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Abstract—Wireless channels in millimeter wave based wear-
able networks are particularly susceptible to environmental
blockages and dynamics when there are humans/objects in
motion. Such dynamics imply, not only physical layer overheads
to discover and track viable transmission paths, but also MAC
overheads to keep track of neighboring interferers, perform
clustering and enable proper scheduling of transmissions. We
shall focus on overheads at timescale associated with the latter.
This paper introduces a stochastic geometric model to study
the impact of mobility on overheads in such networks. We
provide a complete characterization of the temporal dynamics of
strong interference channels resulting from blocking in networks
comprising both fixed and mobile nodes. We show the state
of a channel, Line-of-Sight(LOS)/Non-LOS(NLOS), follows an
on/off renewal process and derive the associated distributions.
Our model further enables us to evaluate how the overall rate
of change for the set of strong LOS interferers seen by a fixed
user scales with user density and proportion of mobile users.
The overhead to track the interference environment may in fact
be limited with user density but increases with proportion of
mobile users. In a highly mobile environment, the changes in
channels are frequent and the overheads for coordination become
high, with distant and/or mobile users requiring more overheads.
Based on our results, we suggest fixed users may coordinate with
close by neighbors while mobile users are better off resorting to
simpler ad hoc MACs.

I. INTRODUCTION

Wearable devices are increasingly permeating our everyday

lives [1]. It is expected that, in the near future, display

and sensing devices enabling high quality augmented reality,

tactile Internet, and/or high fidelity audio/video, might become

common place. These applications and services require much

higher bandwidths along with tight Quality of Service (QoS)

guarantees, which are best met by enabling local connectiv-

ity (without clumsy wires) via millimeter wave (mmWave)

based links. Indeed the mmWave band includes unprecedented

swaths of available spectrum along with the opportunity to

integrate arrays of antennas on small form factors which

enable highly directional transmissions.

Directionality physical layer challenges. Acquiring and

maintaining robust communication channels in mmWave

bands is a recognized physical layer challenge. Many ap-

proaches to quickly acquiring and adapting beams are under

study see e.g., [2], [3], [4]. There are also trade-offs between

achieving high beamforming gains with narrow beams which

may be quite sensitive to change/blockage and using more

robust wider beams with lower gains and resulting in more

interference to other devices. Thus although directionality

provides a degree of isolation among neighboring receivers, it

is still expected that MAC-based coordination and scheduling

will be needed to meet the high bandwidth and QoS require-

ments of future applications. This is particularly the case in

“worst case” dense and possibly dynamic indoor environments,

e.g., in a crowded train car or airport, where users will still

expect their devices to operate flawlessly.
MAC coordination and scheduling. In wearable networks,

data transmissions might be for the most part amongst devices

on the same user, thus aside from self-blocking, they are

most impacted by interference from other users. To remedy

this problem body network MACs can track neighbors with

strong Line-of-Sight (LOS) interference channels permitting

scheduling of transmissions. In addition, different users’ body

networks can exchange signaling messages to form clusters

enabling even better coordination and scheduling of transmis-

sions, see [5] and IEEE 802.11ad[6]. Unfortunately, frequent

changes in channel state may degrade the effectiveness of

coordination and increase MAC overheads associated with

channel estimation and coordination.
Role of blocking and network dynamics. Characterizing

the impact of network dynamics on mmWave networks is a

challenging problem. Indeed although there may be a large

numbers of users, and thus possible interferers, there is also

increased blocking by human bodies which helps reduce the

number of strong interferers [7][8]. Thus in this setting the

MAC need only coordinate amongst a few close by interferers

to improve the capacity and QoS [5]. Still, in dynamic settings,

user mobility may result in an excessive rate of change that

would be difficult for MAC schedulers to track. In particular

the signal and interference paths are dominated by LOS

channels, which could change frequently due to blockages in

a dynamic environment. Such variations make it difficult to

establish stable links for data transmission but also to properly

track and schedule around strong neighboring interferers.
Contributions. To better understand and evaluate MAC

designs for dense mmWave wearable networks with mobile

users/blockages, it is important to answer the following two

questions:

1) What is the intensity of variation of channel state in an

environment with mobile users/blockages?

2) How do such variations impact signaling overheads of

typical MAC protocols?

To answer these questions we first propose a first-order model,

based on stochastic geometry, enabling the study of temporal
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channel variations, i.e., changing state between LOS and non-

LOS (NLOS), in a mobile environment. We prove that the

temporal variation follows an on/off renewal process. The

duration of an on (LOS) period, is shown to be exponentially

distributed whose mean is inversely proportional to the mobile

user/blockage density, speed, and link length. We also show

that the duration of off states (NLOS) can be approximated

by an exponential distribution in dense and mobile scenarios.

We then characterize the rate of change in channel states

(LOS/NLOS) as seen by a typical fixed user to evaluate the

cost associated with tracking and coordinating such changes.

If the proportion of mobile users is fixed, the rate of change

first increases with user density then saturates and decreases

due to blockages. If user density is fixed, the rate of change

increases monotonically with the proportion of mobile users.

The channels to mobile users experience more changes than

the channels to fixed users. The results indicate that the

overheads for tracking the interference environment might be

scalable with user density but increase with user mobility. We

further evaluate how such temporal variation influences the

overheads in simple MAC clustering protocols akin to those

in current standards [6]. We show that mobility would increase

the time to form clusters, degrade the quality of signaling

channels and cause more re-clustering. Our analysis results

quantitatively support the conclusion that in a highly dynamic

environment, if a node is to coordinate at all, it should focus

on doing so with fixed users which are close by.

Related work. Channels in the mmWave bands are highly

sensitive to user movements, including small local movements

like the rotation of a torso or swinging and large scale

movements, e.g., people walking around. Existing works on

user mobility [9][10][11] study the influence of human activity

on the radio channel between a fixed transmitter and receiver.

For example, the authors of [9][10] present measurements

of the impact of human mobility on channel variation. The

authors of [10] further evaluate the probability that a channel

is blocked by users and proposes a two-state Markov model for

the state of the channel based on experiments. The authors of

[11] use simulation to study radio propagation characteristics

in the presence of static and moving obstacles and show

that directional LOS mmWave links experience relatively

high outage. These works provide valuable measurements and

insights on the influence of blockages resulting from human

mobility, but do not provide models towards understanding

the impact of user mobility in dense environments, or towards

understanding the impact of density on the conclusions.

The authors of [12] propose and evaluate link scheduling

algorithms for mmWave ad hoc networks but the charac-

teristics of their channel blockage model are arbitrarily set

without accounting for actual blockage mobility models. The

implications of MAC design for dense mmWave wearable

networks are studied in [5] but large scale user mobility is

not considered.

By contrast with previous works, this paper provides a

new set of tools to help understand the impact of mobility

on mmWave based networks, with a goal of understanding

scalability, the associated overheads, and how robust MAC

designs might be across a range of operational scenarios.

Organization. In Section II we present our system model

and background results used to analyze mmWave wearable

networks and user mobility. We study the temporal variation of

the blocking state of a fixed channel in Section III and evaluate

the rate of changes in channels to neighboring interferers in

Section IV. We further explore the impact of mobility on MAC

in Section V. We present the numerical results in Section VI

and conclude the paper with Section VII.

II. BACKGROUND RESULTS AND SYSTEM MODEL

In this section we introduce our system model for a

mmWave network with mobile users along with some fun-

damental background results that are critical to have a clear

understanding of our work.

A. Background Notation and Key Results

We introduce some notations for set operations, see [13].

For x ∈ R
2, A,B ⊂ R

2,

A⊕B = {x+ y : x ∈ A, y ∈ B}, (1)

x+B = {x+ y : y ∈ B}, (2)

B̌ = {x : −x ∈ B}. (3)

Here ⊕ denotes the Minkowski sum of sets.

The following results will be used repeatedly in the sequel

and are fairly well known in the literature:

• Displacement Theorem in R
2 [14]

• Boolean Model in R
2 [15]

• Generalized Steiner Formula in R
2 [15]

The above results provide the following key insights in the

context of modeling mobile blockages. Displacement theorem

indicates that starting with a Homogeneous Poisson Point

Process (HPPP) of blockages locations, randomly displacing

blockages gives another HPPP. If a set of blockages can be

modeled as a Poisson Boolean Process in Boolean model, the

number of such blockages intersecting a set follows a Poisson

distribution. Generalized Steiner formula helps calculate the

expected area of the Minkowski sum of random sets.

B. System Model

In a wearable network, each user is equipped with multiple

wearable devices. The devices on each user are assumed to

form a Personal Basic Service Set (PBSS), coordinated by

the PBSS Control Point (PCP), e.g., the user’s smart phone.

Data transmissions only happen between the PCP and non-

PCP devices of the same PBSS. We shall assume each user is

equipped with a device, e.g., a smart phone, which serves as

coordinator for the user’s wearable devices. The coordinating

device will be assumed to be located in front of the user’s

body. We shall use the channels amongst the centers of users

to approximate the channels amongst devices associated with

different users.

We shall consider networks composed of two types of users,

fixed and mobile users. Due to the low transmit power and high
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attenuation in the mmWave band, the maximum range of a

potential interferer is limited in wearable networks, e.g., 10m.

Consider a channel within this limited range, the movements

of users/blockages can be approximated as constant velocity

movements, i.e., the velocity and the direction of the blockages

at that scale may be assumed to be fixed. We refer to this

mobility model as the Constant Velocity Model (CVM)1.

Channel model. We shall focus on LOS channels in this

work. We also consider human bodies as the main source

of blockages. Human body introduces more than 20dB path

loss [16] thus we assume an LOS channel is unavailable if a

human is in the way. In fact the blockage model in our analysis

may also represent blockages other than human bodies. In the

mmWave band, the path loss of NLOS channels are typically

dominated by a few major reflected paths. The blockage of

reflected channels over the floor and ceiling are typically also

coupled with the blockage state of the LOS channel. For other

reflected paths, e.g., reflection over the wall, we may assume

they are independent of the LOS channel and can approximate

their temporal variation using the model for LOS channels.

However such NLOS channels are much weaker than the LOS

channel due to longer path and reflection loss and are more

likely to be blocked. In this initial work, we do not consider

the diffraction of signals and NLOS channels. Self blockage is

independent of other blockages thus in the sequel, we focus on

the channels that are not self blocked by default. The impact

of channel variation caused by self blockage and users’ small

local movements is studied in [5].

Location and shape of user cross section. We suppose the

blockages are cylindrical and focus on the blockage on LOS

channels. For simplicity we consider 2D model in our analysis.

Suppose users are randomly located on R
2 where the centers

of fixed users are Φf = {Xf
i } ∼ HPPP (λf ) and centers of

mobile users at time 0 are Φm = {Xm
i } ∼ HPPP (λm). We

further assume Φm is independent of Φf and mobile users’

movements are independent, e.g., users can overlap with each

other.

Denote by Af
i (Am

i ) a random closed convex set modeling

the shape of fixed (mobile) user i’s cross section. Af
i (A

m
i ) is

centered at 0 and we denote by Θf
i (Θm

i ) the random direction

user i is facing. Af
i , A

m
i are independent and identically

distributed (IID) as are Θf
i ,Θ

m
i , which are assumed to be

uniformly distributed in [0, 2π].
Mobility model. We let the random variable Sm

i model

the speed of mobile user i, be IID, and such that Sm
i ∈

[smin, smax] where 0 < smin ≤ smax < ∞. Mobile user i
is assumed to move in its facing direction Θm

i . Denote by

Wm
i ∈ R the width of mobile user i as viewed from the

facing direction Θm
i , and V m

i ∈ R
2 its velocity vector, i.e.,

V m
i =

(
Sm
i cosΘm

i , Sm
i sinΘm

i

)
. (4)

See Fig. 1a for an illustration of user body model. We shall

further let Xm
i (t) denote the location of the center of mobile

user i at time t, t ≥ 0, thus

1Our analysis and results hold if the direction of movement is fixed while
the speed changes.

Xm
i (t) = Xm

i + t · V m
i . (5)

The mobility model here corresponds to scenarios where

users’ movements are independent and random, e.g., crowded

airport/shopping mall. Our model and analysis can also be

extended to other mobility models, e.g., blockages move in

the same direction.

The locations, cross sections, facing directions and veloci-

ties, of fixed and mobile users at time 0 can be represented

by two independent Independently Marked Poisson Point

Processes (IMPPP) [15], Φ̃f and Φ̃m, given by

Φ̃f = {(Xf
i , A

f
i ,Θ

f
i )},

Φ̃m = {(Xm
i , Am

i ,Θm
i , Sm

i )}.
Denote by Φm(t) the point process representing the locations

of mobile users at time t, Φ̃m(t) the marked point process for

mobile users at t. It follows immediately from the Displace-

ment theorem [14] that Φm(t) is also an HPPP with intensity

λm and we have the following proposition.

Proposition 1. If users make constant velocity movements, Φ̃m

is an IMPPP with intensity λm and Θm
i and Sm

i are IID, then
at any time t Φ̃m(t) is an IMPPP with the same distribution.

(a) User body. (b) User trace.

Fig. 1. (a) Model for mobile user i. Am
i is centered at 0 and the actual cross

section of mobile user i is Xm
i + Am

i . V m
i = (Sm

i cosΘm
i , Sm

i sinΘm
i ).

(b) Trace of mobile user i in [t, τ ], Bm
i [t, τ ].

Blockage model. We shall for simplicity assume a channel

is blocked if a blockage intersects the LOS channel between

two devices. Let x ∈ R
2 and l0,x ⊂ R

2 be the line segment

between 0 and x, representing the LOS channel between the

two points. We shall let Bf
i and Bm

i denote the region that

fixed/mobile user i occupies at time 0, i.e.,

Bf
i = Xf

i +Af
i and Bm

i = Xm
i +Am

i . (6)

We further let Bm
i (t) denote the region mobile user i occupies

at time t, where

Bm
i (t) = Bm

i + t · V m
i = Xm

i (t) +Am
i . (7)

We say the channel between 0 and x is blocked at time t
by mobile user i if Bm

i (t) ∩ l0,x 
= ∅ and for fixed user i if

Bf
i ∩ l0,x 
= ∅.

Blockage traces. An important metric to capture interference

temporal variation is the rate at which new blockages are seen

by a channel. To compute these rates we shall determine if a

mobile blockage i has blocked the channel in a given interval

[t, τ ], t ≤ τ , by defining the blockage trace in that time

interval, denoted by Bm
i [t, τ ] given by

Bm
i [t, τ ] = ∪

t≤z≤τ
Bm

i (z) = ∪
t≤z≤τ

(
Am

i +Xm
i (z)

)
=Am

i ⊕ lXm
i (t),Xm

i (τ) = Xm
i (t) +

(
Am

i ⊕ l0,(τ−t)V m
i

)
,

(8)
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Fig. 2. Illustration of fixed blockages Bf , mobile blockages at time t, Bm(t),
and traces of mobile blockages in [t, τ ], Bm[t, τ ]. Bf , Bm(t) and Bm[t, τ ]
are Poisson Boolean Processes.

see Fig. 1b. Clearly mobile user i has blocked channel l0,x in

[t, τ ] if Bm
i [t, τ ] ∩ l0,x 
= ∅.

To estimate the number of blockages in [t, τ ] using the

generalized Steiner formula, we need the area and perimeter of

Bm
i [t, τ ]. Am

i (t) is convex and lXm
i (t),Xm

i (τ) is a line segment,

thus ν2(B
m
i [t, τ ]) and ν1(B

m
i [t, τ ]) are as follows,

ν2(B
m
i [t, τ ]) = ν2(A

m
i ) + (τ − t)Sm

i Wm
i , (9)

ν1(∂B
m
i [t, τ ]) = ν1(∂A

m
i ) + 2(τ − t)Sm

i . (10)

Bm
i [t, τ ] can be viewed as stretching Bm

i (t) by (τ−t)V m
i , the

increase in area is (τ−t)Sm
i Wm

i and the increase in perimeter

is 2(τ − t)Sm
i .

Boolean model. Denote by Bf the region covered by all

fixed users, Bm(t) the region covered by mobile users at time

t, Bm[t, τ ] the cumulative region covered by mobile users in

the time interval [t, τ ], i.e.,

Bf =
∞∪
i=1

Bf
i =

∞∪
i=1

(
Xf

i +Af
i

)
, (11)

Bm(t) =
∞∪
i=1

Bm
i (t) =

∞∪
i=1

(
Xm

i (t) +Am
i

)
, (12)

Bm[t, τ ] =
∞∪
i=1

Bm
i [t, τ ] =

∞∪
i=1

(
Xm

i (t) + (Am
i ⊕ l0,(τ−t)·V m

i
)
)
.

(13)

Φf ,Φm(t) are HPPPs, Af
i , A

m
i , Am

i ⊕ l0,(τ−t)·V m
i

are IID

random sets, thus Bf , Bm(t) and Bm[t, τ ] correspond to

Poisson Boolean Process model [15], see Fig. 2.

Number of blockages. For a closed convex set K ⊂ R
2, we

denote by Nf
K the number of fixed users whose cross-sections

intersect K, Nm
K (t) the number of mobile users intersecting

K at time t, Nm
K [t, τ ] the cumulative number of mobile users

that have intersected K in [t, τ ], i.e.,

Nf
K =

∞∑
i=1

(Bf
i ∩K 
= ∅), (14)

Nm
K (t) =

∞∑
i=1

(Bm
i (t) ∩K 
= ∅), (15)

Nm
K [t, τ ] =

∞∑
i=1

(Bm
i [t, τ ] ∩K 
= ∅) (16)

Since Bf , Bm(t) and Bm[t, τ ] correspond to Poisson Boolean

Processes, it follows by the Boolean model that Nf
K , Nm

K (t)
and Nm

K [t, τ ] have Poisson distributions. Denote by A, Θ, S
and W , random variables having the same distributions as Af

i

(Am
i ), Θf

i (Θm
i ), Sm

i and Wm
i respectively. Θ is uniform in

[0, 2π] thus A is isotropic and E[ν2(K⊕ Ǎ)] can be computed

using the generalized Steiner formula. The expected number

of blockages are given as follows,

E[Nf
K ] = λf

(
ν2(K) + E

[
ν2(A)

]
+

E
[
ν1(∂A)

] · ν1(∂K)

2π

)
,

(17)

E[Nm
K (t)] = λm

(
ν2(K)+E

[
ν2(A)

]
+
E
[
ν1(∂A)

] · ν1(∂K)

2π

)
,

(18)

E
[
Nm

K [t, τ ]
]
= λm

(
ν2(K) + E

[
ν2(A)

]
+ (τ − t) E[S] E[W ]

+

(
E[ν1(∂A)] + 2(τ − t) E[S]

) · ν1(∂K)

2π

)
,

(19)

where we use the fact that for a convex set A, ν2(Ǎ) = ν2(A),
ν1(∂(Ǎ)) = ν1(∂A).

Strong interfering neighbor. User located at x is a strong

channel to user at 0 if l0,x is unobstructed, i.e., an LOS

channel, and |x| ≤ rmax, where rmax is the maximum length

of a strong channel. If |x| > rmax, we assume the channel is

weak and user at 0 can ignore such a neighbor.

III. TIME-VARYING BLOCKING FOR A FIXED CHANNEL

Let us now consider the blocking state of fixed channels.

Without loss of generality we consider the LOS channel

between 0 and x, l0,x, and denote by |x| the length of l0,x.

The channel can be blocked by fixed and mobile blockages.

We study the probability that the channel is blocked, then

characterize the temporal variation in the blocking.

A. Probability of Having LOS Link

Denote by PLOS,f
l0,x

the probability l0,x is not blocked by

fixed blockages, PLOS,m
l0,x

(t) the probability l0,x is not blocked

by mobile blockages at t, PLOS
l0,x

(t) the probability l0,x is LOS

at time t. For line segment l0,x, ν2(l0,x) = 0, ν1(l0,x) = 2|x|,
and the expected numbers of blockages for l0,x are given by,

E[Nf
l0,x

] = λf

(
E[ν2(A)] +

E[ν1(∂A)] · |x|
π

)
, (20)

E[Nm
l0,x(t)] = λm

(
E[ν2(A)] +

E[ν1(∂A)] · |x|
π

)
. (21)

The probability of having LOS link is then given as follows,

PLOS,f
l0,x

= P(Nf
l0,x

= 0) = e
−E[Nf

l0,x
]
, (22)

PLOS,m
l0,x

(t) = P(Nm
l0,x(t) = 0) = e

−E[Nm
l0,x

(t)]
, (23)

PLOS
l0,x (t) = PLOS,f

l0,x
· PLOS,m

l0,x
(t) = e

−E[Nf
l0,x

]−E[Nm
l0,x

(t)]
.

(24)

B. Temporal Variation of Fixed Channels

Next we consider the temporal variation of blocking caused

by mobile users. Let us assume l0,x is not blocked by fixed

users. Under our model, a mobile blockage moves in a fixed

direction, thus each blockage blocks the channel at most once.

A mobile user may start to block the channel, if so it blocks the

channel for some time then stops blocking. We say a blockage
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arrives at the channel if it begins to block the channel, i.e.,

the region the blockage intersects the channel. Denote by

Tm
i (l0,x) ⊂ R the (bounded) time interval mobile user i blocks

channel l0,x, i.e.,

Tm
i (l0,x) = {t ∈ R |Bm

i (t) ∩ l0,x 
= ∅}. (25)

If the mobile user ever blocks the channel, i.e., Tm
i (l0,x) 
=

∅, the mobile blockage i arrives at the channel at time

min{t|t ∈ Tm
i (l0,x)} and leaves the channel at time

max{t|t ∈ Tm
i (l0,x)}. The duration of blocking is |Tm

i (l0,x)|.
The following theorem characterizes the temporal variation

in blocking for l0,x.

Theorem 1. Under CVM model, if the LOS channel l0,x is
not blocked by fixed users/blockages, the blocking of l0,x is
an alternating renewal process. The length of an LOS period,
TLOS
l0,x

, has an exponential distribution with mean

E[TLOS
l0,x ] =

1

λm E[S]
(
E[W ] + 2|x|/π) . (26)

The length of an NLOS period, TNLOS
l0,x

, has mean

E[TNLOS
l0,x ] =

1− PLOS,m
l0,x

(t)

PLOS,m
l0,x

(t)
E[TLOS

l0,x ], (27)

where PLOS,m
l0,x

(t) is given in Eq. 23.

To prove the theorem, we first prove the following lemma

characterizing the arrivals of mobile blockages.

Lemma 1. For a channel l0,x subject to CVM blockages, the
arrival of mobile blockages follows a Poisson process with
rate

λQ
l0,x

= λm E[S](E[W ] + 2|x|/π). (28)

Proof. Denote by Nnew
l0,x

(t, τ ] the number of blockages that

arrive at l0,x during (t, τ ], τ ≥ t. By Proposition 1, the

mobile blockages follow an HPPP at time t. The movements

of blockages are independent thus Nnew
l0,x

(t, τ ] has a Poisson

distribution. Based on our definition of Nm
K [t, τ ], we have that

Nnew
l0,x (t, τ ] = Nm

l0,x [t, τ ]−Nm
l0,x(t), (29)

E
[
Nnew

l0,x (t, τ ]
]
= E

[
Nm

l0,x [t, τ ]
]− E

[
Nm

l0,x(t)
]
. (30)

Using Eq. 18 and 19, E[Nnew
l0,x

(t, τ ]] is given by,

E
[
Nnew

l0,x (t, τ ]
]
= λm E[S]

(
E[W ] + 2|x|/π)(τ − t). (31)

For any time interval (t, τ ], Nnew
K (t, τ ] follows a Poisson

distribution with mean proportional to τ−t, thus the arrival of

blockages follows a Poisson process [14]. We denote by λQ
l0,x

the Poisson arrival rate of mobile blockages on link l0,x, then

we have, λQ
l0,x

= λm E[S]
(
E[W ] + 2|x|/π).

Lemma 1 indicates, as might be expected, that the arrival

rate of mobile blockages is proportional to blockage density

λm and moving speed E[S]. If we ignore the term for blockage

width, E[W ], the arrival rate is also proportional to link length.

With Lemma 1, we can prove Theorem 1 as follows.

Proof of Theorem 1. We can model the channel as an

M/GI/∞ queue. The fixed channel can be viewed as an

infinite server queue while mobile blockages are “jobs” that

need service. The time that a blockage blocking the channel

is “job” service time. By Lemma 1, mobile blockages follow

Poisson arrival, which is memoryless (M ). Furthermore, the

typical time that a mobile user blocks the channel depends

on the velocity and cross section of the blockage, thus has

a general distribution (GI). By the CVM assumption, the

movements of users are independent from each other and the

time each mobile blockage blocks the channel is independent

from others (infinite servers).

The state of the M/GI/∞ queue captures whether the

channel is LOS (on) or blocked NLOS (off), thus blocking

can be modeled by an on/off renewal process, where TLOS
l0,x

and TNLOS
l0,x

are IID. In an M/GI/∞ queue, the time that

the queue is empty, which in our case is TLOS
l0,x

, follows an

exponential distribution with mean 1/λQ
l0,x

, i.e.,

E[TLOS
l0,x ] =

1

λm E[S]
(
E[W ] + 2|x|/π) . (32)

The distribution of the length of busy period, TNLOS
l0,x

, depends

largely on the distribution of service time of each user, i.e.,

|Tm
i (l0,x)|, and is somewhat complex, see [17]. In CVM, the

probability that the channel is not blocked by mobile users,

PLOS,m
l0,x

(t), is given in Eq. 23, thus we can compute E[TNLOS
l0,x

]
without computing the exact distribution of |Tm

i (l0,x)|. For a

renewal process, we have the following relationship among

PLOS,m
l0,x

(t), E[TLOS
l0,x

] and E[TNLOS
l0,x

],

PLOS,m
l0,x

(t) =
E[TLOS

l0,x
]

E[TLOS
l0,x

] + E[TNLOS
l0,x

]
, (33)

from which we can derive Eq. 27

The author of [18] shows that as job arrival rate goes to

infinity, the busy period of M/GI/∞ queue is asymptotically

exponential with mean equal to expected busy period if the

distribution function of service time, H , satisfies that,

(log z)

∫ ∞

z

{1−H(y)}dy → 0, (34)

as z → ∞. For our CVM model, we have the following result

on the distribution of TNLOS
l0,x

.

Theorem 2. In CVM, the distribution of TNLOS
l0,x

approximates
exponential distribution with mean E[TNLOS

l0,x
] as λQ

l0,x
→ ∞,

i.e, λm, E[S], and/or |x| goes to infinity.

Proof. Sm
i ≥ smin > 0, thus |Tm

i (l0,x)| is upper bounded

by (|x|+ dA)/smin, where dA is the diameter of the smallest

circle that contains A. H(y) = 1 for y > (|x|+dA)/smin thus

Eq. 34 is satisfied. By Theorem 1 in [18], as λQ
l0,x

→ ∞,

P
(
TNLOS
l0,x ≤ z E

[
TNLOS
l0,x

]) → 1− e−z, z > 0. (35)

The key idea of Theorem 2 is that exponential distribution

is a good approximation for the tail distribution of TNLOS
l0,x

if
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Fig. 3. Two-state continuous time Markov model for temporal variation of
link l0,x, which is not blocked by fixed users.

λQ
l0,x

is large. By Lemma 1, λQ
l0,x

is large if user density is high,

user speed is large and/or channel is long. There are potential

problems with approximating the distribution of TNLOS
l0,x

with

an exponential distribution. If λQ
l0,x

is small, the exponential

distribution may not fit TNLOS
l0,x

well. The probability that the

channel is blocked by more than one blockage is small and the

distribution of TNLOS
l0,x

is close to the conditional distribution

of |Tm
i (l0,x)| given |Tm

i (l0,x)| > 0. If λQ
l0,x

is large, the

assumption that user movements are independent and users

can overlap may not be accurate.

If, for tractability, we approximate the distribution of TNLOS
l0,x

with an exponential distribution with mean E[TNLOS
l0,x

], then

the blocking of the channel becomes a renewal process with

TLOS
l0,x

and TNLOS
l0,x

having exponential distributions, which can

be modeled by a two-state continuous time Markov model

[10], see Fig 3. The rate that the channel changes from LOS

to NLOS is λQ
l0,x

, while the rate channel changes from NLOS

to LOS μQ
l0,x

is,

μQ
l0,x

= E[TNLOS
l0,x ]−1. (36)

IV. RATE OF CHANGE FOR STRONG LOS NEIGHBORS

SEEN BY TYPICAL RECEIVER

In this section we study how the aggregate rate at which

blocked/weak LOS neighbors change into strong LOS neigh-

bors as seen by a typical fixed “reference” user. In principle,

when a user becomes a strong LOS neighbor, the reference

user needs to make channel measurements and initiate keeping

track of that user. Thus the overall rate of change is a

reasonable proxy for signaling overheads and the stability of

the links the reference user sees.

We define the rate of change as seen by a reference user

located at 0 at time t as follows. Denote by N change
0 [t, τ ] the

number of users that became strong LOS neighbors of the

reference user at 0 during [t, τ ], given the fixed users Φ̃f and

mobile users Φ̃m. The mean rate of change as seen by the

reference user, f total, is defined by

f total = lim
τ→t+

EΦ̃f ,Φ̃m

[
N change

0 [t, τ ]
]

τ − t
. (37)

Based on our CVM model, f total is invariant to t and can be

characterized as follows.

Theorem 3. Under CVM model, the rate of change for strong
LOS neighbors seen by a typical fixed user, f total, is given by

f total = f range + ffixed + fmobile, (38)

where f range is the rate at which mobile users enter b(0, rmax),
circle centered at 0 with radius rmax, and have LOS channels,
i.e, are not blocked, ffixed is the rate of change associated

with temporal variations in channels to other fixed users
in b(0, rmax), and fmobile is the rate of change associated
temporal variations in channels to mobile users in b(0, rmax).
These three contributions are characterized as follows:

f range = 2λmrmax E[S]P
LOS
l0,(0,rmax)

, (39)

ffixed = λf

∫
b(0,rmax)

PLOS
l0,x λQ

l0,x
dx, (40)

fmobile = λm

∫
b(0,rmax)

∫
θ

∫
s

(
δLOS
(x,θ,s)

+ PLOS
l0,x · (λQ,f

(x,θ,s) + λQ,m
(x,θ,s))

)
Pm(ds, dθ) dx,

(41)

where Pm(S,Θ) is the probability measure of S and Θ, δLOS
(x,θ,s)

is the rate that PLOS
l0,x

changes due to movement, λQ,f
(x,θ,s) and

λQ,m
(x,θ,s) are the expected rate over Φ̃f and Φ̃m, that the

channel between the reference fixed user at 0 and a mobile
user at location x with orientation θ and speed s, i.e., (x, θ, s),
sees new blockages as a result of other fixed users and mobile
users respectively.

δLOS
(x,θ,s) = − (λf + λm) · s · cos(ω)E

[
ν1(∂A)

]
π

, (42)

λQ,f
(x,θ,s) = λfs

( |x| · | sin(ω)|
2

+
E[ν1(∂A)]

π

(
1 + cos(ω)

))
,

(43)

λQ,m
(x,θ,s) ≈ lim

τ→t+

λm EA,V

[
ν2
(
Ǎ⊕M(x,v,V,τ−t)

)]
τ − t

. (44)

ω is the angle between v and vector from 0 to x, see Fig. 4a,
M(x0,v0,v,τ−t) = l0,x0 ∪

( − (τ − t) · v + l0,x0+(τ−t)·v0

)
, see

Fig. 4b.

(a) (b)

Fig. 4. (a) Movement of user at x with velocity v in[t, τ ]. ω is the angle
between v and vector 0 to x. (b) Illustration of M(x0,v0,v,τ−t).

The detailed proof is omitted due to space limits. Theorem 3

can also be extended for the rate of change seen by mobile

users. If self blockage is considered, the rate of change

becomes pfacingf
total, where pfacing is the probability that

the channel between two users is not self blocked given that

users are facing random directions. Actually f range is not

proportional to pfacing, but it is small compared to f change,

see Section VI.

V. IMPACT ON MAC IN MMWAVE NETWORKS

In this section, we analyze the impact of temporal variation

caused by mobility on MAC scheduler in mmWave wearable

networks. In particular, we focus on a simple clustering based

MAC design [5][6]. Fixed users form clusters with close by

neighbors while mobile users work independently and do not
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cooperate with each other. In each cluster, a user is selected as

cluster head, which synchronizes cluster members, schedules

signaling transmissions and coordinates data transmissions.

Such a MAC involves formation and maintenance of clusters,

and we study how user mobility would impact the overhead

and performance of these two procedures.

We consider two scenarios, 1) a fixed user joins a network

and connects to the closest strong LOS cluster head it finds

within a probing interval, and 2) a user performs re-clustering

after losing the strong LOS channel to cluster head for a given

period time. The distribution of users is the same as described

in Section II. Let us denote by M the average number of users

in a cluster, and assume that each fixed user has a probability

of 1/M to be a cluster head. As a simple model, we assume

the locations of cluster heads follow an HPPP with density

λf/M . We assume the state of channels are independent, and

we use the two-state Markov model developed earlier to model

the impact of dynamic blocking.

Joining Network. A randomly located fixed user joins the

network at time 0. It scans the channel for some time tprobe
and connects to the closest cluster head that it has strong LOS

channel to during [0, tprobe]. We want to study the probability

that the user finds at least one cluster head in [0, tprobe] and

the distribution of the distance to the cluster head it connects

to. Use the location of the fixed user as the reference point

0, and denote by PLOS
l0,x

[0, tprobe] the probability that l0,x has

ever been LOS in [0, tprobe], then we have

PLOS
l0,x [0, tprobe] = PLOS,f

l0,x
·(1−(1−PLOS,m

l0,x
(0))·e−μQ

l0,x
·tprobe

)
,

(45)

where e
−μQ

l0,x
·tprobe

is the probability the channel is

kept blocked by mobile users in [0, tprobe]. Denote by

NCH
b(0,r)(tprobe) the number of cluster heads which are located

in b(0, r) and have an LOS channel to the new user in

[0, tprobe]. Channels are independent thus NCH
b(0,r)(tprobe) has

a Poisson distribution with mean

E
[
NCH

b(0,r)(tprobe)
]
=

λf

M

∫
b(0,r)

PLOS
l0,x [0, tprobe]dx. (46)

Denote by DCH the distance to the closest cluster head

that user finds in [0, tprobe], and GDCH
(·) the cumulative

density function (CDF) of DCH. NCH
b(0,r)(tprobe) has a Poisson

distribution thus

GDCH(r) = P
(
NCH

b(0,r)(tprobe) ≥ 0
)
= 1−e−E[NCH

b(0,r)(tprobe)].
(47)

The probability that the new user has found a cluster head in

[0, tprobe], Pconnect(tprobe), is GDCH
(rmax).

Re-clustering. We assume a user performs re-clustering if

its channel to the cluster head is blocked for tout. Assume

the reference fixed user is located at 0, with the cluster head

located at x. l0,x is LOS at time 0. Denote by T recluster
l0,x

the

time before the user re-clusters. In Theorem 1 we have shown

that the blocking of the channel is an alternating renewal

process, thus re-clustering is performed if TNLOS
l0,x

≥ tout.

Denote by GTNLOS
l0,x

(t) the complementary CDF of TNLOS
l0,x

,

which is approximated by that of an exponential distribution

with mean E
[
TNLOS
l0,x

]
, see Eq. 27. The number of LOS peri-

ods before re-clustering is 1/GTNLOS
l0,x

(tout), and the number of

NLOS periods, excluding the NLOS period when re-clustering

is performed, is 1/GTNLOS
l0,x

(tout) − 1. The time with LOS

channel before re-clustering is

GTNLOS
l0,x

(tout)
−1 · E [

TLOS
l0,x

]
,

and the time spent with no LOS connection to cluster head is

tout +
(
GTNLOS

l0,x

(tout)
−1 − 1

) · E [
TNLOS
l0,x

∣∣TNLOS
l0,x < tout

]
.

VI. NUMERICAL RESULTS AND DESIGN OF MAC

In this section we evaluate the accuracy of our analysis and

discuss the impact of mobile blockages on MAC design using

numerical results. Users are assumed to have the same cross-

sections, i.e., 0.45m × 0.25m rectangles, with their facing

directions perpendicular to the long side of the rectangle. User

movements follow our CVM assumptions, the speed is 1 m/s
and rmax is 10 m.

Fig. 5 exhibits the CDF of TLOS
l0,x

and TNLOS
l0,x

for λm =

0.5/m2. For TLOS
l0,x

our analysis is an exact match of simulation

results. For TNLOS
l0,x

we can see that approximation using

the two-state Markov model gives a good estimate for the

distribution for large t, but not accurate for small t.
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(a) CDF of TLOS
l0,x
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(b) CDF of TNLOS
l0,x

Fig. 5. CDF of TLOS
l0,x

and TNLOS
l0,x

, given l0,x is not blocked by fixed users.

Fig. 6 exhibits the rate of change as seen by a typical fixed

user characterized in Theorem 3. In Fig. 6a, λf is the same as

λm. In Fig. 6b, λf+λm = 1 user per m2 while the proportion

of mobile users, ρm = λm/(λm + λf ), changes. Comparing

the analysis to the simulations shows that the analysis is a good

match. From Fig. 6a we can see that as user density increases,

the rate of change first increases due to increased mobility,

then saturates and even begins decreasing. The reason is that in

highly dense scenarios, most neighbors are blocked thus their

impact on variability of the interference environment becomes

limited. Also the rate of change contributed by mobile users is

higher than that from fixed users. In Fig. 6b the rate of change

increases almost linearly with the proportion of mobile users,

ρm. The takeaway is that for dense environments, the channels

may be poor due to blockage, but the overheads associated

with tracking users may be limited at high densities. However,

the overheads would increase with the proportion of mobile

users. The design insight here is that fixed users may track

other users when the proportion of mobile users is low. When

the environment is highly mobile, i.e., with high proportion of
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(b) Rate of change for different ρm.

Fig. 6. Rate of change as seen by a typical fixed user. The markers represent
results from simulations.

mobile users, users may choose not to coordinate with mobile

users due to excessive overheads.

Fig. 7 exhibits results on a fixed user joining the network. As

expected, Pconnect increases with tprobe while decreases with

λm. The distribution of the distance to cluster head is pretty

robust to tprobe and λm, but depends on the fixed user density

λf and cluster size M . Such results indicate that clustering

takes more time when there are more mobile blockages. The

distance to cluster head, however, is not very sensitive to

mobile blockages.
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Fig. 7. (a) Probability of finding a cluster head in [0, tprobe] and (b) the PDF

of distance to the connected cluster head. In the Base case, λf = 0.2/m2,
λm = 0.5/m2, M = 10, tprobe = 2s.

Fig. 8 exhibits how mobile blockages impact re-clustering.

As can be seen in Fig. 8a, the time before re-clustering grows

super-linearly with tout, indicating that a longer tout can

help reduce frequency of re-clustering. However, as shown

in Fig. 8b, the channel to the cluster head is more likely to be

blocked and the connection is poorer if tout is larger. Choosing

tout requires making a trade-off between reducing re-clustering

and improving connection quality for signaling. When λm is

high, the frequency of re-clustering is high and the channel

quality is poor, thus users should connect to closer cluster

heads, or not use a coordination based MAC.
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Fig. 8. Impact of mobile blockages on re-clustering given |x| = 4m.

VII. CONCLUSION

This paper introduces a new model and analysis tools to

study mobile blockages in mmWave settings where chan-

nel dynamics (LOS/NLOS) have an impact on MAC over-

heads/performance. Our formal results show the temporal

variation between LOS/NLOS states of a channel is an on/off

renewal process, whose holding time in each state is character-

ized. Based on our analysis, we derive the rate of change for

channel states and estimate the associated signaling overheads

resulting from user/blockage mobility. In dense and mobile

networks, fixed users should perhaps track close by fixed users,

and not be too reactive to changes due to blockages, most

likely associated with moving users. Meanwhile, they should

avoid coordinating with distant and/or mobile users. From

a MAC perspective the challenge is to differentiate among

mobile and fixed neighbors so as to optimize coordination and

scheduling.
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