skip to main content
article
Free access

A Generalized Maximum Entropy Approach to Bregman Co-clustering and Matrix Approximation

Published: 01 December 2007 Publication History

Abstract

Co-clustering, or simultaneous clustering of rows and columns of a two-dimensional data matrix, is rapidly becoming a powerful data analysis technique. Co-clustering has enjoyed wide success in varied application domains such as text clustering, gene-microarray analysis, natural language processing and image, speech and video analysis. In this paper, we introduce a partitional co-clustering formulation that is driven by the search for a good matrix approximation---every co-clustering is associated with an approximation of the original data matrix and the quality of co-clustering is determined by the approximation error. We allow the approximation error to be measured using a large class of loss functions called Bregman divergences that include squared Euclidean distance and KL-divergence as special cases. In addition, we permit multiple structurally different co-clustering schemes that preserve various linear statistics of the original data matrix. To accomplish the above tasks, we introduce a new minimum Bregman information (MBI) principle that simultaneously generalizes the maximum entropy and standard least squares principles, and leads to a matrix approximation that is optimal among all generalized additive models in a certain natural parameter space. Analysis based on this principle yields an elegant meta algorithm, special cases of which include most previously known alternate minimization based clustering algorithms such as kmeans and co-clustering algorithms such as information theoretic (Dhillon et al., 2003b) and minimum sum-squared residue co-clustering (Cho et al., 2004). To demonstrate the generality and flexibility of our co-clustering framework, we provide examples and empirical evidence on a variety of problem domains and also describe novel co-clustering applications such as missing value prediction and compression of categorical data matrices.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image The Journal of Machine Learning Research
The Journal of Machine Learning Research  Volume 8, Issue
12/1/2007
2736 pages
ISSN:1532-4435
EISSN:1533-7928
Issue’s Table of Contents

Publisher

JMLR.org

Publication History

Published: 01 December 2007
Published in JMLR Volume 8

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)34
  • Downloads (Last 6 weeks)13
Reflects downloads up to 06 Nov 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media