and to
avoid as much as possible the congestion (high level problem),
and customers optimize their own consumption for the given
incentives (low level problem).

Bilevel programs have been widely studied, see the surveys
of Colson, Marcotte and Savard [10] and of Dempe [11].
They represent an important class of pricing problems in sense
that they model a leader wanting to maximize his profit and
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proposing prices to some followers who maximize themselves
their own utility. Most classes of bilevel programs are known
to be NP-hard. Several methods have been introduced to
solve such problems. For instance, if the low level program
is convex, it can be replaced by its Karush-Kuhn-Tucker
optimality conditions and the bilevel problem becomes a
classical one-stage optimization problem, which is however
generally non convex. If some variables are binary or discrete,
and the objective function is linear, the global bilevel problem
can be rewritten as a mixed integer program, as in Brotcorne
et al. [12].

In the present work, we optimize the consumption of each
customer in a large area (large urban agglomerations) during
typically one day divided in time slots of one hour, taking into
account the different types of customers and of applications
that they use. Therefore, we have to confront both with the
difficulties inherent to bilevel programming and with the large
number of variables (around 107). Hence, we need to find
polynomial time algorithms, or fast approximate methods, for
classes of problems of a very large scale, which, if treated
directly, would lead to mixed integer linear or nonlinear
programming formulations beyond the capacities of current
off-the-shelve solvers.

This motivated us to introduce a different approach, based
on tropical geometry. Tropical geometry methods have been
recently applied by Baldwin and Klemperer in [13] to an auc-
tion problem. This has been further developed by Yu and Tran
[14]. In these approaches, the response of an agent to a price
is represented by a certain polyhedral complex (arrangement
of tropical hypersurfaces). This approach is intuitive since
it allows one to vizualize geometrically the behavior of the
agents: each cell of the complex corresponds to the set of
incentives leading to a given response. Then, we vizualize the
collective response of a group of customers by “superposing”
(refining) the polyhedral complexes attached to every customer
in this group. We apply here this idea to represent the response
of the low-level optimizers in a bilevel problem. This leads
to the following decomposition method: first we compute,
among all the admissible consumptions of the customers, the
one which maximizes a measure of balance of the network;
then, we determine the price incentive which achieves this
consumption. In this way, a bilevel problem is reduced to the
minimization of a convex function over a certain Minkowski
sum of sets. We identify situations in which the latter problem
can be solved in polynomial time, by exploiting the discrete
convexity results developed by Murota [15]. In this approach,
a critical step is to check the membership of a vector to a
certain Minkowski sum of sets of integer points of polytopes.
In our present model, these polytopes, which represent the
possible consumptions of one customer, have a remarkable
combinatorial structure (they are hypersimplices). Exploiting
this combinatorial structure, we show that this critical step can
be performed quickly, by reduction to a shortest path problem
in a graph. This leads to an exact solution method when
there is only one type of contract and one type of application
sensitive to price incentive, and to a fast approximate method

in the general case.
We finally present the application of this model on real

data from Orange and show how price incentives can improve
the QoS by balancing the number of active customers in an
urban agglomeration during one day. These results indicate
that a price incentive mechanism can effectively improve the
satisfaction of the users by displacing their consumption from
the most loaded regions of the space-time domain to less
loaded regions.

The paper is organized as follows. In Section II, we
present the bilevel model. In Section III, we explain how
a certain polyhedral complex can be used to represent the
user’s responses. In Section IV, we describe the decomposition
method. In Section V, we deal with the high level problem and
identify special cases which are solvable in polynomial time.
In Section VI, we propose a general relaxation method. The
application to the instance provided by Orange is presented in
Section VII.

II. A BILEVEL MODEL

We consider a time horizon of one day, divided in T time
slots numbered t ∈ [T ] = {1, . . . T}, and a network divided in
L different cells numbered l ∈ [L]. We assume K customers,
numbered k ∈ [K], are in the network. The customers have
different types of contracts b ∈ [B] and they make requests for
different types of applications a ∈ [A] (web/mail, streaming,
download, . . . ). We denote by Kb the set of customers with
the contract b. A given customer k ∈ Kb is characterized by
the following data. We denote by Lkt ∈ [L] the position of
the customer k at each time t ∈ [T ], so that the sequence
(Lk1 , . . . , L

k
T ) represents the trajectory of this customer. We

assume that this trajectory is deterministic, so we consider
customers with a regular daily mobility (for example, the trip
between home and work). We denote by ρak(t) the inclination
of a customer k to make a request for an application of type a
at time t ∈ [T ]. We suppose that customer k wishes to make
a fixed number of requests Rak 6 T using the application a
during the day. We consider a set of time slots Iak ⊂ [T ] in
which the customer k decides not to consume the application
a.

We denote by uak(t) the consumption of the customer k for
the application a at time t, setting uak(t) = 1 if k is active
at time t and makes a request of type a and uak(t) = 0
otherwise. Therefore, the number Na,b(t, l) of active cus-
tomers with contract b for the application a at time t and
location l is given by Na,b(t, l) =

∑
k∈Kb uak(t)1(L

k
t = l),

where 1 denotes the indicator function, and the total number
of active customers N(t, l) at time t and location l is given
by N(t, l) =

∑
a

∑
bN

a,b(t, l).
We consider the following two-stage model of price incen-

tives. The first stage consists for the operator in announcing
a discount ya,b(t, l) at time t and location l for the cus-
tomers of contract b making requests of type a. We consider
only nonnegative discounts, so ya,b(t, l) > 0. The second
stage models the behavior of customers who modify their
consumption by taking the discounts into account. We will
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assume the preference of a customer k for consuming at
time t becomes ρak(t) + αaky

a,b(t, Lkt ), where αak denotes the
sensitivity of customer k to price incentives for the application
a. It corresponds to classical linear utility functions, see e.g.
[13]. We also assume that the customers cannot make more
than one request at each time, that is ∀t ∈ [T ],

∑
a u

a
k(t) 6 1.

Therefore, each customer k determines his consumptions
uak = (uak(t))t∈[T ] ∈ {0, 1}T for the applications, as an
optimal solution of the linear program:

Problem II.1 (Low-level, customers).

max
ua
k∈{0,1}T

∑
a∈[A]

T∑
t=1

[
ρak(t) + αaky

a,b(t, Lkt )
]
uak(t) (1)

s.t. ∀a ∈ [A] ,
T∑
t=1

uak(t) = Rak, ∀t ∈ [T ] ,
∑
a∈[A]

uak(t) 6 1

∀t ∈ Iak ,∀a ∈ [A] , uak(t) = 0

Consequently, each price ya,b = (ya,b(t, l))t∈[T ], l∈[L] deter-
mines the possible individual consumptions uak for the users
with contract b, and so the possible cumulated traffic vectors
Na,b = (Na,b(t, l))t∈[T ], l∈[L] and N =

∑
a

∑
bN

a,b. The
aim of the operator is, through price incentives, to balance
the load in the network into the different locations and time
slots to improve the quality of service perceived by each
customer. We introduce a coefficient γb relative to the kind
of contracts of the different customers in order to favor some
classes of premium customers. In [16], Lee et al. suppose
that the satisfaction of a customer depends on his perceived
throughput, which can be considered as inversely proportional
to the number of customers in the cell. Here, we assume
that the satisfaction of each customer k in the cell l ∈ [L]
is a decreasing function sa,bl of the total number of active
customers in the cell N(t, l), depending on the characteristics
of the cell, of the type of application the user wants to do
(some applications like streaming need a higher rate than
other) and on the type of contract. We also assume the
satisfaction of all the customers with contract b using a given
application a in a given cell is maximal until the number
of active customers reaches a certain threshold Na,b

l , then
sa,bl (N(t, l)) = 1 for N(t, l) 6 Na,b

l . After this threshold,
the satisfaction decreases until a critical value NC

l . We add
the constraint ∀t ∈ [T ] , ∀l ∈ [L] , N(t, l) 6 NC

l to prevent
the congestion. For non-real time services like web, mail,
download, the satisfaction function can be viewed as a concave
function of the throughput, like 1 − e−δ/δc where δ denotes
the throughput, see Moety et al. [17]. Hence, we will consider
that for contents like web, mail and download, Na,b

l = N1
l ,

sa,bl (n) = 1 for n 6 N1
l and sa,bl (n) = 1− λb exp

(
− 2NC

l

n−N1
l

)
for N1

l 6 n 6 N
C
l where λb is a positive parameter depending

on the kind of contract of the customer. The more expensive
the contract of the customer is, the larger is λb. We can
prove that this function is concave for 0 6 n 6 NC

l . For
real time services like video streaming, the customers need

a more important throughput to ensure a good QoS [16]. We
will here consider the same type of functions sa,bl but with N1

l

replaced by Na,b
l = 0, that is sa,bl (n) = 1− λb exp

(
− 2NC

l

n

)
for 0 < n 6 NC

l .

N(t, l)

sa,bl

1

0
N1
l NC

l

Fig. 1. Different kind of satisfaction functions of the number of active
customers in a cell. The blue ones are those for streaming contents whereas
the red ones are those for web, mail and download contents. The dashed ones
corresponds to the satisfaction of standard customers, the continuous ones to
the satisfaction of premium customers.

So, the first stage consists in maximizing the global satis-
faction function s which depends on the vectors Na,b ∈ NT×L
and is defined by:

s(Na,b) =

T∑
t=1

∑
a∈[A]

∑
b∈[B]

∑
k∈Kb

γbs
a,b

Lk
t
(N(t, Lkt ))u

a
k(t)

=

T∑
t=1

∑
a∈[A]

∑
b∈[B]

∑
k∈Kb

L∑
l=1

γbs
a,b
l (N(t, l))1(Lkt = l)uak(t)

=

T∑
t=1

L∑
l=1

∑
a∈[A]

∑
b∈[B]

γbN
a,b(t, l)sa,bl (N(t, l))

with ∀b ∈ [B] , γb > 0. Our final model consists in solving
the following bilevel program:

Problem II.2 (High-level, provider).

max
ya,b∈RT×L

+

T∑
t=1

L∑
l=1

∑
a∈[A]

∑
b∈[B]

γbN
a,b(t, l)sa,bl (N(t, l)) (2)

where ∀t ∈ [T ] , l ∈ [L] , N(t, l) =
∑A
a=1

∑B
b=1N

a,b(t, l),
and N(t, l) 6 NC

l , ∀t ∈ [T ] , l ∈ [L] , a ∈ [A] , b ∈
[B] , Na,b(t, l) =

∑
k∈Kb uak(t)1(L

k
t = l), and ∀k [K], the

vectors uak are solutions of the problem II.1.

III. A TROPICAL APPROACH FOR THE BILEVEL PROBLEM

We will present a decomposition method for solving the
previous bilevel problem. In this section, and in the two next
ones, we suppose that there is only one kind of application
and one kind of contract. This special case is already relevant
in applications: it covers the case when, for instance, only the
download requests are influenced by price incentives, whereas
other requests like streaming or web are fixed. Whereas the an-
alytical results of the present section carry over to the general
model, the results of the next two sections (polynomial time
solvability) are only valid under these restrictive assumptions.
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We shall return to the general case in Section VI, developing
a fast approximate algorithm for the general model based on
the present principles.

In this special case, the bilevel model can be rewritten:

max
y∈RT×L

+

T∑
t=1

L∑
l=1

N(t, l)sl(N(t, l))

where ∀t, l N(t, l) =
∑
k∈[K] uk(t)1(L

k
t = l), and ∀k, the

vectors uk are solutions of the problem:

max
uk∈{0,1}T

T∑
t=1

[
ρk(t) + αky(t, L

k
t )
]
uk(t)

s.t.
T∑
t=1

uk(t) = Rk, ∀t ∈ Ik, uk(t) = 0,

In order to deal more abstractly with the bilevel model,
we introduce the notation uk(t, l) = uk(t)1(L

k
t = l). Hence,

we have uk(t, l) = 0 if Lkt 6= l. By defining the set Jk =
{(t, l) | t ∈ Ik or Lkt 6= l} and ρk(t, l) = ρk(t)1(L

k
t = l)/αk,

we can rewrite each low-level problem:

Problem III.1 (Abstract low-level problem).

max
uk∈Fk

∑
t,l

[ρk(t, l) + y(t, l)]uk(t, l) (3)

where Fk = {x ∈ {0, 1}T×L|
∑
t,l x(t, l) = Rk and ∀(t, l) ∈

Jk, x(t, l) = 0}.

Because the functions sl are concave and decreasing, we can
prove that the functions fl : x 7→ xsl(x) defined for x > 0
are also concave. The global bilevel problem is:

Problem III.2 (Bilevel problem).

max
y∈RT×L

+

∑
t,l

fl(N(t, l)) s.t. ∀(t, l), N(t, l) =
K∑
k=1

uk(t, l)

(4)
with uk solutions of the problem III.1.

The lower-level component of our bilevel problem can be
studied thanks to tropical techniques. Tropical mathematics
refers to the study of the max-plus semifield Rmax, that is the
set R ∪ {−∞} endowed with two laws ⊕ and � defined by
a ⊕ b = max(a, b) and a � b = a + b, see [18], [19], [20],
[21] for background. We first consider the relaxation in which
the price vector y can take any real value, i.e. y ∈ RT×L.
Each customer k defines his consumption uk by solving the
problem:

max
uk∈Fk

∑
t,l

[ρk(t, l) + y(t, l)]uk(t, l) = max
uk∈Fk

〈ρk + y, uk〉 ,

(5)
The map Pk : y 7→ max〈ρk + y, uk〉 is convex, piecewise
affine, and the gradients of its linear parts are integer valued.

It can be thought of as a tropical polynomial function in the
variable y. Indeed, with the tropical notation, we have

Pk(y) =
⊕
uk∈Fk

(ρk(1, 1)� y(1, 1))�uk(1,1)�

· · · � (ρk(T, L)� y(T, L))�uk(T,L) ,

where z�p := z�· · ·�z = p×z denotes the pth tropical power.
In this way, we see that all the monomials of Pk have degree∑
t,l uk(t, l) = Rk, so that Pk is homogeneous of degree Rk,

in the tropical sense. If we denote by e = (1 . . . 1) ∈ RT×L,
it means that ∀y ∈ RT×L,∀β ∈ R, Pk(y + βe) = Pk(y). An
important corollary is:

Lemma III.3. The value of the bilevel problem coincides with
the value of the relaxed problem with y ∈ RT×L.

By definition, the tropical hypersurface associated to a
tropical polynomial function is the nondifferentiability locus
of this function. Since the monomial Pk is homogeneous, its
associated tropical hypersurface is invariant by the translation
by a constant vector. Therefore, it can be represented as a
subset of the tropical projective space TPT×L−1. The latter is
defined as the quotient of RT×L by the equivalence relation
which identifies two vectors which differ by a constant vector,
and it can be identified to RT×L−1 by the map TPT×L−1 →
RT×L−1, y 7→ (y(t, l)− y(T, L))(t,l)∈[T ]×[L]\{(T,L)}.

Example III.4. Consider a simple example with T = 3 time
steps (for instance morning, afternoon and evening), L = 1,
K = 5 and Jk = ∅ for each k. For brevity, we will write yt
instead of y(t, l). The parameters of the customers are

ρ1 = [0, 0, 0] , R1 = 1, ρ2 = [0,−1, 0] , R2 = 2 ,

ρ3 = [−1, 1, 0] , R3 = 1 ρ4 = [1/2, 1/2, 0] , R4 = 2,

ρ5 = [1/2, 2, 0] , R5 = 1 .

The tropical polynomial of the first customer is P1(y) =
max (y1, y2, y3), meaning that this customer has no preference
and consumes when the incentive is the best. Its associated
tropical hypersurface is a tropical line (since P1 has degree 1),
so it splits TP2 in three different regions corresponding to a
choice of the vector u1 among (1, 0, 0), (0, 1, 0) and (0, 0, 1),
see Figure 2. E.g., the cell labeled by (1, 0, 0) represents a
consumption concentrated the morning, induced by a price
y1 > y2 and y1 > y3.

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

y1 − y3

y2 − y3

Fig. 2. A customer response: a tropical line splits the projective space into
three cells. Each cell corresponds to a possible customer response
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To study jointly the responses of the five customers, we rep-
resent the arrangement of the tropical hypersurfaces associated
to the Pk, k ∈ [5], with

P2(y) = max (y1 + y2 − 1, y1 + y3, y2 + y3 − 1) ,

P3(y) = max (y1 − 1, y2 + 1, y3) ,

P4(y) = max (y1 + y2 + 1, y1 + y3 + 1/2, y2 + y3 + 1/2) ,

P5(y) = max (y1 + 1/2, y2 + 2, y3) .

(a)

y1 − y3

y2 − y3

Fig. 3. Arrangement of tropical hypersurfaces: each tropical hypersurface
corresponds to a customer response. For example, the cell (a) corresponds
to discounts y with responses (1,0,0) for customer 1, (1,0,1) for customer 2,
(0,1,0) for customer 3, (1,1,0) for customer 4 and (0,1,0) for customer 5 .
Hence, the total number of customers in the network with these discounts is
(3,3,1).

Lemma III.5 (Corollary of [14, §4, Lemma 3]). Each cell
of the arrangement of tropical hypersurfaces corresponds to
a collection of customers responses (u1, ..., uK) and to an
unique traffic vector N , defined by N =

∑
k uk.

IV. DECOMPOSITION THEOREM

We next show that the present bilevel problem can be
solved by decomposition. We note that the function to optimize
for the higher level problem, i.e. the optimization problem
of the provider, depends only on N . The variables y(t, l)
allow one to generate the different possible vectors N . So we
will characterize the feasible vectors N in order to optimize
directly the satisfaction function on the set of feasible N . This
idea is motivated by the tropical approach thanks to Lemma
III.5.

Most of the following results are applications of classical
notions of convex analysis which can be found in [22]. It is
convenient to define for every k the polytope ∆k as the convex
hull of Fk, together with the convex function ϕk defined by
ϕk(u) = −〈ρk, u〉 if u ∈ ∆k, and ϕk(u) = +∞ otherwise.
The value of each low level problem (5) can therefore be
viewed as the value of the Legendre-Fenchel transform of ϕk
at point y, i.e., ϕ∗k(y) = sup

uk∈∆k

[〈y, uk〉 − ϕk(uk)].

Lemma IV.1. ∆k = {x ∈ [0, 1]
T×L |

∑
t,l x(t, l) = Rk and

∀(t, l) ∈ Jk, x(t, l) = 0}.

So, a vector uk ∈ ∆k is a solution of the low-level problem
iff uk ∈ ∂ϕ∗k(y) where ∂ϕ∗k denotes the subdifferential of the

convex function ϕ∗k. A feasible N is a sum of such vectors uk.
We have, by [22, Th. 23.8], that N is feasible iff ∃y ∈ RT×L,
N ∈

∑
k ∂ϕ

∗
k(y) = ∂ (

∑
k ϕ
∗
k) (y), i.e., ∃y,N ∈ ∂ψ∗(y),

or equivalently ∃y, y ∈ ∂ψ(N), where ψ = �
k
ϕk is the inf-

convolution of the functions ϕk. The function ψ is polyhedral
(as the inf-convolution of polyhedral convex functions) and it
is finite at every point N ∈

∑
k∆k. So, ∀N ∈

∑
k∆k, ∂ψ(N)

is a non-empty polyhedral convex set [22, Th. 23.10] and N
is feasible. Moreover, we have the following lemma:

Lemma IV.2. Let N =
∑
k uk with uk ∈ ∆k ∀k. The

following assertions are equivalent:
1) There exists y ∈ RT×L+ such that each uk is a solution of

the low-level problem of customer k with discount vector
y;

2) The vectors u1, . . . , uK realize the minimum in the inf-
convolution ψ, i.e. ψ(N) = −

∑
k 〈ρk, uk〉.

In our problem, we are not interested in the vectors N
which are sums of optimal solutions of each low level problem,
but in the ones which are sums of integer optimal solutions
of each low level problem. These vectors belong to

∑
k Fk.

Let N ∈
∑
k Fk. We have N ∈

∑
k∆k, so it can be

written as the sum of optimal solutions uk ∈ ∆k of each
low level problem. According to the previous lemma, we have
(u1, . . . , uK) optimal solution of:

max
∑
k

〈ρk, vk〉

s.t.


∀k, t, l, 0 6 vk(t, l) 6 1 ,
∀k,

∑
t,l vk(t, l) = Rk ,

∀k, ∀(t, l) ∈ Jk, vk(t, l) = 0 ,
∀t, l,

∑
k vk(t, l) = N(t, l) .

The polytope defined by the constraint can be written Av 6 b
where A is a totally unimodular matrix and b is an integer
vector. So, the optimal solutions of this problem are integer
vectors and each vector uk belongs to Fk. Hence, the feasible
set of the high-level problem is exactly

∑
k Fk.

We arrive at the following method.

Theorem IV.3. (Decomposition) The bilevel program can be
solved as follows:

1) Find an optimal solution N∗ to the high level problem
with unknown N :

max
N∈

∑
k Fk

∑
t,l

fl(N(t, l)) s.t. N(t, l) 6 NC
l ∀t, l . (6)

2) Find optimal requests vectors u∗k by solving the inf-
convolution problem:

max
u1∈F1,...,uK∈FK∑

k uk=N
∗

∑
k

〈ρk, uk〉 .

3) Find a vector y∗ such that ∀k, u∗k is a solution of the low
level problem.

The second step of this theorem consists in solving a linear
program. We next show that the third step reduces to a linear
feasibility problem.
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Lemma IV.4. u∗k is an optimal solution of the low level
problem iff the set of indices (t, l) such that u∗k(t, l) = 1
coincides with the set of indices of the Rk highest coordinates
not included in Jk of the vector ρk+y, i.e. ∀(t, l), (t′, l′) /∈ Jk
such that u∗k(t, l) = 1, u∗k(t

′, l′) = 0, we have ρk(t, l) +
y(t, l) > ρk(t′, l′) + y(t′, l′).

For every k, the latter inequalities define a polytope, and
we have to find y∗ in the intersection of all these polytopes.

V. ALGORITHM FOR SOLVING THE BILEVEL PROBLEM

A. Solving the high-level problem

We next explain how to solve Problem (III.2). We will use
some elements of discrete convexity developed by Murota
[15]. An integer set B ⊂ Zn is M -convex [15, Ch. 4, p.101]
if ∀x, y ∈ B, ∀i ∈ [n] such that xi > yi,∃j ∈ [n] such that
xj < yj , x − ei + ej ∈ B and y + ei − ej ∈ B, where ei is
the i-th vector of the canonical basis in Rn.

Lemma V.1. The feasible domain of the high-level program
B = {N ∈

∑
k Fk|∀t, l N(t, l) 6 NC

l } is a M -convex set of
ZT×L.

We have to maximize a separable concave function on a M -
convex set. This is easy, because local optimality is equivalent
to global optimality, as shown by the following result:

Theorem V.2 ([15, Th. 6.26, p.148]). Let f be a separable
concave function on Zn, B a M -convex set, and N∗ ∈ B.
Then, N∗ is a maximum point of f over B iff ∀i, j ∈ [n] such
that N∗ − ei + ej ∈ B, f(N∗ − ei + ej) 6 f(N∗).

Moreover, Murota ([15], ch.10, p.281) gives an algorithm
which runs in pseudo-polynomial time to maximize separable
concave functions on M -convex sets.

Algorithm 1 Murota’s algorithm to minimize a M -convex
function f on a M -convex set B.

1) Find N ∈ B;
2) Find i, j ∈ argmax

k,l∈[n] s.t. N−ek+el∈B
f(N − ek + el);

3) If f(N − ei + ej) 6 f(N) then N∗ = N is a global
minimizer of f over B;

4) Else N := N − ei + ej and go back to Step 2;

B. A polynomial time algorithm for the bilevel problem

Algorithm V-A can be applied to the high-level problem (6)
of Theorem IV.3, with f(N) =

∑
t,l fl(N(t, l)) and B =∑

k Fk. The most critical part of this algorithm is to check for
a given N ∈

∑
k Fk whether N − ei + ej for i, j ∈ [T ]× [L]

belongs to
∑
k Fk. However, it can be easily done.

Lemma V.3. Let uk ∈ Fk for each k ∈ [K] such that ψ(N) =
−
∑
k 〈ρk, uk〉. Consider the quantity wkαβ for k ∈ [K] and

α, β ∈ [T ]× [L] defined by wkαβ = ρk(α)− ρk(β) if uk(α) =
1 and uk(β) = 0 and wkαβ = +∞ otherwise. The optimal
vk ∈ Fk such that ψ(N − ei + ej) = −

∑
k 〈ρk, vk〉 can

be obtained by solving the shortest path problem between i

and j in a graph of T × L nodes with edges weighted by
wαβ = mink w

k
αβ .

This leads to the following algorithm. Note that the pseudo-

Algorithm 2 Solving the bi-level problem, for one application
and one type of contract

1) Find N ∈
∑
k Fk with this optimal decomposition N =∑

k u
∗
k;

2) For each i, j ∈ [T ] × [L], calculate the shortest path
between i and j in the graph of weights wαβ defined
in the former lemma and deduce if N −ei+ej ∈

∑
k Fk

and the optimal decomposition N − ei + ej =
∑
k v
∗
k;

3) Find i, j ∈ argmax
(k,l) s.t. N−ek+el∈

∑
k Fk

f(N − ek + el);

4) If f(N − ei + ej) 6 f(N) then N∗ = N and go to Step
6;

5) Else N := N − ei + ej and go back to Step 2;
6) Find y∗ ∈ RT×L verifying the property of Lemma IV.4

and return y∗.

polynomial time bound for Murota algorithm leads in this
special case to a polynomial time bound.

Theorem V.4. Algorithm 2 returns a global optimizer in
polynomial time.

Example V.5. Consider again Example III.4 together with the
concave function f : N 7→ −

∑
t,lN(t, l)2. We suppose

that ∀k,Jk = ∅. Hence, we can prove that
∑
k Fk =

{N ∈ N3|
∑3
i=1Ni = 7 and max(Ni) 6 5}. First, we

want to solve maxN∈
∑

k Fk
−(N2

1 +N2
2 +N2

3 ). We start from
N (0) = (5, 2, 0), a feasible point. Following Algorithm V-A,
we compute N (1) = (4, 2, 1) and N (2) = (3, 2, 2) which
is a minimizer. We take N∗ = (3, 2, 2). Now, we solve
maxu1∈F1,...,u5∈F5,

∑5
k=1 uk=N

∗
∑
k 〈ρk, uk〉. We obtain u∗1 =

[1, 0, 0], u∗2 = [1, 0, 1], u∗3 = [0, 1, 0], u∗4 = [1, 0, 1], u∗5 =
[0, 1, 0]. Applying Lemma IV.4, we obtain the linear inequal-
ities y∗1 − y∗2 6 3/2, 0 6 y∗1 − y∗3 and −1 6 y∗2 − y∗3 6 −1/2.
In particular, y∗ = (3/4, 0, 3/4) is an optimal solution.

VI. THE GENERAL ALGORITHM

In this section, we come back to the general bilevel problem
II.2 proposed in Section II, and extend the Algorithm of
Section V to it. In the low level problem of each customer,
the consumptions for different contents verify the constraints
∀a ∈ [A] ,

∑T
t=1 u

a
k(t) = Rak, ∀t ∈ Iak , a ∈ [A] , uak(t) = 0 and

∀t ∈ [T ] ,
∑
a∈[A] u

a
k(t) 6 1. We make the assumption that

for each customer k, the sets of possible instants at which
this customer makes a request for the different applications
are disjoint, meaning that for any two applications a 6= a′,
the complements of Iak and Ia′k in [T ] have an empty in-
tersection. Then the constraint ∀t ∈ [T ] ,

∑
a∈[A] u

a
k(t) 6 1

is automatically verified and the low-level problem of each
customer can be separated into different optimization problems
corresponding to the consumption vector uak of each customer
k for each application a. Each of these problems takes the
following form:
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Problem VI.1.

max
ua
k∈{0,1}T

T∑
t=1

[
ρak(t) + αaky

a,b(t, Lkt )
]
uak(t) (7)

s.t.
T∑
t=1

uak(t) = Rak, ∀t ∈ Iak , a ∈ [A] , uak(t) = 0 .

We denote by F ak the feasible set of this problem. The
above assumption (that the complements of Iak and Ia′k have an
empty intersection) is relevant in particular if only one kind
of application is sensitive to price incentives. For instance,
requests for downloading data can be anticipated (see [8]) and
it makes sense to assume that customers are only sensitive to
incentives for this kind of contents. In this case, the assumption
means that customers wanting to download data can shift their
consumption only at instants when they do not request another
kind of content. Under this assumption, the decomposition
theorem is still valid.

The high-level problem consists in maximizing the separa-
ble function

∑
t,l

(∑
a∈[A]

∑
b∈[B] γbN

a,b(t, l)sa,bl (N(t, l))
)

where each vector Na,b belongs to a M -convex set
∑
k∈Kb F ak

according to Theorem IV.3 and Lemma V.1. Because each
function sa,bl is concave decreasing and each Na,b(t, l) is
positive, we notice that ∀a′ ∈ [A] , b′ ∈ [B], the function wich
sends Na′,b′(t, l) to

∑
a∈[A]

∑
b∈[B] γbN

a,b(t, l)sa,bl (N(t, l))
is still concave. Consequently, the function to optimize in
the high level problem is M -concave in each vector Na,b ∈
ZT×L considered separately. This leads to a block descent
method (Algorithm 3), in which we maximize the objective
function, successively, over every vector Na,b. We denote
by f(N1,1, . . . , NA,B) the objective function of the high-
level problem. Step 2 of this algorithm can be implemented

Algorithm 3 Solving the bilevel problem for an arbitrary
number of types of contracts.

1) Find ∀a, b,Na,b ∈
∑
k∈Kb F ak

2) Find, for each a ∈ [A], b ∈ [B], (ia,b, ja,b) belonging to

argmax
(k,l) s.t. Na,b−ek+el∈

∑
k∈Kb Fa

k

f(N1,1 − ei1,1 + ej1,1 , . . . ,

Na,b − ek + el, . . . , N
A,B);

3) If f(N1,1 − ei1,1 + ej1,1 , . . . , N
A,B − eiA,B + ejA,B ) 6

f(N1,1, . . . , NA,B) then ∀a, b, return the optimal solu-
tion N∗,a,b = Na,b.

4) Else for each a, b, Na,b := Na,b − eia,b + eja,b and go
back to Step 2;

by solving the shortest path problem of certain graphs as
in Lemma V.3. Unlike Algorithm 2, Algorithm 3 is not
guaranteed to give a globally optimal solution.

VII. EXPERIMENTAL RESULTS

We consider an application based on real data provided
by Orange. It involves the data consumptions in an area of
L = 43 cells, during one day divided in time slots of one hour,

that is T = 24 time slots. We will focus here our study on
price incentives only for download contents. During this day, a
number K of more than 2500 customers make some requests
for downloading data in this area and we are interested in
balancing the number of active customers in the network. Even
though they are insensitive to price incentives, other kind of
requests (web, mail, etc.) have to be satisfied and they are
taken into account in the high level optimization problem.
We consider two classes of users: standard and premium cus-
tomers. The premium ones demand a better quality of service.
Hence, they are less satisfied than the standard customers if
they share their cell with a given number of active customers.
We therefore define the satisfaction function as in Section II.
The provider wants to favor the premium customers. Hence,
we take γb = 2 for the latter ones and γb = 1 for the
standard customers, in the high-level optimization problem.
We also assume that the premium customers are less sensitive
to the incentives, and thus take αak = 1/2 for all standard
customers and αak = 1 for all premium customers in the low-
level problem II.1. We estimate very simply the parameters ρk.
We take ρk(t) = 1 when the customer k consumes download
at time t without incentives, ρk(t) = 0 when he does not
make any request without incentives but makes a request for
download at times t − 1 or t + 1 (we assume he could shift
his consumption of one hour) and ρk(t) = −∞ otherwise.

Fig. 4. Satisfaction of premium customers for streaming without (left)
and with (right) incentives. The grey level indicates the satisfaction: critical
unsatisfaction, s < 0.3 (black), 0.3 < s < 0.7 (dark grey), 0.7 < s < 0.9
(grey), 0.9 < s < 0.99 (light grey) and complete satisfaction 0.99 < s
(white).

We solve the bilevel problem using Algorithm 3, imple-
mented in Scilab. The computation took 9526 seconds on
a single core of an Intel i5-4690 processor @ 3.5 GHz.

On Figures 4– 7, we show the evolution of the satisfaction
of different kind of customers for different kind of contents
without and with incentives. These results show that price
incentives have an effective influence on the load, especially
in the most loaded cells (the number of black regions in the
space-time coordinates, in which the unsatisfaction of the users
is critical, is considerably reduced). Moreover, Figure 8 reveals
that the consumption of users is not only moved in time, but
also in space: not only some consumption is moved from the
peak hour to the night (off peak), but the surface of the dark
grey region, representing the total download consumption in
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Fig. 5. Satisfaction of standard customers for streaming without (left) and
with (right) incentives

Fig. 6. Satisfaction of premium customers for web, mail or download without
(left) and with (right) incentives

the cell over the whole day, is decreased, indicating that some
part of the consumption has been shifted to other cells.

VIII. CONCLUSION

We presented here a bilevel model for price incentives
in data mobile networks. We solved this problem by a de-
composition method based on discrete convexity and tropical
geometry. We finally applied our results to real data. In
further work, we shall consider more general models: unfixed
number of requests, nonlinear preferences of the customers,
satisfaction functions of the provider taking into account the
profit. Stochastic models shall also be considered in particular
to take into account the partial information of the provider
about the customers preferences and trajectories.
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