Relay Node Placement for Performance
Enhancement with Uncertain Demand: A Robust
Optimization Approach

Eduardo Feo Flushing
Dalle Molle Institute for Artificial Intelligence (IDSIA)
Lugano, Switzerland
Email: eduardo@idsia.ch

Abstract—The relay node placement problem in wireless
sensor networks strongly depends on the data traffic patterns,
which can be dynamically changing and not known with precision
in advance. In our work, locations of the relay nodes need to be
defined with the aim of improving network performance. While
in current literature a uniform and constant traffic generation is
usually assumed, we propose a robust optimization methodology
to deal with the uncertainty in nodes’ traffic generation. Solving
to optimality the resulting robust optimization problem would
be extremely expensive in computational terms, therefore we
propose a distinctive robustness measure aiming at dramatically
reducing computational costs without sacrificing robustness. The
resulting optimization problem is tackled using a bio-inspired
meta-heuristic, namely a genetic algorithm. The approach is
validated through extensive simulation experiments. Results show
that the performance degradation of the robust solutions is
minimized in comparison with the solutions obtained ignoring
the uncertainty.

I. INTRODUCTION

A wireless sensor network (WSN) consists of a set sensor
nodes (SNs) that are equipped with sensing and limited pro-
cessing capabilities, and can locally communicate with each
other through a wireless medium [1]. In typical applications,
the data generated by the sensor nodes need to be transmitted
to and aggregated and processed at base stations (BSs). The
general model for the forwarding of the data from SNs to BSs
is based on the definition and use of multi-hop routing paths.

Since a WSN can operate for relatively long times and/or
it can be embedded in dynamic or hostile environments, a
core issue in WSNs is the definition of effective strategies
for the time maintenance of network operativity and/or for its
adaptation to external or internal changes. In this direction, a
wealth of research has considered the use of special nodes,
referred to as relay nodes (RNs), that can be deployed and
added to the WSN after the network has been put in place.
RNs can be positioned at precise locations by hand, or they
can be part of a mobile robotic unit, such that they can be
deployed autonomously or on-demand.

In a previous work [2], we presented the relay node
placement for performance enhancement problem (RNP-PE in
short), defined as follows. Given a set of locations where it
is feasible to deploy a restricted number of available RN,
the objective is to select from this set the locations where
the RNs can be positioned in order to improve throughput
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and end-to-end packet delays for the data gathered at BSs.
We tackled the problem using a flow-based linear, mixed
integer mathematical program (MIP) including a number of
constraints and penalty components, aimed at closely modeling
the specific characteristics of the wireless environment, and a
number of heuristics, aimed at speeding up the computations.
The model is solved to optimality using a standard solver,
finding the best locations where to position the available RNs
and the paths to route data flows. The experimental evaluation
presented in [2] both in simulation and in a real sensor
network, showed that the provided solutions can significantly
improve the overall network performance in terms of data
throughput at the base stations.

One of the limitations of the proposed model is that it
requires as input the data rates of all nodes in the network.
That is, it assumes a full knowledge of the traffic generation
rates at the nodes, which are also assumed to be constant.
Such assumptions are common to most of the offline models
for relay node placement presented in the current literature (see
related work), since an optimal deployment of relay nodes can
only be computed on the basis of both the knowledge of the
network topology and the expected traffic load. However, in
many real-world applications, traffic loads can be dynamically
changing and/or not known with precision in advance. For
instance, the sensor nodes close to a detected event will likely
increase their data rate generation while responding to the
event, which is a common situation in intruder detection in
surveillance applications, or in the occurrence of natural events
in environmental monitoring. If the issue of changing data rates
is not explicitly addressed in the model, the obtained solution
can either be unrealistic or not robust to the actual variations.

In this paper we propose to address this issue by taking a
robust optimization (RO) approach for the RNP-PE problem.
Robust optimization is a relatively novel approach to tackle
problems affected by uncertainty in the provided input data.
The goal is to provide a way to find solutions whose quality
is not significantly decreased by adverse realizations of the
uncertain data. In the context of RNP-PE problems, instead
of considering a fixed traffic generation rate at a node, we
consider a discrete set of possible data rates for each single
node. This set summarizes the overall knowledge we have
regarding the possible realizations of the random variables
associated to the data generation rates. Since typical RO
formulations reduce to NP-hard optimization problems which



require massive computational resources to solve to optimal-
ity, we propose a heuristic robust formulation, based on an
approximated robustness metric following a min-max regret
criterion [3], [4]. The resulting optimization problem is solved
by means of a bio-inspired meta-heuristic, namely a genetic
algorithm.

The main scientific contribution of this work, compared to
previous MIP models for relay node placement, is to present a
robust and computationally affordable optimization approach
that addresses network enhancement issues under uncertain
network traffic demands, and explicitly includes most of the
critical aspects of interference and congestion in wireless
environments. In particular, we show through extensive simula-
tion experiments that placements obtained using the proposed
heuristic robust formulation provide a better performance,
under different network traffic conditions, in comparison with
the placements obtained when ignoring uncertainties on traffic
demands (e.g., assuming fixed data rates).

The rest of the paper is organized as follows. In section
I, we outline the relevant work on relay placement in wire-
less networks and robust optimization and its applications.
A brief overview of the relay node placement for perfor-
mance enhancement is presented in section III. In section
IV, we introduce the robust optimization methodology which
considers node demand uncertainty. The meta-heuristic solu-
tion approach of the resulting robust optimization problem
is presented in section V. Next, in section VI, we present
an extensive evaluation using network simulations in which
the robust solutions are compared against solutions obtained
without the consideration of uncertain node demand. Finally,
we draw conclusions and discuss future work in section VII.

II. RELATED WORK

In this section, we first give a brief overview of the
relay node placement problem in WSNs, pointing out the
differences between our work and the other most relevant
approaches. We then introduce related literature on the field
of robust optimization, providing examples of its application
in several areas, with a focus on networking, and discussing the
relationship with methodology that we followed in our work.

In recent years, a number of studies in WSNs have consid-
ered the relay node placement problem (RNP) under different
requirements and objectives. Most of the existing work has
focused on the deployment of RNs for the provisioning of:
connectivity [5]-[11], extended network lifetime [12], energy-
efficient or balanced data gathering [13]-[15], and survivabil-
ity and fault tolerance [9], [11], [16], [17]. The approaches
focusing on performance metrics other than connectivity and
survivability are reviewed in the following, where for each
approach we single out some core differences, in terms of
objectives and modeling, with the work which we present in
this paper.

Falck et al. [13] have considered the RNP in the context
of balanced data gathering. They presented the problem of
finding an optimal routing as a linear program, but with the
objective of achieving load balancing. The placement of RNs
is approximated by adding relays one at a time. Instead, we
directly include the placement in our mathematical model, and
jointly solve both problems (i.e., optimal routing and relay

placement). Patel et al. [14] examined the joint problem of
deploying SNs, RNs, and BSs on a set of feasible locations
and finding bandwidth-constrained energy-efficient routes with
guaranteed coverage, connectivity, bandwidth, and robustness.
These authors, which also make the use of a linear program
formulation, have considered as objective maximizing network
utilization when RNs can be deployed only in a set of feasible
sites. Kashyap et al. [18] studied the placement of RNs with
the goal of reducing maximum link load for a given traffic
imposed on the sensors. Similarly to us, they considered flat
architectures, called backbone networks. However no data-
aggregation base stations are included in the network: traffic
data are exchanged between pairs of nodes in the network
(called profile entries). The adopted model restricts the place-
ment of the relays to the lines joining the backbone nodes,
aiming to determine the minimum number of relays needed to
link two nodes.

Ergen and Varaiya [15] considered the problem of deter-
mining optimal locations for RNs together with optimal energy
provisioning, such that the network operates for the desired
lifetime with minimum energy expenditure. These authors con-
sidered a non-linear programming model and established a set
of possible locations for the RNs based on a grid partitioning.
The work mostly focuses on energy-efficiency, such that the
quality of the solutions in terms of network performance is not
really investigated, and considers a simplistic radio propagation
model. In [19], the authors studied the joint problem of
placing relay nodes and scheduling node transmissions in
the presence of controlled mobility. The approach aims to
maximize the lowest weighted throughput among the nodes
in the network. Only star topologies are considered, in which
nodes communicate to each other only through a relay node.
In our work, we aim to exploit the positioning of relay nodes
to maximize the overall network throughput by the creation
of new data routes and the reduction of traffic congestion;
moreover, we consider multi-hop topologies. Capone et al. [20]
proposed a network flow based model for the optimal routing
in wireless mesh networks addressing TDMA networks and
focusing on traffic scheduling. Due to their simplicity, CSMA
based MAC protocols are preferred in WSNs. Therefore, our
model explicitly considers this type of network. Finally, Wang
et al. [12] studied the deployment of RNs to maximize network
lifetime in two-tiered WSNs with a single base station. We con-
sider general flat topologies and the presence of multiple BSs,
to address large-scale scenarios. None of the previous works
considered uncertainty in the problem data. In this work, we
tackle the relay node placement for performance enhancement
in which the node traffic generation is not assumed to be fixed,
but lies in a discrete set of possible data rates, representing
possible scenarios.

In general terms, modeling and optimizing real-world sys-
tems usually involves dealing with uncertain data. Addressing
this uncertainty, in specific for mathematical programming, has
long been the focus of research of the operations research com-
munity. Probabilistic approaches, such as Stochastic Optimiza-
tion [21], assume that the uncertain data can be characterized
by a probability distribution, and therefore aim optimize the
expected value of the objective function. However, in most
of the cases, the exact probabilistic nature of the data is not
known. Moreover, the resulting optimization problems are, in
general, not tractable [22].



Robust Optimization [23], is a more recent approach to
optimization under uncertainty. RO was originally introduced
in [24] for convex optimization and in [25] for semi-definite
programming. Under a RO framework, the uncertainty model
is not probabilistic, but deterministic and scenario-based. A
scenario is a possible realization of values of the uncertain
parameters. In the interval scenario case, possible values of
each uncertain parameter are continuous and bounded by a
numerical interval. In the discrete scenario case, as the one
we consider, the possible realizations are described by an
enumerable set. There are several possible optimization criteria
that can be used in RO. One of the most commonly used one
is the min-max regret criterion. A min-max regret approach
aims at minimizing the maximum deviation, over all possible
scenarios, between the value of the proposed solution and the
value of the optimal solution of the corresponding scenario [3].

Robust Optimization has been used recently in several
applications, such as vehicle routing problems [26], and supply
chain management problems [27]. In the context of network-
ing, the RO methodology has gained a lot of attention in
recent years. In [28], the authors propose a robust approach
to interference management in a cellular networks. The work
presented in [29], considers several optimization models in
WSNs, guided by energy constraints, and subject to distance
uncertainty. In [30], wireless network planning under uncertain
bit rate requirements and channel conditions is tackled using a
robust optimization approach. The approach, based on the sem-
inal work of [22], enables the user to set a trade-off between
robustness and profit by adjusting a robustness parameter. A
robust approach for resource allocation problems in wireless
relay networks is presented in [31] through a methodology
that handles for uncertainties in the global channel state
information. The results show that ignoring these uncertainties
often leads to poor performance, highlighting the relevance of
robust optimization in real-world wireless networks.

Unlike traditional RO approaches, such as the ones pre-
sented above, we propose a distinctive robustness measure
aiming at dramatically reducing computational costs without
sacrificing robustness. The proposed measure is a heuristic
alternative to the min-max regret criterion. The solution of the
resulting combinatorial optimization problem is then tackled
by using a meta-heuristic algorithm.

III. THE RNP-PE MODEL

We model the WSN as a set of SNs and BSs located in a set
of known positions S and B, respectively. SNs both generate
and forward data packets towards one of the BSs in multi-
hop fashion (a data flow can be split over multiple paths).
Initially, we assume that the characteristics of data generation
characteristics for each SN are known. All nodes communicate
with each other within the communication range r. A set of
K RN is also available, their role is to forward data received
from other nodes. The placement of node relays is restricted
to a numerable set of candidate locations denoted as R. We
formalize the RNP-PE by a MIP model based on a minimum
cost flow formulation as follows.

Let G = (V,E) be a connected digraph representing a
WSN, where V = N = SUBU R is the set of nodes, and
E is the set of communication links. v : E — R is a link

cost function, and 7 : S — R is a data generation (traffic
load) function, expressed in the data per second generated by
an SN In the following, we measure 7 in terms of flow units,
funit> expressed as bytes/sec. Data flows and relay positions
define the two sets of decision variables. The flow variable f;;
denotes the amount of flow through link (4, 7), expressed in
flow units. The binary positional variable y; indicates whether
location ¢ € R is used to circulate flow or not. When y;
is set to 1 in a solution, an RN is to be positioned at the
corresponding relay location. A full solution specifies both
flows and relay positions. The SN-to-BS routes are defined in
the routing-tree induced by the set {(i, j) € E | f;; > 0}. We
formalize the RNP-PE by a linear, mixed integer mathematical
programming (MIP) model based on a minimum cost flow
formulation that includes a number of additional constraints
and penalty components:
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Constraints (2-3) correspond to the flow definition. The
number of available RNs is limited to K constraints (4-6).
Since the optimal solution may be obtained using a number
of RNs k£ < K, we define a penalty factor in the objective
(1) to favor the use of a minimal amount of RNs: any optimal
solution using k relays needs to provide a minimal gain R with
respect to the solution obtained using k—1 relays. Parameter R
can be adjusted according to the problem instance (e.g., relay
node availability, economic cost).

Shared wireless channels in WSNs are necessarily
bandwidth-limited. This condition is reflected by link capac-
ity parameter L.,,, which is the nominal amount of data
(bytes/sec) that can be transmitted by a wireless link in
the network (assuming the same capacity for all links), and
constraint (7).

For a node i, the routing in-degree (6; ) is the number



of i’s neighbors using ¢ to relay data. A higher value of
0; , increases the chances of packet losses at ¢ due to higher
probability of simultaneous transmissions from nodes having it
as next-hop. In the case of CSMA MAC protocols, commonly
used in WSNs, some of these neighbor nodes may not be
aware of each others’ transmissions (hidden terminal problem),
therefore they might initiate overlapping transmissions, thus
provoking packet losses at ¢ due to (a) interference caused by
one of the transmissions, or (b) the busy state of the transceiver
while engaged in the reception of data. In order overcome
these problems, we provide the capability of limiting the value
of ¢; in the solution routing trees to 4,,,, (set to 10 in the

max
experiments). This is accomplished through constraints (8 - 9).

Wireless interference between different data flows is one
of major factors of performance degradation [32]. In order
tackle this issue, we limit the amount of flow F] generated
and relayed by all neighbors of an SN i € S, located within a
disk of radius r centered in 7. Since F) includes all wireless
transmissions in ¢’s neighborhood, limiting it aims to reduce
interference when ¢ acts as receiver and medium contention
problems when ¢ attempts to send data. Moreover, it also
prevents the formation of highly congested regions, favoring
the generation of balanced routing trees, which in turn gives
a balanced energy depletion. This is realized by penalizing
solutions in which F; exceeds a defined threshold (F},qz),
including in the objective function a penalty component.

The calculation of F; requires to sum up the outgoing
flows from all ¢’s neighbors. Whenever F)" exceeds the prede-
fined threshold, a binary variable p; takes value 1. Constraints
(10) formulate this condition. In order to use p for inclusion in
the objective function as penalty, we derive a rough estimation,
F, of the optimal solution value of problem, without penalties,
and we use it as a penalty score for the violation of the
circulating flow limit. Using F' and p, the penalty for the
violation in maximum local flow is therefore included in the
objective function. The parameter o weighs the penalty is set
to 0.1 in the experiments.

We refer the interested reader to [2], [33], [34] for a full
description of the parameters and an extensive evaluations of
the RNP-PE model.

IV. THE ROBUST APPROACH

In the previous MIP model, the data rates of all SNs
are given as input (parameters 7;). Therefore, the computed
solution of the RNP-PE is based on the knowledge of the traffic
generation patterns of the network. We relax this limitation by
assuming a possible, finite set of traffic rates for each single SN
i € S, denoted by ®; C R. We consider that during network
operations, ¢ may adopt any of the data rates specified in ®;
with probability Iq,% Therefore, nodes’ traffic rates are no
more considered as known fixed values but random variables
in the sets ®;. A traffic demand scenario d : S — R is a
realization of ®;, and D is the set of all possible demand
scenarios. In the following, we assume that, for all possible
demand scenarios, there exists a feasible solution (i.e., routing
trees that allow, in principle, the forwarding of data from SNs
to BSs) which does not make use of RNs.

A. Measure of robustness

Let R’ C R be a selection of positions of |R'| < K relay
nodes and d a demand scenario, we define the relative regret
of R’ under d as:

, . RNP(R',d) — RNP(R, d)
regret(lsd) = NP, d) — RNP(R. d)

where RNP(R', d) denotes the value of the optimal solution of
the MIP model with R’ as the restricted set of candidate loca-
tions, and d as the network demand of the SNs (i.e., replacing
‘R with R’ and 7 with d in the model of Section III). Intuitively,
regret(R', d) represents the performance deviation of a fixed
placement R’ with respect to the optimal placement under a
specific demand scenario d. In other words, if we are aware
of the current data rates of the nodes, the measure says how
much we will regret having chosen the placement R’ in the first
place, considering the actual optimal RN placement for that
particular demand scenario. Note that regret(R’,d) € [0,1].
A value of 0 indicates that R’ is optimal for all d € D, while
a value of 1 indicates that in at least one scenario, the best
performance achieved by using relays in R’ do not provide
any improvement with respect to the performance achieved
using no relays at all.

an

The robust RNP-PE formulation aims to determine a RN
placement such that the relative regret is minimized over all
possible demand scenarios. It is defined as:

min max regret(R', d) (12)
R/'CR and |R'|<K d€D
Clearly, finding the maximum regret of a particular place-
ment would require to evaluate all possible, exponentially
large number, of scenarios. Therefore, we propose a heuristic
approximation of maxgep regret(R’',d), which serves as a
basis for determining a robust RN placement.

B. Approximation of maximum regret

Given an RN placement R’, our goal is to derive an
estimation of its maximum relative regret. That is, finding a
demand scenario d € D such that regret(R’, d) is close to its
maximal value over the set D.

Definition. Given a routing tree T, the set of favored nodes
consists of all SNs whose routing paths to any of the BSs pass,
at least, through one RN.

In the context of the RNP-PE problem, we denote with
FN(R’,d) the set of favored nodes corresponding to the
routing tree resulting from the solution of RNP(R/, d).

Intuitively, the set FN(R’,d) can be seen as the group of
SNs whose data flow is (positively) affected by the placement
of RNs in R’. This effect is most likely represented by a
reduction of the flow cost in the objective function of the MIP
model. Therefore, the higher the data rate of the favored nodes,
the higher will be the cost reduction. Conversely, if all favored
nodes decrease their demand, the potential benefits of the
placement R’ will be also reduced. This argument motivates
the following method to find a demand scenario such that the
associated relative regret is close to the maximal value.

Let d € D be the median scenario, corresponding to the
demand scenario where all SNs adopt the value m € @;
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(a) Initial network (b) Feasible relay locations

Fig. 1.

Fig. 2. Illustration of the favored nodes, represented by white circles. The
squares are the RNs, circles are the SNs, and triangles the BSs.

closest to the median value of the set ®;. The median place-
ment corresponds to the RN positions obtained by solving
the problem RNP(R,d), that is, the optimal placement of
the median scenario, and it is denoted by R. Given these
notions, we now formulate the heuristic approximation of

maxgep regret( R, d) as:

regret*(R') = regret(R’, d*) (13)
where:
« . [min®; ifie FN(R',d)
() = {maxq)i if i ¢ FN(R',d) (14)

With the formulation described in Equation (13), we aim
to find a bad demand scenario for R, such that the flow cost
reduction, or, equivalently, the potential benefits due to the
RNs in R’, is minimized. This demand scenario is constructed
in Equation (14) by the setting the demand of the favored
nodes, corresponding to the median scenario, to their minimum
value among the possible ones. The demands of the not favored
nodes are set to their higher possible value. The selection of
d to obtain the favored nodes is motivated by the assumption
that the optimal routing tree corresponding to this scenario will
very likely determine a group of favored nodes that are present
in most of the other demand scenarios.

The following example can help to illustrate the meaning of
the regret™ measure. Let us consider a WSN consisting of 20
SNs and 1 BS, as shown in Figure 1a. The set of all feasible RN
locations is defined using a uniform grid as shown in Figure 1b.
Each SN can adopt ten different traffic rates ®; = {1,...,10},

(c) Median placement R, result- (d)
ing from the optimal solution of RNP(R,d*)
RNP(R, d)

Optimal solution of

Some of the steps to solve RNP,..;. Figures (c) and (d) illustrate intermediate steps of the evaluation of regret™.

denoting some amount of data per second (e.g., Kbytes/sec).
As median scenario d we let the nodes adopt traffic rate equal
to 6. Figure 1c shows the optimal placement solution for d, that
is R. We show the process of evaluating the value of regret*
for the median placement. From the routing tree described
in the solution of the median scenario RNP(R, d), shown in
figure lc, we compute the set of favored nodes FN(R,d),
depicted in figure 2. We now configure a scenario, denoted by
d*, where the nodes in FN(R, d) adopt their higher rates (i.e.,
10) while the other nodes the lower rates (i.e., 1), as described
in equation (14). Solving the RNP(R, d*), we obtain a flow
cost of value 303. We now seek the optimal placement for the
scenario d*, that is RNP(R, d*), depicted in figure 1d. The
value of the objective function in this case happens to be equal
to 288.50, less than the value of RNP(R, d*), since we are now
considering the full set of candidate locations. Interestingly,
we can appreciate that the only difference between both, the
median placement and the optimal for d* is precisely one RN
that is positioned to attend the larger demand of nodes not
belonging to the favored node set, which has been determined
before. Finally, we compute the upper bound of the objective
function of the scenario d*, by simply determining the cost of
the solution without any relays. In this case, it is equal to 334.
Therefore, the value of regret*(R) is:

_ RNP(R,d*) — RNP(R, d*)

regret”(R) = regret(R,d) - = 205G T RNP(R, 47)
303 — 288.5
_ 20T 2009 ) 3156
334 — 288.5

Using the approximation introduced in equation (13), we
now formulate the robust RNP-PE (denoted by RNP,.,;):

RNP,.,, = min regret*(R). (15)
R'CR and | R'|<K

In order to compare empirically the heuristic model RNP,.,;,
with the formulation (12), we have considered a problem using
a small network instance consisting of 7 sensor nodes and
one base station, with 6 possible relay positions, and K = 2.
The small size of this example allowed us to find the optimal
solution of (12) by exhaustive evaluation, and compare it to the
solution obtained using the model composed by approximated
metric (i.e., RNP,.;). The solutions obtained were exactly the
same. Moreover, an analysis of the values obtained by the
heuristic approximation regret*, and maxgep regret(R’,d)
showed that the proposed approximation is quite accurate, pro-
viding exact values for 13 out of the 21 possible placements,



and a minimal difference for the remaining ones. Therefore,
promising good effectiveness in larger instances.

V. META-HEURISTIC SOLUTION APPROACH

The RNP-PE problem belongs to the family of AP-hard
network design problems [35], [36]. In fact, the RNP,.,;, is
at least as hard as the RNP-PE since it is a particular case
when the scenario set contains only one scenario. For this
reason, standard approaches fail to find optimal solutions to
RNP,.,;, even for small size instances, in reasonably short
time. Because the formulation is intractable with traditional
mathematical programming methods, we propose an effective
meta-heuristic method to find a robust RN placement.

Bio-inspired approaches, and more specifically genetic
algorithms (GA), have been used to tackle the complexity of
many optimization problems in wireless networking, including
clustering [37], optimal design [38], routing and link schedul-
ing [39], network planning [40] and node placement [41]-[43].
In a previous work [44], the GA methodology proved to be
a quite effective solution approach to the RNP-PE. Given its
effectiveness in dealing with RNP and similar problems arising
in wireless networking, a GA is adopted for solving the robust
RNP-PE. An overview of the algorithm is presented below.

A. Genetic Algorithm for solving the robust RNP-PE

The encoding of individuals (also known as chromosome
encoding) is fundamental to the implementation of GAs in
order to efficiently transmit the genetic information from par-
ents to offsprings. In our case, an individual of the population
represents a deployment of relay nodes. Since RNs can be
placed at one of the set of candidate locations R, the location
of each RN can be conveniently specified as the index of
the element in R to which it corresponds to. Accordingly, a
population member is encoded as a list of index values.

Apart from the encoding, another fundamental aspect of
a GA is the design of its genetic operators. We make use
of traditional genetic operators designed to achieve a good
trade-off between exploration and exploitation. Crossover is
implemented by a random selection of RN locations from both
parents. The number of RN locations to be selected is chosen
randomly between the size of both parents. The mutation
operator allows a controlled exploration of new regions of
the solution space by inducing small perturbations to existing
individuals. Mutation is implemented by displacing the relay
positions, replacing it by another candidate location, within a
circular area of size 2r. Additionally, it may also modify the
number of positions of relays removing existing RN positions
or adding new RNs (if feasible).

B. Evaluation of individuals

Each individual R’ is evaluated by computing the value
of the function regret* described in Equation (13). This
requires to solve four instances of the RNP MIP model using a

standard solver: RNP(R’, d), which is needed to obtain the set
FN(R',d) and the scenario d*, and the other three instances
to compute regret(R’,d*). Most of these problem instances
are easy to solve since the set of RNs is restricted to R’.
However, one of them requires to solve the complete model

(i.e., considering the full set of candidate locations R). In most

of the cases, we may not require to find an optimal solution, as
by an appropriate setting of the solver’s parameters (e.g., MIP
gap) we can still obtain good feasible solutions at a reduced
computational cost.

To speed up the convergence of the GA we exploit valuable
information obtained during the evaluation procedure. More
specifically, the solutions of RNP(R,d*) provide optimal
placements R* which represent potentially useful placements
which can be included in the population for a further evalua-
tion of their regret* values. Therefore, we define a solution
pool containing those optimal placements. To include these
individuals into the GA population, we extend the crossover
operator to replace one of the offsprings by an individual from
the solution pool. This replacement occurs with a probability
Dpool» Set to 0.25 in the experimental evaluation.

VI. EXPERIMENTAL EVALUATION

To evaluate the proposed robust methodology, we con-
sidered a number of randomly generated network instances.
In total, we considered 50 network instances generated with
different topological characteristics: uniform, clustered, and
small world. Networks were embedded in an area of size
100 x 100 m?, and the set of feasible relay positions was
determined using a uniform grid, with the grid points separated
by A=5 m of distance. Each sensor node has 10 possible traffic
demands, from 2 pkts/sec up to 20 pkts/sec. The network
packet size was set to 96 bytes.

The evaluation consists of three steps. First, we generated
50 demand scenarios where the data rate of each node was
randomly selected among the 10 possible ones. For each of
these scenarios, we compute the optimal placement. Second,
for each network instance, we computed a robust placement
using the GA described in Section V. The population size was
set to 100 individuals, and the crossover and mutation rate
were set to 0.9 and 0.1 respectively. The GA was implemented
using a tournament selection method. The maximum run-time
allowed for this step was set to 4 hours, which enabled the GA
to evolve over a hundred of generations. Finally, we computed
the optimal placement under the median scenario. In case
of the robust and median RN placements, we computed the
optimal routing trees for each demand scenario, assuming that
in a real-world situation, after being aware of the actual settings
in node demands, the routing tree could be easily re-optimized
in an on-line fashion. To solve the MIPs we used CPLEX(®).

A. Network simulations

In order to evaluate the performance of an RN assignment,
we perform network simulations using TOSSIM [45], The
main reason behind the choice of TOSSIM as simulation en-
vironment for our work is because it provides accurate results
due to its realistic wireless channel model. TOSSIM also prof-
its from the component based architecture of TinyOS [46] to
transparently define a hardware abstraction layer that simulates
the TinyOS network stack at the processor level. The log-
distance path loss model is used to compute the link gain
values, which are set at the start of each simulation run. The
simulations are performed using a IEEE 802.15.4 non beacon
MAC implementation developed for TOSSIM and using the
default parameters, defined in the IEEE 802.15.4 standard.



To account randomness, we ran 5 simulation runs for each
scenario, and consider the average performance.

B. Results

For each simulation, we calculated the network packet
delivery ratio (PDR), defined as the total number of packets
received at the base stations, divided by the total number of
packets generated by all sensor nodes. For the robust and
median placements, we compute the deviation of the PDR from
that of the optimal placement.This is done for each simulation
instance (i.e., network topology and demand scenario).

From the evaluation, we expect that the robust solutions
exhibit lesser maximum deviations from the optimal, in com-
parison to the median scenario solutions. This condition is
expected since the robust model defined in Section IV precisely
has the minimization of the maximum regret (i.e., the worst
deviation from optimal) as optimization criterion. Addition-
ally, we also evaluate the average performance (in terms of
deviations) of both solutions. We expect the robust solutions
to be good in average, and significantly better compared to
the median scenario solutions, which were defined completely
ignoring data uncertainty.

Figures 3a and 3b show the worst and mean PDR deviation
of the robust and median placements, over all demand scenar-
ios, for each one of the topologies. To make the plots more
readable, data on the x-axis (network instances and demand
scenarios) have been ordered according to the increasing PDR
deviation of the robust placement. We can observe that in most
of the considered network topologies, the robust placement ex-
hibits better performance compared to the median placement.
In terms of worst performance, the robust placement offers
lower performance degradation compared to the placement
considering the median demand scenario. We also present the
deviations over the demand scenarios for a particular topology,
in Figure 3c. It is possible to appreciate that, although the
median placement offered good performance for some of the
scenarios, it also incurred in the worst performance degradation
(over 40%). The degradations of the robust solution remained
within 25% of the optimal.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a robust optimization
(RO) methodology to the relay node placement problem for
performance enhancement under uncertainty on the node traffic
demands. To the best of our knowledge, this is the first
attempt to use RO concepts in relay node placement prob-
lems in wireless sensor networks. Compared to other RO
approaches, we developed a heuristic approach to the min-
max regret problem, aiming at reducing the computational
costs of the robust formulation. The resulting combinatorial
optimization problem is then tackled using a meta-heuristic
algorithm. Simulation experiments show that, over a number of
different traffic scenarios, the performance degradation of the
robust solutions is minimized in comparison with the solutions
obtained ignoring data uncertainty.

Future work includes the further evaluation of the proposed
robust solutions using a real testbed with realistic application
scenarios (e.g., intruder detection) with space-time correlations
in data generation patterns. Additionally, we will also consider
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Fig. 3. Summary of simulation results. Values correspond to the absolute
differences between network packet delivery ratios (PDR) of optimal place-
ments (i.e., best placement for the corresponding demand scenario) and PDRs
of robust and mean placements.

to extend our analysis in order to contemplate uncertainty in
other aspects of the problem, such as the information regarding
the positions of the sensor nodes.
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