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Abstract—Many studies show that the Dedicated Short
Range Communication band is insufficient to carry in-
creasing wireless data traffic in vehicular networks. The
release of large TV spectra by FCC for cognitive ac-
cess provides additional spectrum resources to solve the
spectrum scarcity problem. However, FCC allows fixed
devices to use high transmitting powers, while requiring
portable devices to use significantly lower powers. This
power asymmetry policy leads to a challenging coexistence
environment for portable (e.g., vehicular) and fixed (e.g.,
IEEE 802.22) networks. In this paper, we address the co-
existence problem between vehicular and 802.22 networks
via resource allocation. We show that the problem is an
NP-hard mixed-integer nonlinear programming problem,
to which we propose two algorithms. First, we convert it
to a convex programming problem, and propose a near-
optimal primal-dual algorithm. Next, we reformulate the
problem as a packing problem, and present a constant-
factor approximation algorithm. Finally, we evaluate the
algorithms through numerical examples.

I. INTRODUCTION

Recent studies show that the Dedicated Short Range
Communication band allocated to vehicular networks
is unlikely to meet the bandwidth demands of emerg-
ing wireless applications in vehicular networks [1].
Although the newly released TV White Space (or
“TVWS”) band is a promising spectrum expansion for
vehicular networks, it also raised many novel challenges,
one of which is the power asymmetry. Since portable
TVWS devices (like vehicular devices) are only allowed
to use at most 100 mW transmit power, while fixed
devices (like IEEE 802.22 devices) can use up to
1W transmit power, the coexistence problem must be
carefully resolved. Otherwise, 802.22 devices can easily
starve vehicular devices in the TVWS spectrum.

To the best of our knowledge, this is the first work to
deal with the coexistence issue between 802.22 networks
(or Wireless Regional Area Networks) and cognitive
vehicular networks (CVNs). So far, most existing works
on TVWS access have been dedicated to the coexistence
between Secondary User (SU) networks and Primary
User (PU) networks, while the coexistence of heteroge-
neous SU networks has not received significant atten-

tion. A critical difference between SU-SU coexistence
and PU-SU coexistence is that SUs have similar (if not
identical) priorities for spectrum access in the former
scenario while PUs have a dominant priority over the
spectrum in the later scenario.

Although IEEE 802.22 includes an inter-network co-
existence scheme, it is dedicated to separately managed
802.22 networks. IEEE 802.19.1 also proposed a frame-
work for the coexistence of heterogeneous SU networks.
However, it heavily relies on various coexistence en-
tities, which makes it impractical to facilitate coexis-
tence between mobile CVNs and fixed 802.22 networks.
Even though some coexistence mechanisms have been
proposed to enable the coexistence of heterogeneous
networks in the ISM band [2], they neither deal with
the power asymmetry problem, nor include cognitive
functionality. Finally, novelty of our work also lies in
that we consider features of the IEEE 802.22 standard
as well as FCC’s rules on TVWS access, which makes
our work more relevant for implementation.

In this paper, we propose a 802.22-CVN coexistence
framework via optimal resource allocation. Our work
was motivated by the observation that, 802.22 customer
premise equipment devices (CPEs) use relatively low
transmit power in upstream frames, which leaves sig-
nificant spectrum opportunities. Vehicles can spatially
reuse the spectrum opportunities without causing unac-
ceptable interference to 802.22 upstream transmissions.
Therefore, in this paper, cooperative “coexistence” of
CVN and 802.22 networks is defined as follows. The
802.22 network agrees to share its upstream scheduling
information with the CVN such that vehicles would
not cause unacceptable interference to its upstream
transmissions. The CVN needs to know the 802.22
scheduling information, such that its own transmissions
would not be starved by 802.22 transmissions. In return,
CVN promises not to cause unacceptable interference to
802.22 upstream transmissions.

The theoretical contributions of our work are three-
fold:

1) We formulate the coexistence problem between a
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CVN and 802.22 network as a resource alloca-
tion problem, which is proved to be an NP-hard
Mixed-Integer Nonlinear Programming (MINLP)
problem. Both features of the 802.22 standard and
FCC’s rules on TVWS access are considered in
the problem formulation.

2) Since MINLP problems are usually intractable,
our second contribution is to convert the MINLP
problem to an equivalent convex programming
problem. Then we propose a primal-dual method
to acquire a near-optimal solution to the initial
MINLP problem.

3) After reformulating the NINLP problem as a
k-column-sparse packing problem, we present
a constant-factor approximation algorithm with
more favorable complexity.

The remainder of the paper is organized as follows.
The System model and the problem formulation are
described in Section II. In Section III, we propose a
primal-dual method and analyze its performance. Then,
in Section IV, the coexistence problem is reformulated
as a k-column-sparse packing problem, to which a
probabilistic constant-factor algorithm is developed. We
present numerical results in Section V and conclude our
work in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The IEEE 802.22 standard was developed for wireless
regional area networks, to provide broadband access
in low population density areas using TVWS spectra.
According to the standard, each 802.22 network consists
of one Base Station (BS) and multiple fixed or portable
CPEs. Each 802.22 network has an operating channel
with 6, 7 or 8 MHz bandwidth. In time domain, each
802.22 frame has 10 milliseconds. A frame is further
dynamically partitioned into a downstream sub-frame
and an upstream sub-frame by the BS. In upstream
frames, the BS usually allocates different power levels
to the CPEs based on their locations to save energy and
protect PUs.

Note that mobility of vehicles is not incorporated in
our system model for the following reason. An 802.22
upstream frame is less than 10 milliseconds, and our
scheduling is conducted during these frames. Due to
shortness of the period, vehicles can be assumed to
be static during this period. For example, in USA, the
freeway speed limit is 121 km/h, and thus a car can
only move at mot 0.336m during our scheduling period.
Therefore, we can assume that system parameters do
not change in each scheduling period. In this sense,
our model also applies to the coexistence of 802.22
networks with other static or mobile low-power ad hoc
networks in TVWS. Moreover, our scheduling model
is practical since it is compatible with the IEEE stan-
dard for Wireless Access in Vehicular Environments, in
which each scheduling period is 50 milliseconds [3].

Figure 1. 802.22 upstream and scheduling of vehicles

Let N be the number vehicles and M be the number
of CPEs in our system model. Our objective is to
schedule a set of vehicles to every 802.22 upstream
frame to maximize the total weighted throughput of the
vehicular network. In the 802.22 standard, a “burst”
is defined as a two-dimensional segment of OFDM
sub-channels (frequency domain) and symbols (time
domain). For example, in the upper figure of Fig. 1,
there are four bursts allocated to four CPEs. According
to the standard, there are two types of upstream bursts.
Type 1 burst is mapped over the full upstream frame in
time domain (e.g., burst 1 in Fig. 1), while normal type
2 burst is mapped over an interval with 7 upstream slots
(e.g., burst 2 and 3 in Fig. 1). But if a type 2 burst is
the last burst of an upstream, its duration can be 7 to
13 slots (e.g., burst 4 in Fig. 1) [4].

Based on the length of a normal type 2 burst, the
upstream frame is split into “burst intervals” (BIs) in
time domain, and let K be the number of BIs in the
upstream frame. For example, there are two BIs in
Fig. 1, where burst 1, 2 and 3 belong to BI1 and
burst 1, 4 belong to BI2. Let Cjk ∈ {0, 1} be a BI
indicator, and Cjk = 1 if burst j belongs to BI k. FCC
requires that total transmit power of portable SUs in
a single TVWS channel must be less than a threshold
(i.e., 100 mW /6MHz). Since in our system model,
multiple vehicles would share a single 6 MHz channel,
we require that total transmit power of vehicles must
be less than that threshold in every BI. For example, in
Fig. 1, let Pmax be the power threshold, and thus both
total transmit power of V 1, V 3, V 4, and total transmit
power of V 2, V 3 must be less than Pmax. In our model,
let Tj and Bj be the duration and bandwidth of burst j,
respectively. In addition, let pcj be the transmit power
of CPE j on burst j, and Gji be the channel gain
from CPE j to vehicle i. We assume that all channel
gain information can be obtained by either vehicles’
measurements or from the BS.

In IEEE 802.11p, vehicular packets are classified
into four Access Categories with decreasing priority:
AC[0] · · ·AC[3]. For example, safety related packets
usually have higher priority than non-safety packets.
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Therefore, in our model, we associate each priority class
AC[i] with a weight Ai subject to Ai > Aj ,∀i < j.
In addition, we assume that Roadside Channel Moni-
tors (RCMs) constantly sense and estimate usage pat-
terns of PUs on all available TVWS channels. In our
model, RCMs are also responsible for scheduling ve-
hicles to 802.22 upstream frames. Although vehicular
scheduling is not necessarily a 1-to-1 mapping to the
802.22 upstream scheduling, we assume that at most
one vehicle can be allocated to each burst and the
scheduled vehicle would transmit over the entire burst
duration. This assumption is reasonable because: (1)
vehicles need to transmit safety messages frequently;
(2) the duration of each burst is rather short. In ad-
dition, the maximum transmit rate of vehicle i on
burst j is determined by its transmitting power and the
transmit power of CPE j, which can be calculated as
Rij = Bj log2

(
1 +

pijGii

pcjGji+σ0

)
, where pij , Gii denote

transmit power of vehicle i on burst j and channel gain
from vehicle i to its receiver respectively, and σ0 is the
noise power spectrum density.

The TVWS occupancy of PUs is modeled through
a random variable tp, which is defined as residual time
until the return of a PU to the 802.22 operating channel.
We assume that probability density function (PDF)
fj(tp) of tp is known to RCMs. Since exact behaviors
of PUs are unknown to RCMs, vehicular transmissions
scheduled on a burst can be interrupted by PU trans-
missions with non-zero probabilities. In our model, we
assume that the transmissions of a vehicle before a PU
returns are successful and all remaining packets are
assumed to be lost (one possible reason is that high
transmit power of PUs blocks vehicular transmissions).
Therefore, for a vehicle scheduled to burst j, its ex-
pected transmission time is T̄j =

∫∞
0

(Tj ·1{tp≥T0Hj}+
(tp − T0(Hj − 1)) · 1{T0(Hj−1)≤tp≤T0Hj)})f(tp)dtp,
where T0 is the length of a type 2 burst, and Hj denotes
index of BI that burst j belongs to.

max
xij∈{0,1}

pij∈[0,Pmax]

N∑
i=1

M∑
j=1

1

T
AixijRij T̄j

s.t.
N∑
i=1

xijpijG
BS
i ≤ βj ,∀j ∈ {1, 2 · · ·M},

N∑
i=1

M∑
j=1

Cjkxijpij ≤ Pmax,∀k ∈ {1, 2 · · ·K},

M∑
j=1

xij ≤ 1,∀i;
N∑
i=1

xij ≤ 1,∀j,

(P.1)
Given the above definitions, our objective is to maxi-

mize the weighted expected throughput (interchangeable
with “utility”) of vehicles via joint burst allocation and
power control. Let {x|xij ∈ {0, 1}} be assignment

variables (i.e., xij = 1 if vehicle i is scheduled to burst
j, and xij = 0 otherwise). The problem formulation is
presented in P.1, where GBSi denotes the channel gain
from vehicle i to the BS, and T represents the total
length of the current upstream frame.

The first set of constraints mean that the interference
caused by vehicular transmission on upstream trans-
mission of CPE j is limited to βj . The second set
of constraint is to meet FCC’s requirement that total
transmit power of SUs on a TVWS channel must be
less than a threshold in every BI. Recall that K denotes
the number of BIs in the current upstream frame. The
last two set of assignment constraints require that every
vehicle be scheduled to at most one burst, and every
burst be assigned to at most one vehicle. We can
see that P.1 belongs to MINLP problems, which are
generally NP-complete problems [5]. MINLP problems
are usually solved by using numerical algorithms, such
as branch and bound, Bender’s decomposition, outer
approximation and extended cutting plane [5]. Although
most of these solutions are guaranteed to attain near-
optimal solutions, their convergence rates are fairly slow.

III. PRIMAL-DUAL METHOD

The difficulty of MINLP problems usually results
from integer constraints as well as non-convex nature
of the problems. Given this observation, our proposed
primal-dual method works as follows. First, all integer
constraints of P.1 are relaxed to continuous constraints,
i.e., xij ∈ [0, 1],∀i, j. Then the initial problem is con-
verted to a convex programming problem (i.e., P.2) by
replacing variables pij with new variables yij = xijpij .
Then, P.2 is solved via a primal-dual method. More
specifically, we first form the Lagrangian function of P.2
(i.e., Equation 3), and replace the last two sets of assign-
ment constraints in P.1 with a domain constraint X :={
x|
∑M
j=1 xij ≤ 1,∀i;

∑N
i=1 xij ≤ 1,∀j;xij ∈ [0, 1]

}
.

Then, we optimize over yij variables for given assign-
ment variables as well as dual variables. By doing so, we
are able to obtain the optimal power allocation policy,
(i.e., all p∗ij values). Then we plug these values back
to the Lagrangian function, and proceed to optimize
over all assignment variables xij . This problem turns
out to be the linear programming version of the classic
assignment problem, to which we are guaranteed to
obtain an optimal “integer” solution in polynomial time.
The last step is to optimize over all dual variables, i.e.,
solving dual problem of P.2. Since there is no closed-
form solution to the assignment problem, the dual
problem becomes a “non-smooth” convex optimization
problem. By using an accelerated sub-gradient method
[6], we are able to obtain a near-optimal solution to
P.2 in polynomial time. Since xij are already integer
solutions, the obtained solution is also a near-optimal
solution to the P.1. Details of the primal-dual method
are as follows.
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A. Reformulate P.1 as a Convex Programming Problem
By relaxing the integer constraints and replacing all

power variables with yij , we obtain the following new
convex programming problem:

max
xij∈X

yij∈[0,Pmax]

N∑
i=1

M∑
j=1

1

T
AixijR

new
ij T̄j

s.t.
N∑
i=1

yijG
BS
i ≤ βj ,∀j;

N∑
i=1

M∑
j=1

Cjkyij ≤ Pmax,∀k,

(P.2)

where yij = xijpij , and Rnewij are defined as

Rnewij =

0 if xij = 0

Bj log2

(
1 +

yijGii

xij(pcjGji+σ0)

)
if xij > 0.

(1)
Next we show some properties of P.2 by proving the
following lemma.

Lemma 1: P.2 is a convex programming problem, and
the Slater’s condition holds.

Proof. First, we can see that domain of P.2 (i.e., X
defined in the first paragraph of this section and Y :=
{y|yij ∈ [0, Pmax]}) forms a convex set. Second, all
functions in the constraints are also convex (linear).
Finally, we need to prove that objective function of
P.2 is concave. Since the objective function is sum of
single utility functions fij(xij , yij) = 1

T AixijR
new
ij T̄j ,

the problem is reduced to show the concavity of
fij(xij , yij). Furthermore, since fij(xij , yij) = 0 at
xij = 0, we only need to consider the case where
xij > 0. In this case, fij(xij , yij) is the perspective
function of a concave function

gij(yij) =
1

T
AiT̄jBj log2

(
1 +

yijGii
pcjGji + σ0

)
. (2)

Therefore, fij(xij , yij) is also concave, which proves
the first part of this lemma. The proof of satisfying
Slater’s Condition is trivial, which can be done by
simply letting xij = 0, yij = 0,∀i, j. In this case, we
obtain strict inequalities in all constraints of P.2. �

Now, we continue to solve P.2 by using a primal-dual
method. The Lagrangian function of P.2 is as follows:

L(x,y,u,v) =

N∑
i=1

M∑
j=1

1

T
AixijR

new
ij T̄j

−
M∑
j=1

uj

(
N∑
i=1

yijG
BS
i − βj

)

−
K∑
k=1

vk

 N∑
i=1

M∑
j=1

Cjkyij − Pmax

 ,

(3)

where u ≥ 0,v ≥ 0.

B. Optimize over y Given Assignment and Dual Vari-
ables

In this step, we intend to find y∗ that maximizes the
Lagrangian function, given the assignment variables x
and dual variables u,v. First, let us consider the case
where xij = 0. In this case, vehicle i is not scheduled to
burst j, and thus y∗ij = xijpij = 0. For the case where
xij > 0, the optimal yij can be obtained by letting the
partial derivative of the Lagrangian function over yij be
zero, i.e., ∂L(x,y,u,v)∂yij

= 0. To make the expression of y∗ij
more concise and intuitive, we first define the following
notations which are constants given assignment and dual
variables:

aij =
1

T ln 2
AiBj T̄j , bij = ujG

BS
i +

K∑
k=1

vkCjk,

cij = pcjGji + σ0.

(4)

Then y∗ij can be written as:

y∗ij = xijp
∗
ij = xij

(
aij
bij
− cij
Gii

)
. (5)

Therefore, we can further conclude that the optimal
power allocation policy given assignment and dual vari-
ables is

p∗ij(x,u,v) =

{
0 if xij = 0
aij
bij
− cij

Gii
if xij > 0.

(6)

C. Optimize over Assignment Variables Given y and
Dual Variables

In this step, we first plug the optimal power values
into the Lagrangian function, and continue to find the
optimal assignment policy {x∗ij}. Before we solve this
problem, we first introduce some new notations to make
the problem formulation more concise. Define dij and
E as

dij =
1

T
AiT̄jRij(p

∗
ij)− p∗ijbij ;

E =

M∑
j=1

ujβj +

K∑
k=1

vkPmax.
(7)

Then the problem of optimizing over assignment vari-
ables can be formulated as

max
x∈X

N∑
i=1

M∑
j=1

xijdij − E (P.3)

where both {dij} and E can be viewed as constants
given dual variables. This problem turns out to be
linear programming version of the classic assignment
problem, the objective of which is to assign a set of
people to different jobs to maximize total benefit. It is
proved in [7] that this linear programming problem has
the following remarkable property: if it has a feasible
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solution at all, then it has an optimal integer solution,
and the set of its optimal solutions includes all the
optimal assignments. In other words, by solving this
problem, we are guaranteed to obtain an optimal integer
solution x∗. There are many potential algorithms to
solve this problem, such as the Hungarian algorithm
whose time complexity is O(n3) [7] (in our case,
n = max{M,N}). Note that even though this problem
can be solved efficiently, no closed form solutions exist.

D. Solve the Dual Problem

Since we have optimized over all primal variables of
P.2 given dual variables, we are able to formulate and
solve the following dual problem.

min
u,v

q(u,v)

s.t.u ≥ 0;v ≥ 0,
(P.4)

where q(u,v) = L(x∗(u,v),y∗(u,v),u,v).
Since we are not able to obtain closed form solutions

to P.3 (i.e., x∗(u,v)), P.4 becomes a non-smooth convex
programming problem. Sub-gradient based algorithms
have been widely used to solve non-smooth convex
problems. Even though those algorithms are usually
guaranteed to obtain near-optimal solutions, their con-
vergence rate can be rather slow [6].

In this section, we use an accelerated sub-gradient
method to solve P.4, based on the works [6] [8]. So
far, two accelerated sub-gradient methods have been
proposed, namely Dual-Averaging Method and Mirror-
Decent Method, which have been unified in [6]. Before
we describe our proposed algorithm, let us first look
at fundamental ideas of the accelerated sub-gradient
methods to solve the following general optimization
problem:

min
x∈Q

f(x), (P.5)

where f(x) is a non-smooth convex function and Q is
a nonempty closed convex set.

P.5 can be solved via a primal-dual method. Different
from normal primal-dual methods, we need two different
sequences of parameters, each of which is responsible
for some processes in primal and dual spaces. In primal
space, it is necessary to have a vanishing sequence of
steps to guarantee the convergence of primal variable
sequence. Let {λt} be the sequence satisfying: λt >
0, λt → 0,

∑∞
t=0 λt = ∞. However, in the dual space

(the space of linear functions), we would like to apply
non-decreasing weights to speed up the convergence
rate. Let {θt} be the sequence satisfying: θt = γθ

′

t, θ
′

0 =
1, θ

′

t+1 = θ
′

t + 1
θ
′
t

, where γ is a constant positive step
size. In addition, define h(x) as any strongly convex
and continuously differentiable function on Q. Let g(x)
be a sub-gradient of f(x), and normal sub-gradient
methods update the solution sequence of P.5 {xk} as
follows xk+1 = argminx∈Q{f(xk) + g(xk)(x − xk)}.

In contrast, the accelerated sub-gradient method updates
the solution sequence as follows

xk+1 = argmin
x∈Q

k∑
t=0

λt[f(xt) + g(xt)(x− xt)]

+ θth(x).

(8)

It has been proved in [6] that, the accelerated sub-
gradient method achieves an ε-solution (i.e., |f(x) −
f∗| ≤ ε) within O(J

2R2

ε2 ) iterations, where f∗ is
the optimal solution of P.5, J := sup{||g(x)||}, and
R := sup{||f(x)||}. This method has also been proved
to achieve the least complexity among all sub-gradient
algorithms attaining ε-solutions [6]. Since the complex-
ity of the Hungarian algorithm is O(n3), total complex-
ity of the primal-dual algorithm is O(J

2R2n3

ε2 ), where
n = max{M,N}.

IV. INTEGER PROGRAMMING BASED METHOD

Since complexity of the primal-dual algorithms can be
very high for large scale coexistence problems, in this
section, we propose another method based on integer
programming, which achieves significantly lower time
complexity. More specifically, similar to [9], we assume
that only a fixed number of transmit power levels are
supported, which are {pl|∀l ∈ 1, 2 · · ·L}. Let plij be
the transmit power of vehicle i on burst j, and rlij
be its corresponding transmit rate. This assumption is
motivated by the fact that most real wireless systems
only support a fixed number of transmission rates. Given
this observation, P.1 can be reformulated as an Integer
Programming (IP) problem as follows:

max
xl
ij∈{0,1}

N∑
i=1

M∑
j=1

L∑
l=1

1

T
Aix

l
ijr

l
ij T̄j

s.t.
N∑
i=1

L∑
l=1

xlijp
l
ijG

BS
i ≤ βj ,∀j ∈ {1, 2 · · ·M},

N∑
i=1

M∑
j=1

L∑
l=1

Cjkx
l
ijp

l
ij ≤ Pmax,∀k ∈ {1, 2 · · ·K},

M∑
j=1

L∑
l=1

xlij ≤ 1,∀i;
N∑
i=1

L∑
l=1

xlij ≤ 1,∀j.

(P.5)
P.5 belongs to the category of 3-dimensional assign-

ment problems, which are NP-hard problems. In this
part, we propose a randomized rounding algorithm to
efficiently solve P.5. More specifically, we first reformu-
late P.5 to a k-column-sparse packing problem (k-CSP).
Then we relax the integer constraints to obtain a linear
programming (LP) problem. Then a fractional solution
can be obtained by solving the LP. Finally, we round the
fractional solution to an integer solution, and prove that
the rounded solution attains at least a constant fraction
of the optimum. Details of this integer programming
based method are as follows.
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A. Reformulation of P.5 to a k-CSP

Packing problems are usually formulated as the form:

max
x∈{0,1}n

wTx, s.t. : Ax ≤ b, A ∈ Rm×n (P.6)

where all vectors and matrices are non-negative. A k-
CSP is defined as follows.

Definition 1: A packing problem is a k-column-
sparse packing problem if every item j participates in
at most k constraints, i.e., each column of matrix A has
at most k non-zero entries.

In this section, our first step is to convert P.5 to a
k-CSP with the form of P.6. Hence it is necessary to
first transform all three-dimensional variables in P.5 to
one-dimensional variables in P.6, which can be done
as follows: xi′ = xlij ;wi′ = 1

T Air
l
ij T̄j , where i′ =

[(i−1)·M+j]·L+l. For example, x111 and x122 in P.5 are
represented by x1 and x(M+2)L+1 in P.6, respectively.
The conversion of constraints in P.5 to the form in P.6
can also be done similarly. Now, we show P.5 is a k-CSP
problem.

Lemma 2: P.5 is a k-column-sparse packing problem
with k = K + 3, where K is the number of burst
intervals in the upstream frame.

Proof. This lemma can be proved by analyzing the
physical meanings of the constraints in P.5, and details
of the proof is omitted here due to space limit. �

B. Solve the LP Problem and Round Fractional Solu-
tions to Integer Solutions

In this part, we follow the idea of “randomized
rounding with alteration” which was proposed in [10].
The main algorithm is shown as follows.

Algorithm 1: Integer Programming Based Method
Require: A, b and w for P.6, α (random variable to be

optimized)
1: Solve P.6 by relaxing integer constraints, and obtain

x∗

2: Select each item j independently with probability
x∗j
αk , and let Cold be the set of selected items

3: for j = 1 to M ×N × L do
4: Delete item j if any of the two conditions is

satisfied:
• there exists an item l ∈ Cold\{j}, which is

“big” for constraint i, or
• sum of sizes of items in Cold that are “small”

for i is larger than 1.
5: end for
6: return Left items in Cold (denoted by Cnew)

Although our rounding idea is similar to the one pro-
posed in [10], our work is a generalization of [10].
More specifically, in [10], the authors set the bound-
ary between “big” and “small” items to 1/2, without
studying its impact on performance of the algorithm. In
our work, we consider a more general case, where we

set the boundary to β that is a random variable to be
optimized (see Definition 2). The trade-off of deciding
β is that if we increase β, the probability that item j
is deleted due to Dj is decreased while the probability
that item j is deleted due to Ej is increased, and vice
versa. We prove that 1/2 is the optimal value of β for
the proposed rounding algorithm, and thus 1

8 is the best
approximation factor we can obtain from Algorithm 1
(see Theorem 1). Without loss of generality, we assume
that bi = 1,∀i, and aij ≤ 1,∀aij ∈ A.

Definition 2: An item j is called “big” for constraint
i if aij > β, and “small” if aij ≤ β.

Before we prove the performance of this algorithm,
we must show feasibility of the finally returned items
Cnew. Since the proof is similar to the one in [10], we
omit it here due to space limit. Next, we prove two
important lemmas. Given the selected set of items Cold
in Step 2 of Algorithm 1, let Dj be the event that any
item j ∈ Cold is deleted due to the first condition in
Step 4 of Algorithm 1, and Ej be the event that item j
is deleted due to the second condition in that step. Then
the total probability that item j is deleted is Pr[Dj |j ∈
Cold] + Pr[Ej |j ∈ Cold]. Now we proceed to bound
the two probabilities respectively, by proving Lemma 3
and Lemma 4. First, Let Bi be the set of items that are
big for constraint i, and Fi =

∑
l∈Bi

x∗l , and we have
the following lemma.

Lemma 3: Pr[Dj |j ∈ Cold] ≤ Fi

αk , i.e., the
probability that item j is deleted from Cold due to the
first condition in Step 4 is less than Fi

αk .

Proof. Recall that for any item that is big for i, we have
aij > β. Therefore,

Fi =
∑
l∈Bi

x∗l <
∑
l∈Bi

ail
β
x∗l =

1

β

∑
l∈Bi

ailx
∗
l ≤

1

β
, (9)

where the last inequality is due to constraint i of P.6.
Hence we have Fi ∈ [0, 1

β ]. Moreover, we have the
following inequality.

Pr[Dj |j ∈ Cold] = Pr[∃l ∈ Bi\{j}|j ∈ Cold]

≤
∑

l∈Bi\{j}

Pr[l ∈ Cold|j ∈ Cold]

=
∑

l∈Bi\{j}

Pr[l ∈ Cold] =
∑

l∈Bi\{j}

x∗l
αk
≤ Fi
αk

,

(10)

where the first inequality is due to union bound, the
second equality is due to mutual independence of choos-
ing items, and the last inequality is due to definition of
Fi. �

Similarly, let Si be the set of items that are small for
constraint i, and we continue to find the probability that
item j is deleted due to the second condition in Step 4.
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Lemma 4: Pr[Ej |j ∈ Cold] ≤ (1 − βFi)/[αk(1 −
β)], i.e., the probability that item j is deleted from Cold
due to Ej is less than 1−βFi

αk(1−β) .

Proof. In this case, if item j is big for constraint i, then
we have Si = Si\{j}, and total size of items in Si must
be larger than 1. Furthermore, we have the following
inequality:

Pr[Ej |j ∈ Cold] = Pr

[∑
l∈Si

ail > 1|j ∈ Cold

]

= Pr

 ∑
l∈Si\{j}

ail > 1|j ∈ Cold


≤ Pr

 ∑
l∈Si\{j}

ail > 1− β|j ∈ Cold

 ,
(11)

where the second equality is due to Si = Si\{j}, and
the last inequality is because β ∈ [0, 1]. In contrast, if j
is small for constraint i, then Ej occurs only if the total
size of items in Si must be larger than 1. Since aij ≤ β,
the total size of items in Si\{j} must be larger than
(1−β). More specifically, we obtain the same result as
in Equation 11. In other words, we finally have:

Pr[Ej |j ∈ Cold] ≤ Pr

 ∑
l∈Si\{j}

ail > 1− β|j ∈ Cold


(12)

Furthermore, the expected total size of items in Si\{j}
can be calculated as

E

 ∑
l∈Si\{j}

ail|j ∈ Cold

 =
∑

l∈Si\{j}

ail
x∗j
αk

≤ 1

αk

(
1−

∑
l∈Bi

ailx
∗
j

)
≤ 1

αk
(1− βFi) ,

(13)

where the last inequality is due to Equation 9. Given
this inequality, we can further extend Equation 12:

Pr[Ej |j ∈ Cold] ≤ Pr

 ∑
l∈Si\{j}

ail > 1− β|j ∈ Cold


≤
E
[∑

l∈Si\{j} ail|j ∈ Cold
]

1− β
≤ 1− βFi
αk(1− β)

,

(14)
where the second inequality is due to Markov Inequality,
and the third inequality is due to Equation 13. �

Finally, we show the efficacy of the rounding algo-
rithm by proving the following theorem.

Theorem 1: Algorithm 1 is an 1
8

(
1− 1

k + 1
k2

)
-

approximation algorithm to P.6, and the approximation
factor becomes 1/8 for large k values.

Proof. Given Lemma 3, 4, the total probability that
item j is deleted in Step 2 is

Pr[j /∈ Cnew|j ∈ Cold] = Pr[Dj |j ∈ Cold]

+ Pr[Ej |j ∈ Cold] ≤
Fi
αk

+
1− βFi
αk(1− β)

=
1

αk

(
1− 2β

1− β
Fi +

1

1− β

)
.

(15)

Intuitively, to improve the approximation factor, we
need to delete as few items as possible on condition that
all constraints are satisfied. In other words, we should
minimize the probability Pr[j /∈ Cnew|j ∈ Cold] by
choosing optimal β∗. Since β ∈ [0, 1], we consider the
choice of β for two cases: (1) β ∈ [0, 1/2] and (2)
β ∈ [1/2, 1], and show that β∗ = 1/2.

Case 1: β ∈ [0, 1/2]. Recall that Fi ∈ [0, 1
β ]. Hence

(1− 2β) ≥ 0, and Equation 15 implies that

Pr[j /∈ Cnew|j ∈ Cold] ≤
1

αk

(
1− 2β

1− β
Fi +

1

1− β

)
≤ 1

αk

(
1− 2β

1− β
· 1

β
+

1

1− β

)
=

1

αk
· 1

β
,

(16)
where the right hand side is minimized for β = 1/2.

Case 2: β ∈ [1/2, 1]. In this case, we have (1−2β) ≤
0, and Equation 15 implies that

Pr[j /∈ Cnew|j ∈ Cold] ≤
1

αk

(
1− 2β

1− β
Fi +

1

1− β

)
≤ 1

αk

(
1− 2β

1− β
· 0 +

1

1− β

)
=

1

αk
· 1

(1− β)
,

(17)
where the right hand side is also minimized for β = 1/2.
Hence β∗ = 1/2, and the preceding two equations imply

Pr[j /∈ Cnew|j ∈ Cold] ≤
2

αk
. (18)

Finally, the probability of choosing set Cnew is

Pr[j ∈ Cnew] = Pr[j ∈ Cold] · Pr[j ∈ Cnew|j ∈ Cold]
= Pr[j ∈ Cold] · (1− Pr[j /∈ Cnew|j ∈ Cold])

≥
x∗j
αk

(
1− 2

α

)
.

(19)
It is easy to see that the right hand side is maximized
for α = 4, and thus Pr[j ∈ Cnew] ≥ x∗j

8k . Let xOPT be
the optimal solution to P.6, and Equation 19 implies∑
j∈Cnew

wjx
∗
j ≥

1

8k

∑
j∈Cold

wjx
∗
j

≥ 1

8k

(
k − 1 +

1

k

) n∑
j=1

wjx
OPT
j

=
1

8

(
1− 1

k
+

1

k2

) n∑
j=1

wjx
OPT
j

(20)
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Figure 2. Total Utility of Vehicles of Three Methods

where the second inequality is because LP relaxation
for the k-set packing problem has an integrality gap of
k − 1 + 1

k [10]. �

Since there are totally n iterations, and each iteration
contains (m + n) operations. Hence complexity of the
proposed algorithm is merely O(n(m + n)) = O(M ·
N · L · (2M +N +K +M ·N · L)).

V. NUMERICAL RESULTS

In this section, we consider the coexistence of a
mobile CVN with an 802.22 network in a 20km×20km
region, and the BS is placed at the center of the
region. M = 16 CPEs are uniformly distributed in
the whole region while vehicles move in the region
by following a “Random Waypoint Mobility” model.
In our simulations, mobility of vehicles would affect
their channel gains to their receivers and the BS.
A 6 MHz TVWS channel is used and residual idle
time of the channel (i.e., tp) is set to follow from
a Gamma distribution with k = 2 and β = 5.
CDF of the residual idle time can be calculated as
F (tp) = 1 − e−5tp − 5tpe

−5tp . Other simulation pa-
rameters are set as follows:N ∈ {5, 10 · · · 40};Ai ∈
{1, 2, 4, 8},∀i ∈ {1, 2 · · ·N};Pmax = 100;βj =
−90dB;σ0 = 100dBm/Hz;T = 9ms.

For each N , we run the preceding two algorithms and
the outer approximation algorithm [5] for 100 iterations,
each iteration consisting of 100 upstream frames. Note
that the outer-approximation algorithm is a near-optimal
algorithm with time complexity of 2n, where n is the
number of variables of the MINLP [5]. We compare the
performance of three algorithms in terms of total utility
of vehicles and time complexity of the algorithms.

Fig. 2 shows achieved utility values of three al-
gorithms with varying N . From this figure, we can
see that both the outer-approximation and primal-dual
algorithms are able to achieve near-optimal utility. Even
though the outer-approximation algorithm is able to
achieve slightly higher utility than the primal-dual al-
gorithm, its time complexity is significantly higher than
the latter one, which is shown in Fig. 3. Moreover, in
Fig. 2, we can roughly see that the integer programming
algorithm is able to achieve more than 1
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Figure 3. Time Complexity of Three Methods

utility, and the approximation factor increases with
increasing N . Furthermore, complexity of the integer
programming algorithm is significantly lower than the
other two algorithms.

VI. CONCLUSION

In this paper, we studied the coexistence problem
between a CVN and a 802.22 network. We show that
the problem is NP-hard and propose both a primal-dual
algorithm after converting the problem to a convex pro-
gramming problem, and a constant-factor approximation
algorithm by reformulating the problem to a k-column-
sparse packing problem. The design of distributed algo-
rithms with good approximation factors and low time
complexity is an important topic for our future work.
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