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Abstract—We study the sensitivity of stable rates to
imperfect sensing in cognitive radio systems comprised of
a set of source-destination pairs having different priorities.
The adopted cognitive access protocol allows the secondary
user not only to exploit the idle slots of the primary user
but also to transmit along with the primary user with some
probability. This is aimed at achieving full utilization of
the shared channel with capture. The abolition of strong
primacy, however, requires the secondary user to properly
regulate its multi-access probability in order not to impede
the primary user’s stability guarantee at any stabilizable
input demand. To this end, the stability region of the
system is characterized which describes the theoretical
limit on rates that can be pushed into the system while
maintaining the queues stable. Interestingly, we found
that even with non-zero sensing error rates, there exists
a condition for which we can achieve identical stability
region that is achieved with perfect sensing, i.e., the
stability is insensitive to the sensing errors. This happens
when relatively strong capture effect is present. For the
case when the stability is sensitive to the sensing errors,
we precisely quantify the loss due to the imperfect sensing
in terms of the size of the stability region.

I. INTRODUCTION

Studies on the spectrum usage have revealed that sub-
stantial portion of the licensed spectrum is underutilized,
which demands for a new technological breakthrough
to improve the current spectrum utilization [1]. The
cognitive radio communications, a means of opening up
licensed bands to unlicensed users, have the potential
to become a solution to the spectrum underutilization
problem [2]. The high-priority user, often called as the
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primary, is allowed to access the spectrum whenever it
needs, while the low-priority user, called as the sec-
ondary, is required to make a decision on its transmission
based on what the primary user does.

We start with some background study. In [3], an oppor-
tunistic scheduling policy for cognitive access systems
was developed. It is based on the collision channel
model, in which if more than one user transmits at
the same time, none of them are successful. This is
too pessimistic in the sense that a transmission may
succeed even in the presence of interference, which is
called capture effect [4]. Furthermore, the activity of the
primary user was modeled as a random process which
evolves independently of the secondary users. In other
words, even if the primary user’s packet is lost due to the
collision caused by a secondary user, the primary user
does not attempt to retransmit the lost packet. Unless
the primary user is servicing a certain loss-tolerant ap-
plication, the lost packets must be retransmitted through
a medium access control (MAC) protocol and those
retransmissions would certainly affect the primary user’s
activity. In [5], the unrealistic assumption made in [3]
was corrected for a reduced system model consisting of
a single primary and secondary user, but the results are
derived based on the assumption that the primary user
is always stable. In the absence of the knowledge on
the network stability region1, however, it is infeasible
to judge the stability of the primary user’s queue a
priori, and the characterization of the stability region
is usually not an easy problem especially when the
network nodes are interacting, i.e., the service process

1Stability region is defined as the set of arrival rate vectors for
which the queues in the system are stable, and a queue is said to
be stable if it reaches a steady state and does not drift to infinity. A
formal definition is given in Section II.
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Fig. 1. The cognitive access system model with sensing at the
secondary source

of one depends on the status of the others. In [6], such
interaction between users was fully taken into account
for a similar network model with that considered in
[5], and the stability region of the system was obtained
using the stochastic dominance technique, which was
originally introduced in [7].

We notice, however, that all the above-mentioned
studies, [3], [5], [6], are based on the ideal assumption
that the secondary user always knows the exact activity
of the primary user without an error. In reality, however,
such knowledge is acquired by sensing the primary user’s
signal at the secondary user, and it is imperfect because
the occurrence of errors is inevitable as long as there
exists randomness in the observed signal.

In this paper, we focus attention on the impact of
imperfect sensing on which the overall performance of
the cognitive radio system depends. The opportunistic
cognitive access protocol proposed in [6] is considered
again for the system consisting of a single primary and
secondary source-destination pair as shown in Fig. 1.
Specifically, the primary user transmits uninterruptedly
whenever its queue is non-empty. On the other hand, the
secondary user first observes the activity of the primary
user and, if it is sensed to be idle, it transmits with
probability 1 if its queue is non-empty. Otherwise, if
the primary user is sensed to be active, the secondary
user transmits with some probability p to take advantage
of capture although, at the same time, it risks the pri-
mary user’s success. Our design objective is, therefore,
to optimally choose the multi-access probability p of
the secondary user so as to maximize its own stable
throughput while ensuring the stability of the primary
user at given input rate demand and sensing error rates.

Our contributions in this work can be summarized as
follows. When compared to the previous work that over-
simplified the primary user’s activity, the primary user’s

activity in our work is precisely modeled through the
queueing dynamics. Furthermore, the imperfect spectrum
sensing, one of the most practical aspects of cognitive
access systems, is also incorporated in the model. After
that, the impact of imperfect sensing on the stability
of the system is precisely analyzed. The remarkable
result is that there exists a condition for which we can
achieve identical stability region that is achieved with
perfect sensing, which fundamentally eliminates the need
for the spectrum sensing itself. This is the case when
relatively strong capture effect exists. For the case when
the condition does not hold, we quantify the loss due to
the imperfect sensing in terms of the size of the stability
region.

The rest of the paper is organized as follows. In
Section II, we present the system model and revisit the
notion of stability. In Section III, we describe our main
result on the stability region of the cognitive radio system
in the presence of spectrum sensing errors. The proof of
our main result is presented in Section IV. Finally, we
draw some conclusions in Section V.

II. SYSTEM MODEL

We consider a system consisting of two source-
destination pairs, the primary pair (s1, d1) and the sec-
ondary pair (s2, d2), as shown in Fig. 1. Each source
si, i ∈ { 1, 2 }, has an infinite size queue for storing
the arriving packets of fixed length. Time is slotted
and the slot duration is equal to a packet transmission
time. The primary user’s transmission consists of the
preamble symbols followed by the encoded data symbols
of a packet, if the primary user transmits during the
corresponding time slot. It is assumed that the secondary
user knows the exact timing of the primary user’s frame
and performs sensing on the existence of the primary
user’s signal during the preamble symbol duration. Once
the secondary user decides to transmit, it transmits over
the primary user’s data symbol duration in a synchronous
manner. It is assumed that the acknowledgments (ACKs)
on the success of transmissions are sent back from the
destinations to the corresponding sources instantaneously
and error-free.

Let Qi(n) denote the number of packets buffered at si
at the beginning of the n-th slot which evolves according
to

Qi(n+ 1) = max[Qi(n)− µi(n), 0] +Ai(n)

where the stochastic processes {µi(n)}∞n=0 and
{Ai(n)}∞n=0 are sequences of binary random variables
representing the number of services and arrivals



at si during time slot n, respectively. The arrival
process {Ai(n)}∞n=0 is modeled as an independent and
identically distributed (i.i.d.) Bernoulli process with
E[Ai(n)] = λi, and the processes at different nodes are
assumed to be independent of each other. The service
process {µi(n)}∞n=0 depends jointly on the transmission
protocol, sensing errors, and the underlying channel
model, which governs the success of transmissions.
In the considered cognitive access protocol, s2 adapts
its transmission based on the observation made on
the activity of s1. Note that s1 can be falsely sensed
to be active by s2 when indeed it is idle or falsely
sensed to be idle when it is active. These are called
false alarm and miss, and their rates are denoted by
εf and εm, respectively. Also, denote by ε̄f = 1 − εf
and ε̄m = 1 − εm, which are probabilities of correct
rejection and hit, respectively. These terminologies were
borrowed from [8]. Please refer [9]–[11], and references
therein for more details on various spectrum sensing
techniques and their performance.

The channel model used in this work is a generalized
form of the packet-erasure model, which reflects the
effect of fading, attenuation, and interference at the
physical layer [12], [13]. Denote with qi|M the success
probability of user si when a set M of users are
transmitting simultaneously. It is related to the physical
layer parameters through

qi|M = Pr[γi|M ≥ θ] (1)

where γi|M denotes the signal-to-interference-plus-
noise-ratio (SINR) of the signal transmitted from si at
the designated receiver di given set M of simultaneous
transmitters, and θ is the threshold for the successful
decoding of the received signal, which depends on the
modulation scheme, target bit-error-rate, and the number
of bits in the packet, i.e., the transmission rate. Of
course, Eq. (1) is an approximation since it does treat
interference as white Gaussian noise, however, it is used
widely and represents a compromise between accuracy
and cross-layer modeling [14].

We adopted the notion of stability used in [15] where
the stability of a queue is equivalent to the existence of
a proper limiting distribution. That is, a queue is said to
be stable if

lim
n→∞

Pr[Qi(n) < x] = F (x) and lim
x→∞

F (x) = 1.

If a weaker condition holds, namely,

lim
x→∞

lim inf
n→∞

Pr[Qi(n) < x] = 1

the queue is said to be substable or bounded in prob-
ability. Otherwise, the queue is unstable. If Qi(n) is
an aperiodic and irreducible Markov chain defined on
a countable space, which is the case considered in this
paper, substability is equivalent to the stability and both
can be understood as the recurrence of the chain. Both
the positive and null recurrence imply stability because
a limiting distribution exists for both cases although the
latter may be degenerate. Loynes’ theorem, as it relates
to stability, plays a central role in our approach [16]. It
states that if the arrival and service processes of a queue
are strictly jointly stationary and the average arrival rate
is less than the average service rate, the queue is stable.
If the average arrival rate is greater than the average
service rate, the queue is unstable and the value of Qi(n)
approaches infinity almost surely. If they are equal, the
queue can be either stable or substable but in our case
the distinction is irrelevant, as mentioned earlier. Finally,
the stability region of the system is defined as the pair
of arrival rates (λ1, λ2) for which the queues at both s1

and s2 are stable by considering all feasible multi-access
probability p.

III. STABILITY IN THE PRESENCE OF SENSING

ERRORS

Define ∆i = qi|{i} − qi|{1,2}, i ∈ { 1, 2 }, which is
the difference between the success probabilities when si
transmits alone and when it transmits along with sj (j 6=
i). The quantity ∆i is strictly positive since interference
only reduces the probability of success. Let us further
define

η , q1|{1}q2|{1,2} + q2|{2}q1|{1,2} − q1|{1}q2|{2}

which can be viewed as an indicator of the degree of the
capture effect. In the case of the collision channel, for
instance, it is given by qi|{i} = 1 and qi|{1,2} = 0, ∀i ∈
{ 1, 2 } and, thus, η = −1. On the contrary, in the case of
the perfect orthogonal channel with qi|{i} = qi|{1,2} = 1,
∀i ∈ { 1, 2 }, we have η = 1.

Described below is our main finding, which is a
sufficient and necessary condition for the stability of the
considered cognitive access system.

Case A: If η ≥ 0, the stability region of the system is
given by the union of the following subregions:

RA1 =
{

(λ1, λ2) : λ2 ≤ f1(λ1), 0 ≤ λ1 ≤ IA1
}

RA2 =
{

(λ1, λ2) : λ2 ≤ f2(λ1), IA1 < λ1 ≤ q1|{1}
}

where
f1(λ1) = q2|{2} −

∆2

q1|{1,2}
λ1,
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Fig. 2. Illustration of the stability region for Case A (parameter
setting: q1|{1} = q2|{2} = 0.9, q1|{1,2} = q2|{1,2} = 0.6 with any
positive values of εm and εf )

f2(λ1) =
q2|{1,2}

∆1
(q1|{1} − λ1),

and IA1 = q1|{1,2}. The region is depicted in Fig. 2, which
is a convex polygon. The entire boundary of the region
can be achieved with multi-access probability p∗ = 1.
Note that the stability region does not depend on sensing
error rates.

Case B: If −q2|{2}εf∆1 ≤ η < 0, the stability region
is given by the union of the following subregions:

RB1 =
{

(λ1, λ2) : λ2 ≤ f1(λ1), 0 ≤ λ1 ≤ IB1
}

RB2 =
{

(λ1, λ2) : λ2 ≤ f3(λ1), IB1 < λ1 ≤ IB2
}

RB3 =
{

(λ1, λ2) : λ2 ≤ f2(λ1), IB2 < λ1 ≤ q1|{1}
}

where

f3(λ1) =
(
√
−η′−

√
q2|{2}εfλ1)2

ε̄m∆1
+
q2|{1,2}(q1|{1}−λ1)

∆1
,

η′ = ε̄mη − q1|{1,2}q2|{2}εf , IB1 =
q21|{1,2}q2|{2}εf

−η′ , and
IB2 = −η′

q2|{2}εf
. Note that η < 0 implies η′ < 0 but the

converse is not true. The boundary of the subregion RB1
is achieved with p∗ = 1, that of RB2 is achieved with

p∗ =
q1|{1} − εm∆1 −

√
−η′λ1

q2|{2}εf

ε̄m∆1
(2)

and that of RB3 is achieved with p∗ given by Eq. (2)
evaluated at λ1 = IB2 . The region is non-convex as
illustrated in Fig. 3.
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Fig. 3. Illustration of the stability region for Case B (parameter
setting: q1|{1} = q2|{2} = 0.9, q1|{1,2} = q2|{1,2} = 0.4, εm =
εf = 0.3)

Case C: If η < −q2|{2}εf∆1, the stability region is
given by the union of the following subregions:

RC1 =
{

(λ1, λ2) : λ2 ≤ f1(λ1), 0 ≤ λ1 ≤ IC1
}

RC2 =
{

(λ1, λ2) : λ2 ≤ f3(λ1), IC1 < λ1 ≤ IC2
}

RC3 =
{

(λ1, λ2) : λ2 ≤ f4(λ1), IC2 < λ1 ≤ IC3
}

RC4 =
{

(λ1, λ2) : λ2 ≤ f2(λ1), IC3 < λ1 ≤ q1|{1}
}

where

f4(λ1) = q2|{2}ε̄f −
q2|{2}ε̄f − q2|{1,2}εm

q1|{1} − εm∆1
λ1,

IC1 =
q21|{1,2}q2|{2}εf

−η′ , IC2 =
q2|{2}εf (q1|{1}−εm∆1)2

−η , and
IC3 = q1|{1} − εm∆1. As in Case B, the boundary of
subregion RC1 is achieved with p∗ = 1, and that of RC2
is achieved with p∗ given in Eq. (2) which diminishes
from one to zero as λ1 increases from IC1 to IC2 . For
the boundary of subregions RC3 and RC4 , it is given by
p∗ = 0. The entire region, which is depicted in Fig. 4,
is non-convex as in Case B.

Remark 3.1: Consider the case with perfect sensing.
By substituting εf = εm = 0 into the descriptions of the
stability region given above, we find the stability region
for the case with perfect sensing, which reconfirms the
previous result obtained in [6]. For comparison’s sake,
it is also depicted in Fig. 2 to 4 along with the case
of imperfect sensing. Most importantly, it is observed
from Fig. 2 that the stability region is not affected by the
sensing errors when η ≥ 0. This is because the boundary
achieving multi-access probability is p∗ = 1 regardless
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Fig. 4. Illustration of the stability region for Case C (parameter
setting: q1|{1} = q2|{2} = 0.9, q1|{1,2} = q2|{1,2} = 0.3, εm =
εf = 0.3)

of the values of sensing error rates. In other words,
when relatively strong capture effect is present, which
is indicated by η, it is beneficial to let the secondary
node access the channel persistently and aggressively
regardless of the sensing outcome whenever it has non-
empty queue. This fundamentally eliminates the need for
sensing itself.

IV. ANALYSIS USING THE STOCHASTIC DOMINANCE

TECHNIQUE

In this section, we provide details on the derivation
of our main results presented in the previous section.
In the considered protocol, primary user s1 transmits
independently of the actions made by the secondary user
s2. Secondary user s2, on the other hand, makes use of
the ability to sense before transmitting. The probability
that s1 is sensed to be idle is ε̄f when s1 is indeed
idle and εm when s1 is actually active. Similarly, the
probability that s1 is sensed to be active is ε̄m when it
is indeed active and εf when it is actually idle. Taking
these into account, the average service rates of the users
can be written as

µ1 = q1|{1} (Pr[Q2 = 0] + Pr[Q2 6= 0]ε̄m(1− p))
+ q1|{1,2}Pr[Q2 6= 0] (εm + ε̄mp) (3)

and

µ2 = q2|{2}Pr[Q1 = 0](ε̄f + εfp)

+ q2|{1,2}Pr[Q1 6= 0] (εm + ε̄mp) (4)

where Qi denotes the steady-state number of packets in
the queue at si.

Note that the rates of the individual departure pro-
cesses cannot be computed directly, as they are interde-
pendent, without knowing the stationary probability of
the joint queue length process. We bypass this difficulty
by using the stochastic dominance technique introduced
in [7] and also exploited in [12], [17]–[19]. The essence
of the stochastic dominance technique is to decouple
the interaction between queues via the construction of
a hypothetical system; this hypothetical system operates
as follows: i) the packet arrivals at each node occur at
exactly the same instants as in the original system, ii)
the coin toss that determines the multi-access by the
secondary node has exactly the same outcome in both
systems, iii) however, one of the nodes in the system
continues to transmit dummy packets even when its
packet queue is empty. It is obvious that sample-pathwise
the queue sizes in the dominant system will never be
smaller than their counterparts in the original system,
provided the queues start with identical initial conditions.
Thus, the stability condition obtained for the dominant
system is a sufficient condition for the stability of the
original system. It turns out, however, that it is indeed
sufficient and necessary, which will be discussed in detail
later in this section.

A. First Dominant System: Secondary User Transmits
Dummy Packets

Construct a hypothetical system which is identical to
the original system except that the secondary user s2

transmits dummy packets when it decides to transmit but
its queue is empty. Thus, s2 transmits with probability
1 if s1 is sensed to be idle and with probability p if s1

is sensed to be active regardless of the emptiness of its
queue. Hence, from (3), the average service rate of s1 is
obtained as

µ1 = q1|{1}ε̄m(1− p) + q1|{1,2} (εm + ε̄mp)

which can be rewritten as

µ1 = q1|{1} − εm∆1 − ε̄m∆1p (5)

By Loynes’ Theorem, the queue at s1 is stable if λ1 ≤
µ1, and the content size follows a discrete-time M /M /1
model with the arrival rate λ1 and the service rate µ1.
For a stable input rate λ1, the queue at s1 empties out



with probability given by

Pr[Q1 = 0] = 1− λ1

µ1

= 1− λ1

q1|{1} − εm∆1 − ε̄m∆1p
(6)

By substituting (6) into (4), the average service rate of
the queue at s2 is obtained as

µ2 = q2|{2} (ε̄f + εfp)

+
q2|{1,2}εm − q2|{2}ε̄f + (q2|{1,2}ε̄m − q2|{2}εf )p

q1|{1} − εm∆1 − ε̄m∆1p
λ1

(7)

and the queue at s2 is stable if λ2 ≤ µ2. Consequently,
for a given multi-access probability p, stable input
rate pairs (λ1, λ2) are those componentwise less than
(µ1, µ2).

What is important is that the boundary of the stability
region of the dominant system coincides with that of the
original system for the range of values of λ1 that is less
than µ1 given by Eq. (5)2. The reason is this: if for some
λ2, the queue at s2 is unstable in the hypothetical system,
then Q2(n) approaches infinity almost surely. Note that
as long as the queue does not empty, the behavior of the
hypothetical system and the original system are identical,
provided that they start from the same initial conditions,
since dummy packets will never have to be used. A
sample-path that goes to infinity without visiting the
empty state, which is a feasible one for a queue that
is unstable, will be identical for both the hypothetical
and the original systems. Therefore, the instability of
the hypothetical system implies the instability of the
original system. This is the so-called indistinguishability
argument [7].

We now take the closure of the stability region over
the multi-access probability p. This can be equivalently
done by solving the following optimization problem in
which we maximize µ2 while guaranteeing the stability
of the queue at s1 for a given value of λ1 as follows:

maximize µ2 (8)

subject to 0 ≤ λ1 ≤ q1|{1} − εm∆1 − ε̄m∆1p (9)

0 ≤ p ≤ 1 (10)

where the expression for µ2 is given in (7).

2This condition is sufficient for the stability of the queue at s1.
Thus, in the following, we are only concerned about the stability of
the queue at s2.

To maximize µ2 over p, we need to understand their
relationship. Differentiating µ2 with respect to p gives

∂µ2

∂p
= q2|{2}εf +

η′λ1(
q1|{1} − εm∆1 − ε̄m∆1p

)2
where η′ was defined as η′ = ε̄mη − q1|{1,2}q2|{2}εf in
the previous section. When η ≥ 0, which is equivalent
to the case when η′ ≥ −q1|{1,2}q2|{2}εf , we observe that

∂µ2

∂p
≥ q2|{2}εf −

q1|{1,2}q2|{2}εfλ1(
q1|{1} − εm∆1 − ε̄m∆1p

)2
≥ q2|{2}εf

(
1−

q1|{1,2}

q1|{1} − εm∆1 − ε̄m∆1p

)
≥ 0

where the last inequality follows from

q1|{1} − εm∆1 − ε̄m∆1p ≥ q1|{1} − εm∆1 − ε̄m∆1

= q1|{1} −∆1

= q1|{1,2}

Thus, if η ≥ 0, µ2 is a non-decreasing function of p.
Note, however, that having η < 0 does not necessarily
mean that µ2 is a decreasing function of p. By differen-
tiating µ2 once again, we have

∂2µ2

∂p2
=

2ε̄m∆1η
′λ1(

q1|{1} − εm∆1 − ε̄m∆1p
)3

Since the denominator is strictly positive, if η′ ≥ 0, µ2

is convex with respect to p. Otherwise, it is concave with
respect to p.

1) The case when η ≥ 0: In this case, µ2 is a non-
decreasing function of p. Thus, maximizing p∗ is the
largest value satisfying both constraints in Eqs. (9) and
(10), that is

p∗ = min

[
1,
q1|{1} − εm∆1 − λ1

ε̄m∆1

]
Note that the role of Eq. (9) is to impose an upper limit
on p∗ so that the stability of s1 is not hampered. For
0 ≤ λ1 ≤ q1|{1,2}, it is given by p∗ = 1, and the
corresponding maximum function value is obtained as

µ∗2,line1
= q2|{2} −

∆2

q1|{1,2}
λ1 (11)

For q1|{1,2} < λ1 ≤ q1|{1} − εm∆1, it is given by
p∗ = (q1|{1}−εm∆1−λ1)/ε̄m∆1, and the corresponding
maximum function value is obtained as

µ∗2,line2
=
q2|{1,2}

∆1
(q1|{1} − λ1) (12)

Note that if λ1 > q1|{1} − εm∆1, the constraint in Eq.
(9) cannot be met with any feasible p ∈ [0, 1] and, thus,
µ2 is not defined.



2) The case when −q2|{2}εf∆1 ≤ η < 0: In this case,
µ2 is concave with respect to p and, thus, equating the
first derivative to zero gives the maximizing p∗ as

p∗ =
q1|{1} − εm∆1 −

√
−η′λ1

q2|{2}εf

ε̄m∆1
(13)

and the corresponding maximum function value is ob-
tained as

µ∗2,curve =
(
√
−η′−

√
q2|{2}εfλ1)2

ε̄m∆1
+
q2|{1,2}(q1|{1} −λ1)

∆1

Note that µ∗2,curve is feasible when both constraints in
Eqs. (9) and (10) are satisfied. For used p∗, Eq. (9)
becomes

λ1 ≤
−η′

q2|{2}εf
(14)

and Eq. (10) becomes

q2
1|{1,2}q2|{2}εf

−η′
≤ λ1 ≤

q2|{2}εf (q1|{1} − εm∆1)2

−η′
(15)

which is obtained by rearranging Eq. (13) and substitut-
ing the extreme values of p. For the considered case
when −q2|{2}εf∆1 ≤ η < 0, the intersection of the
ranges of values of λ1 determined by Eqs. (14) and (15)
is given by

q2
1|{1,2}q2|{2}εf

−η′
≤ λ1 ≤

−η′

q2|{2}εf
(16)

On the other hand, if λ1 lies on the left-hand side
(LHS) of the range of Eq. (16), we observe that

∂µ2

∂p
≥ q2|{2}εf

(
1−

(
q1|{1,2}

q1|{1} − εm∆1 − ε̄m∆1p

)2
)

≥ 0

where we used the facts that η′ is negative for the
considered case and q1|{1} − εm∆1 − ε̄m∆1p ≥ q1|{1,2}
as observed in the previous case. Since µ2 is a non-
decreasing function of p, p∗ = 1 and the maximum
function value is given by µ∗2,line1

in Eq. (11). Note that
the constraint in Eq. (9) is automatically satisfied when
λ1 is on the LHS of the range of Eq. (16).

Next consider the case when λ1 lies on the right-hand
side (RHS) of the range of Eq. (16). This is the case
that, if p∗ is set according to Eq. (13), the stability of
s1 is lost. For the stability of s1, it is required that the
multi-access probability p is bounded above as

p ≤
q1|{1} − εm∆1 − λ1

ε̄m∆1
<
q1|{1} − εm∆1 + η′

q2|{2}εf

ε̄m∆1

For p satisfying the above inequality, we observe that

∂µ2

∂p
> q2|{2}εf

×

(
1−

(
−η′

q2|{2}εf (q1|{1} − εm∆1 − ε̄m∆1p)

)2
)

> 0

In other words, µ2 is an increasing function of p and,
hence, we have

p∗ =
q1|{1} − εm∆1 − λ1

ε̄m∆1

for λ1 on the RHS of the range of Eq. (16). The corre-
sponding maximum function value is given by µ∗2,line2

in
Eq. (12). Again, if λ1 > q1|{1}− εm∆1, the constraint in
Eq. (9) cannot be met with any feasible p ∈ [0, 1] and,
thus, µ2 is not defined.

3) The case when η < −q2|{2}εf∆1: In this case,
µ2 is still concave with respect to p, but the range of
µ∗2,curve, which was the intersection of the ranges of
values of λ1 determined by Eqs. (14) and (15), would
be identical with the range specified by (15). Again, for
λ1 on the LHS of the range of Eq. (15), µ2 is a non-
decreasing function of p, and the maximum function
value is given by µ∗2,line1

as in the previous case. On
the other hand, if λ1 lies on the RHS of Eq. (15), we
observe that

∂µ2

∂p
< q2|{2}εf

(
1−

(
q1|{1} − εm∆1

q1|{1} − εm∆1 − ε̄m∆1p

)2
)

< 0

Therefore, µ2 is a decreasing function of p and, hence,
by substituting p∗ = 0 into (8), we have

µ∗2,line3
= q2|{2}ε̄f −

q2|{2}ε̄f − q2|{1,2}εm

q1|{1} − εm∆1
λ1

For λ1 > q1|{1} − εm∆1, µ2 is not defined.

B. Second Dominant System: Primary User Transmits
Dummy Packets

Construct a parallel dominant system in which the
primary user s1 is now transmitting dummy packets
when its packet queue is empty. Since s1 transmits with
probability 1 in this dominant system, the average service
rate of s2 in (4) becomes

µ2 = q2|{1,2}(εm + ε̄mp)



By Loynes’ theorem, the queue at s2 is stable if λ2 ≤ µ2,
and it empties out with probability given by

Pr[Q2 = 0] = 1− λ2

q2|{1,2}(εm + ε̄mp)
(17)

Substituting (17) into (3) and after rearranging the terms,
the stability condition for the queue at s1 is obtained as

λ1 ≤ µ1 = q1|{1} −
∆1

q2|{1,2}
λ2 (18)

Observe that Eq. (18) can be rewritten as

λ2 ≤
q2|{1,2}

∆1
(q1|{1} − λ1) (19)

whose boundary is identical with µ∗2,line2
in Eq. (12) for

the range of λ1 ≥ q1|{1}−∆1(εm+ ε̄mp). Since Eq. (19)
does not depend on p, there is no need to optimize over
p, and p only has the effect of changing the range of λ1.

The resulting stability region of the system is the union
of the stability region of the two dominant systems. From
Section IV-A, the stability region of the first dominant
system is defined for 0 ≤ λ1 ≤ q1|{1} − εm∆1. The
stability region of the second dominant system is defined
by Eq. (19) for λ1 ≥ q1|{1} −∆1(εm + ε̄mp). Finally, it
is not difficult to observe that the union of the stability
region of the first dominant system and that of the second
dominant system is unique and complete for any value
of p ∈ [0, 1] and for all three cases of having different
values of η as described in Section III.

V. CONCLUDING REMARKS

We studied the sensitivity of stable rates in cognitive
radio systems to the sensing errors. Surprisingly, we
observed that when there exists relatively strong capture
effect, the system stability is insensitive to the sensing
errors. In other words, we can achieve the identical
stability region that is achieved with perfect sensing,
even with positive sensing error rates. This is remarkable
because the spectrum sensing itself becomes unnecessary
in terms of the achieved stability region. On the other
hand, when the stability is sensitive to the sensing
errors, the impact of imperfect sensing on the stability
region was precisely quantified. To extend the analysis
to more general networks presents serious difficulties
of tractability due to the complex interaction between
the nodes and may require approximations or alternative
approaches that go beyond the scope of this paper.
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