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ABSTRACT 

 

The traditional natural language processing pipeline incorporates multiple stages of 

linguistic analysis. Although errors are typically compounded through the pipeline, it is 

possible to reduce the errors in one stage by harnessing the results of the other stages.  

This thesis presents a new framework based on component interactions to approach 

this goal. The new framework applies all stages in a suitable order, with each stage 

generating multiple hypotheses and propagating them through the whole pipeline. Then 

the feedback from subsequent stages is used to enhance the target stage by re-ranking 

these hypotheses, and then produce the best analysis. 

The effectiveness of this framework has been demonstrated by substantially improving 

the performance of Chinese and English entity extraction and Chinese-to-English entity 

translation. The inference knowledge includes mono-lingual interactions among 

information extraction stages such as name tagging, coreference resolution, relation 

extraction and event extraction, as well as cross-lingual interaction between information 

extraction and machine translation.  

Such symbiosis of analysis components allows us to incorporate information from a 

much wider context, spanning the entire document and even going across documents, and 

utilize deeper semantic analysis; it will therefore be essential for the creation of a high-

performance NLP pipeline. 

 

 

 



viii 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS....................................................................................................................... IV 

ABSTRACT ...............................................................................................................................................VII 

1. INTRODUCTION.....................................................................................................................................1 

1.1 INFORMATION EXTRACTION ..................................................................................................................1 
1.2 TRADITIONAL IE FRAMEWORKS AND THEIR LIMITATIONS....................................................................2 
1.3 STAGE INTERACTION BASED IE FRAMEWORK .......................................................................................5 
1.4 CONCLUSION .........................................................................................................................................6 

2. TERMINOLOGY......................................................................................................................................8 

2.1 ENTITY DETECTION AND RECOGNITION ................................................................................................8 
2.2 RELATION DETECTION...........................................................................................................................9 
2.3 EVENT RECOGNITION ............................................................................................................................9 
2.4 ENTITY TRANSLATION.........................................................................................................................10 
2.5 CONCLUSION .......................................................................................................................................10 

3. PRIOR WORK........................................................................................................................................11 

3.1 USING WIDER CONTEXT AND DEEPER KNOWLEDGE FOR IE................................................................11 
3.1.1 Using Wider Context for Name tagging..............................................................................11 
3.1.2 Using Deeper Knowledge for Coreference Resolution .......................................................12 

3.2 MULTIPLE HYPOTHESIS PROPAGATION AND RANKING ALGORITHMS..................................................14 
3.2.1 Algorithms...........................................................................................................................14 
3.2.2 Applications ........................................................................................................................15 

3.3 INTERACTIONS AMONG NLP SUBTASKS ..............................................................................................17 
3.3.1 Interactions among Entity Type, Entity SubType and Mention Type Tagging....................18 
3.3.2 Interactions between Name Structure Parsing and Coreference Resolution ......................18 
3.3.3 Interaction between Mention Detection and Coreference Resolution.................................18 
3.3.4 Interaction between Mention Detection and Relation Detection ........................................19 
3.3.5 Interaction between Information Extraction and Semantic Role Labeling .........................21 
3.3.6 Interaction between Entity Extraction and Entity Translation............................................21 

3.4 CONCLUSION .......................................................................................................................................22 

4. A BASELINE INFORMATION EXTRACTION ................................................................................24 

AND TRANSLATION SYSTEM...............................................................................................................24 

4.1 BASELINE SYSTEM OVERVIEW ............................................................................................................24 
4.2 BASELINE SYSTEM COMPONENTS........................................................................................................25 

4.2.1 Tokenizer.............................................................................................................................25 
4.2.2 Name Tagger and Name Structure Parsing ........................................................................25 
4.2.3 POS Tagger and Chunker ...................................................................................................27 
4.2.4 Nominal Mention Tagger ....................................................................................................27 
4.2.5 Coreference Resolver ..........................................................................................................27 
4.2.6 Relation Tagger...................................................................................................................29 
4.2.7 Event Pattern Acquisition ...................................................................................................31 
4.2.8 Entity Translation ...............................................................................................................32 

4.3 CONCLUSION .......................................................................................................................................33 

5. TYPES OF LINGUISTIC INTERACTION .........................................................................................34 

5.1 CROSS-STAGE INTERACTION ...............................................................................................................34 
5.1.1 Stage Interactions for Correcting Name Tagging Errors ...................................................34 



ix 

5.1.2 Stage Interactions for Correcting Coreference Errors .......................................................46 
5.2 CROSS-LINGUAL INTERACTION BETWEEN ENTITY EXTRACTION AND ENTITY TRANSLATION..............50 
5.3 CONCLUSION .......................................................................................................................................54 

6. INTERACTION MODELS AND ALGORITHMS..............................................................................55 

6.1 INTRODUCTION....................................................................................................................................55 
6.2 GENERAL FRAMEWORK.......................................................................................................................56 

6.2.1 Overview .............................................................................................................................56 
6.2.2 Target Element and Multiple Hypotheses Representation ..................................................58 
6.2.3 Feedback Knowledge Selection...........................................................................................58 

6.3 INFERENCE DETAILS............................................................................................................................60 
6.3.1 Rule-based System...............................................................................................................61 
6.3.2 Shift from Rules to Re-Ranking ...........................................................................................61 
6.3.3 Re-Ranking..........................................................................................................................63 
6.3.4 Conclusion ..........................................................................................................................74 

7. CASE STUDY ON MONOLINGUAL INTERACTION.....................................................................76 

7.1 IMPROVING NAME TAGGING BY SUBSEQUENT IE STAGES...................................................................76 
7.1.1 N-Best Hypotheses Generation ...........................................................................................76 
7.1.2 Re-Ranking Features...........................................................................................................77 
7.1.3 Case Study of Incremental Re-Ranking Framework on Chinese Name Tagging................87 
7.1.4 Experimental Results...........................................................................................................88 
7.1.5 Remaining Error Analysis...................................................................................................93 

7.2 IMPROVING COREFERENCE RESOLUTION BY RELATION DETECTION ...................................................95 
7.2.1 Approach Overview............................................................................................................95 
7.2.2 Relation Feedback Features ...............................................................................................96 
7.2.3 Experimental Results...........................................................................................................99 
7.2.4 Conclusion ........................................................................................................................101 

8. CASE STUDY ON CROSS-LINGUAL INTERACTION .................................................................102 

8.1 INTERACTION BETWEEN ENTITY EXTRACTION AND ENTITY TRANSLATION ......................................102 
8.2 CROSS-LINGUAL VOTED CACHES ......................................................................................................103 

8.2.1 Hypotheses ........................................................................................................................103 
8.2.2 Implementation..................................................................................................................105 

8.3 INFERENCE RULES .............................................................................................................................108 
8.4 ARCHITECTURE OVERVIEW ...............................................................................................................112 
8.5 EXPERIMENTAL RESULTS ..................................................................................................................113 

8.5.1 Data...................................................................................................................................113 
8.5.2 Improvement in Entity Extraction .....................................................................................114 
8.5.3 Improvement in Entity Translation ...................................................................................116 
8.5.4 Error Analysis ...................................................................................................................117 

8.6 CONCLUSION .....................................................................................................................................118 

9. RELEVANT WORK.............................................................................................................................119 

9.1 JOINT INFERENCE BETWEEN MENTION DETECTION AND COREFERENCE RESOLUTION ......................119 
9.2 JOINT INFERENCE BETWEEN NAME TAGGING AND RELATION DETECTION ........................................120 
9.3 USING SEMANTIC FEATURES FOR COREFERENCE RESOLUTION .........................................................120 
9.4 RE-RANKING FOR NLP......................................................................................................................121 
9.5 SOFTWARE APPLICATION ..................................................................................................................121 

10. CONCLUSIONS AND FUTURE WORK.........................................................................................122 

10.1 CONCLUSION ...................................................................................................................................122 
10.2 FUTURE WORK ................................................................................................................................122 



x 

10.2.1 More Mono-lingual Interactions ..................................................................................122 
10.2.2 More Cross-Task Joint Inference .................................................................................125 

APPENDIX A. RELEVANT PUBLICATIONS .....................................................................................130 

BIBLIOGRAPHY .....................................................................................................................................133 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



xi 

LIST OF FIGURES 

FIGURE 1-1. SEQUENTIAL IE FRAMEWORK .......................................................................... 3 

FIGURE 1-2. MONOLITHIC IE FRAMEWORK ......................................................................... 4 

FIGURE 4-1.  BASELINE INFORMATION EXTRACTION AND ENTITY TRANSLATION PIPELINE

................................................................................................................................... 24 

FIGURE 5-1. BASELINE AND UPPER BOUND OF NAME IDENTIFICATION ............................. 37 

FIGURE 5-2. BASELINE AND UPPER BOUND OF NAME CLASSIFICATION............................. 38 

FIGURE 5-3. NAME CANDIDATE AND ITS GLOBAL CONTEXT.............................................. 39 

FIGURE 5-4. OUTLINE OF FEEDBACK.................................................................................. 54 

FIGURE 6-1. STAGE-INTERACTION BASED NLP FRAMEWORK............................................ 57 

FIGURE 6-2. STAGE INTERACTION BASED CORRECTION ALGORITHM................................. 58 

FIGURE 6-3. RE-RANKING TRAINING HYPOTHESES GENERATION...................................... 65 

FIGURE 6-4. RE-RANKING TRAINING AND TESTING........................................................... 65 

FIGURE 6-5. MAXENT-RANK DECODING ........................................................................... 71 

FIGURE 7-1. THE RANKING POSITION OF BEST HYPOTHESIS VS. MARGIN.......................... 79 

FIGURE 7-2. INCREMENTAL NAME RE-RANKING ARCHITECTURE...................................... 88 

FIGURE 7-3.  CHINESE NAME ERROR DISTRIBUTION.......................................................... 94 

FIGURE 7-4. THE RELATIONAL COREFERENCE MODEL ...................................................... 96 

FIGURE 8-1. CROSS-LINGUAL VOTED CACHES................................................................. 107 

FIGURE 8-2. A SYMBIOTIC FRAMEWORK OF ENTITY EXTRACTION AND TRANSLATION ... 113 

  

 

 

 

 

 

 

 



xii 

LIST OF TABLES 

TABLE 2-1. EXAMPLES OF THE ACE RELATION TYPES........................................................ 9 

TABLE 2-2. EXAMPLES OF THE ACE EVENT TYPES ............................................................. 9 

TABLE 4-1. FEATURES FOR THE BASELINE COREFERENCE RESOLVER ............................... 29 

TABLE 5-1. PROBABILITY OF A NAME BEING CORRECT....................................................... 42 

TABLE 5-2. ACCURACY (%) OF NAMES WITH LOW MARGIN................................................ 45 

TABLE 6-1. EXAMPLES FOR TARGET ELEMENT AND MULTIPLE HYPOTHESES ................... 60 

TABLE 6-2. EXAMPLE FOR RE-RANKING FUNCTIONS......................................................... 68 

TABLE 6-3. CONDITION COMPARISON FOR RULE AND RE-RANKING BASED HYPOTHESIS 

SELECTION................................................................................................................. 75 

TABLE 7-1. NAME RE-RANKING PROPERTIES .................................................................... 78 

TABLE 7-2. ENGLISH DATA DESCRIPTION FOR NAME RE-RANKING .................................. 89 

TABLE 7-3. CHINESE DATA DESCRIPTION FOR NAME RE-RANKING .................................. 89 

TABLE 7-4. ENGLISH NAME IDENTIFICATION AND CLASSIFICATION .................................. 90 

TABLE 7-5. CHINESE NAME IDENTIFICATION AND CLASSIFICATION .................................. 90 

TABLE 7-6. RE-RANKING ALGORITHM COMPARISON FOR CHINESE NAME TAGGING ........ 93 

TABLE 7-7. ENGLISH DATA DESCRIPTION FOR COREFERENCE RE-SCORING.................... 100 

TABLE 7-8. CHINESE DATA DESCRIPTION FOR COREFERENCE RE-SCORING.................... 100 

TABLE 7-9. PERFORMANCE OF RE-SCORING FOR COREFERENCE RESOLUTION ................ 100 

TABLE 8-1. INFERENCE RULES OF USING TRANSLATION TO IMPROVE SENTITY EXTRACTION

................................................................................................................................. 110 

TABLE 8-2. EXAMPLE FOR APPLYING CROSS-LINGUAL INFERENCE RULES...................... 112 

TABLE 8-3. IMPROVEMENT IN SOURCE NAME TAGGING F-MEASURE............................... 114 

TABLE 8-4. IMPROVEMENT IN SOURCE ENTITY EXTRACTION .......................................... 115 

TABLE 8-5. IMPROVEMENT IN ENTITY TRANSLATION ...................................................... 116 

 

 

 

           



1 

1. INTRODUCTION 

NLP systems are typically organized as a pipeline architecture of processing stages (e.g. 

from speech recognition, to source language information extraction, to machine 

translation, to target language information extraction and summarization). Each of these 

stages has been studied separately and quite intensively over the past decade. Annotated 

corpora have been prepared for each stage, a wide range of models and machine learning 

methods have been applied, and separate official evaluations have been organized. There 

has clearly been a great deal of progress on some of these components. 

However, the output of each stage is chosen locally and passed to the next step, and 

there is no feedback from later stages to earlier ones. Although this makes the systems 

comparatively easy to assemble, it comes at a high price: errors accumulate as 

information progresses through the pipeline, and an error once made cannot be corrected.  

Therefore in the NLP community there has been increasing interest in moving away 

from systems that make chains of independent local decisions, and instead toward 

systems that make multiple decisions jointly using global information. This thesis will 

focus on using stage interactions to improve the task of Information Extraction (IE). 

Section 1.1 will introduce the IE task, and section 1.2 presents the limitations of two 

traditional IE frameworks, then in section 1.3 a new IE framework is presented. 

1.1 Information Extraction 

Information Extraction (IE), at the heart of many natural language processing (NLP) 

applications, is a task of identifying important types of facts (entities, relations and events) 
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in unstructured text. IE systems typically include name identification and classification, 

parsing (or partial parsing), semantic classification of noun phrases, coreference 

resolution, relation extraction and event extraction. Named entity, coreference and 

template element are reflected in the evaluation tasks introduced for MUC-6 (Grishman 

and Sundheim, 1996), and template relation was introduced in MUC-7. These tasks have 

been introduced again in NIST ACE (Automatic Content Extraction) 1 evaluations, with 

more specific types of entities/relations/events defined. 

Placing IE in the multi-lingual NLP environment, source language IE may help a 

machine translation (MT) system to translate important facts more accurately; while 

target language IE can provide the knowledge base for information retrieval, question 

answering and text summarization. 

1.2 Traditional IE Frameworks and Their Limitations 

In a sequential IE framework, various analysis components are arranged sequentially to 

preprocess text for extraction, with each stage depending on the results of several prior 

stages and generating a single hypothesis (Figure 1-1); for example, coreference depends 

on name identification, and event detection depends on parsing. This provides a simple 

modular organization for the extraction components. For instance, the top ACE systems 

such as BBN system (Boschee et al., 2005), IBM Cascade Model (Florian et al., 2006) 

and NYU system (Grishman, 2004; Grishman et al., 2005) were developed in this 

sequential style.  

                                                 
1 The ACE task description can be found at http://www.itl.nist.gov/speech/tests/ace/, and the 

ACE guidelines at http://www.ldc.upenn.edu/Projects/ACE/ 
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Figure 1-1. Sequential IE Framework 

 

Unfortunately, this sequential organization means that the error rate of the final 

(combined) analysis grows as each stage also introduces a certain level of its own errors 

into the analysis. For example, errors in name recognition may lead to errors in reference 

resolution. Indeed, because of the interdependence of the stages, the errors are often 

compounded from stage to stage. As a net result, the overall system performance can be 

quite poor even if the individual stages seem satisfactory. The 60% - 70% IE 

performance barrier has been notoriously difficult to break through.  

One limitation is the relatively local features employed by the early stages. In a global 

view, subsequent stages can often aid in resolving decisions which were difficult for prior 

stages. Most name taggers, for example, are based on simple models that look only one or 

two tokens ahead and behind.  This fails to capture such basic tendencies as the increased 

likelihood of a name mentioned once in a document to be mentioned again (knowledge 

from reference resolution); an employee of some organization is likely to be a person 

name (knowledge from relation detection).     

But such interactions are not easily exploited in a simple sequential model. To account 

for this, some systems employ a name cache or, more elaborately, features based on the 

Stagej 
… 
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context of other instances of the same string (Chieu and Ng 2002) – in effect, trying to do 

simple coreference within the name tagger. However, preferences which depend on more 

complex syntactic structures – for instances, that names involving some particular events 

are likely to be person names – remain difficult to capture because the event structures 

are simply not available at this stage of analysis. It may even be difficult to use this 

information implicitly, by using features which are also used in later stages, because the 

representation used in the initial stages is too limited. 

To address these limitations, some recent systems have used more parallel designs 

(Figure 1-2), in which a single master classifier incorporates a wide range of features 

representing the information to address several separate stages (Florian et al., 2004, 

Zelenko et al., 2004; Daume III and Marcu, 2005).  This thesis will refer to such designs 

as monolithic IE frameworks. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1-2. Monolithic IE Framework 

 

This can reduce the compounding of errors of the sequential design. However, it leads 

to a very large feature space and makes it difficult to select linguistically appropriate 

features for particular analysis tasks. And the constructs created in earlier stages cannot 

Stage1 … Stagej…Stages 
 

1-Best 
Hypothesisj

Module Input 

Output 
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be used in later stages. Furthermore, because these decisions are made at the same time, it 

becomes much harder to express the stage interactions.  

1.3 Stage Interaction based IE Framework 

The goal of the thesis is to combine the advantages of sequential and monolithic IE 

frameworks while overcoming their weaknesses. As already discussed, extraction will 

never be perfectly accurate, and some of the most problematic consequences of this occur 

when the final answer is the result of a cascade of processing steps, through which errors 

accumulate. Information extraction is a potentially symbiotic pipeline with strong 

dependencies between stages. This thesis transforms this problem – the varied interaction 

between stages of analysis – into a benefit by exploiting the interactions to reduce the 

errors in individual stages.   

In order to capture these interactions more explicitly, we employ a more general 

framework which harnesses the richer representations of the later stages to aid the 

performance of earlier ones.  This new framework keeps the sequential design, generates 

multiple hypotheses and forwards them from each stage to the next, and then uses 

information from subsequent subtasks to re-rank these hypotheses. Then the top 

hypothesis after re-ranking is generated as the system output. In doing so, the new 

framework holds the following advantages: 

 The performance of components which come early in the pipeline and use primarily 

local knowledge, such as name tagging, can be significantly improved by the much 

broader context.   
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 Rather than having errors accumulate, this approach can actually use the feedback 

from later processing steps to correct the errors from earlier steps.  

 The feedback from stages of deeper semantic analysis such as relation detection can 

help coreference resolution.  

 The interaction analysis is extended to cross-lingual level, so that IE and MT can 

indirectly share the valuable training resources.  

There are two areas of focus in this thesis: 

 Exploring specific interactions between different analysis levels: the mono-lingual 

interaction between stages within IE; the cross-lingual interaction between IE and 

machine translation. 

 Effectively organizing these interactions using heuristic rules or supervised re-

ranking models. 

1.4 Conclusion 

The decomposition of NLP systems into components and the intensive study of 

individual components have been crucial to the advances in NLP.  But it is important not 

to lose sight of the fact that the analysis of a discourse is ultimately a unified process, 

with a goal of obtaining the most coherent interpretation consistent with the information 

explicitly expressed, and that this overall goal is reflected in the interactions of the 

individual components. Understanding these individual interactions can lay the 

groundwork for an improved NLP pipeline. The rest of this thesis is structured as follows.  

Chapter 2: describes our main research task and general setting.  
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Chapter 3: describes some previous work using global interaction knowledge and an N-

Best hypothesis framework.  

Chapter 4: presents the baseline information extraction and translation pipeline we 

developed for the thesis.  

Chapter 5: presents diverse types of linguistic interactions for IE. 

Chapter 6: describes the general stage-interaction framework for IE, and explains in 

detail the various algorithms for using interactions. 

Chapter 7 and 8: present three case studies of mono-lingual and cross-lingual stage 

interactions. 

Chapter 9: briefly presents some recent relevant publications which cited the work in this 

thesis. 

Chapter 10: concludes the thesis and sketches the future work.  
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2. TERMINOLOGY 

In order to study the stage interactions, this thesis chose to organize and conduct 

experiments within the context of the ACE evaluations, a specific information extraction 

task. The remaining chapters will use the following ontology created by ACE to explain 

the central ideas. 

2.1 Entity Detection and Recognition 

ACE defines the following terminologies for the entity detection and recognition task: 

entity:  an object or a set of objects in one of the semantic categories of interest 

mention:  a reference to an entity (typically, a noun phrase) 

name mention:  a reference by name to an entity 

nominal mention:  a reference by a common noun or noun phrase to an entity 

The 2005 ACE evaluation had 7 types of entities: PER (persons), ORG (organizations), 

GPE (‘geo-political entities’ – locations which are also political units, such as countries, 

counties, and cities), LOC (other locations without governments, such as bodies of water 

and mountains), FAC (facility), WEA (Weapon) and VEH (Vehicle). For example, in the 

following sentence: 

Fred Smith became the new prime minister. 

There are two mentions: 

Mention1_extent = “Fred Smith”, Mention1_head = “Fred Smith”,  

Mention1_entity type = “PER”, Mention1_mention type = “NAME”;  

Mention2_extent = “the new prime minister”, Mention2_head = “minister”,  
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Mention2_entity type = “PER”, Mention2_mention type = “NOMINAL”. 

2.2 Relation Detection 

Relation detection involves finding a specified set of relationships between a pair of 

entities. ACE 2005 had 6 types of semantic relations, with 18 subtypes. The following 

table lists an example for  each relation type.   

 
Relation Type Example 

Agent-Artifact  
(User-Owner-Inventor-Manufacturer) 

Rubin Military Design, the makers of the Kursk 

ORG-Affliation (Employment) Mr. Smith, the CEO of Microsoft 
Gen-Affiliation  
(Citizen-Resident-Religion-Ethnicity)

Salzburg Red Cross officials 

Personal-Social (Family) Fred’s wife 
Part-Whole (Subsidiary) The U.S. Congress 
Physical (Near) a town some 50 miles south of Salzburg 

 
Table 2-1. Examples of the ACE Relation Types 

2.3 Event Recognition 

ACE 2005 defined 8 types of events, with 33 subtypes. Table 2-2 provides some ACE 

event examples.   

Event Type Example 
Life (Die) Kurt Schork died in Sierra Leone yesterday 
Transaction (Transfer) GM sold the company in Nov 1998 to LLC 
Movement (Transport) Homeless people have been moved to schools 
Business (Start-ORG) Schweitzer founded a hospital in 1913 
Conflict (Attack) The attack on Gaza killed 13 people 
Contact (Meet) Arafat’s cabinet met for 4 hours 
Personnel (Start-Position) Cornell Medical Center recruited 12 nursing students 
Justice (Arrest) Zawahiri was arrested in Iran 

 
Table 2-2. Examples of the ACE Event Types 
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2.4 Entity Translation 

There was a cross-lingual IE track at ACE 2007 – entity translation (ET) 2 which required 

systems to take in a text document in a foreign language (e.g. Chinese or Arabic) and 

extract English language catalog of the entities mentioned in the document. 

2.5 Conclusion 

Over the year (through 2007), ACE has included evaluations on four languages: English, 

Chinese, Arabic and most recently Spanish. This thesis will focus on processing English 

and Chinese. The ACE framework offers several benefits: a relatively rich set of tasks; 

substantial training data for these tasks; and evaluation scores which can be used as a 

benchmark for the experimental results. 

 

 

 

 

 

 

 

 

 

 

                                                 
2 http://www.nist.gov/speech/tests/ace/ace07/et/index.htm 
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3. PRIOR WORK 

The work presented in this thesis extends a substantial body of previous work. 

3.1 Using Wider Context and Deeper Knowledge for IE 

Some previous NLP systems have attempted to apply wider context and deeper analysis. 

The following sections present some examples for improving name tagging and 

coreference resolution. 

3.1.1 Using Wider Context for Name tagging 

A wide variety of unified learning algorithms have been applied to the name tagging task, 

including HMMs (Bikel et al., 1997), maximum entropy models (Borthwick, 1999; Chieu 

and Ng 2002; Florian et al., 2007), Decision Trees (Sekine et al., 1998), Conditional 

Random Fields (McCallum and Li, 2003), Class-based Language Model (Sun et al., 

2002), Agent-based Approach (Ye et al., 2002) and Support Vector Machines (Takeuchi 

and Collier, 2002). 

However, the performance of these models has been limited by the amount of labeled 

training data available to them and the range of features which they employ. In particular, 

people have spent considerable effort in engineering appropriate features to classify an 

instance of a name based on the information about that instance alone; most of these 

involve internal name structure and the immediate local context of that instance – 

typically, one or two words preceding and following the name. If a name has not been 

seen before, and appears in a relatively uninformative context, it becomes very hard to 

classify. 
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Some other name tagging systems have explored global information for name tagging. 

Some approaches have incorporated a name cache or similar mechanism, in which tokens 

or complete names which have been previously assigned a tag are available as features in 

tagging the remainder of a document.  

For example, a voted cache model takes into account the number of times a particular 

name has been assigned each type of tag. (Borthwick, 1999) made a second tagging pass 

which uses information on token sequences tagged in the first pass. Chieu and Ng (2002) 

and Florian et al. (2004) report on name taggers which use as features the contexts of 

other instances of the same token in a document – an indirect and somewhat convoluted 

(but, apparently, effective) way of using coreferring mentions.  

Finkel et al. (2005) used Gibbs sampling, a method to perform approximate inference 

in factored probabilistic models, to incorporate global knowledge for entity extraction. 

They achieved an error reduction of up to 9% over two baseline systems. 

3.1.2 Using Deeper Knowledge for Coreference Resolution 

Coreference resolution was a prime topic in the earlier studies of integrated, deep 

semantic systems. Much of the earlier work in coreference resolution (from the 1970’s 

and 1980’s, in particular) relied heavily on deep semantic analysis and inference 

procedures (Charniak 1972; Charniak 1973; Wilensky 1983; Carbonell and Brown 1988; 

Hobbs et al. 1993). Using these methods, researchers were able to give accounts of some 

difficult examples, often by encoding quite elaborate world knowledge. Unfortunately, it 

proved very hard to scale up such accounts to handle a broad range of examples. 

Capturing sufficient knowledge to provide adequate coverage of even a limited but 
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realistic domain was very difficult. Applying these coreference resolution methods to a 

broad domain would require a large scale knowledge-engineering effort. 

The focus for the last decade has been primarily on broad coverage systems using 

relatively shallow knowledge, and in particular on corpus-trained statistical models. Most 

of these coreference resolution systems use representations built out of the lexical and 

syntactic attributes of the mentions for which reference is to be established. These 

attributes may involve string matching, agreement, syntactic distance, and positional 

information, and they tend to rely primarily on the immediate context of the noun phrases 

(with the possible exception of sentence-spanning distance measures such as Hobbs 

distance). Though gains have been made with such methods (Tetreault, 2001; Mitkov, 

2001; Soon et al., 2001; Ng and Cardie, 2002; Ng, 2005; Yang et al., 2003; Yang et al., 

2006; Luo et al., 2004; Luo and Zitouni, 2005), there are clearly cases where this sort of 

local information will not be sufficient to resolve coreference correctly. 

Some of of these systems attempt to apply shallow semantic information. (Ge et al. 

1998) incorporate gender, number, and animaticity information into a statistical model 

for coreference resolution by gathering coreference statistics on particular nominal-

pronoun pairs. (Soon et al., 2001) use WordNet to test the semantic compatibility of 

individual mention pairs. In general these approaches do not explore the possibility of 

exploiting the global semantic context provided by the document as a whole. Vieira and 

Poesio (2000), Harabagiu et al. (2001), and Markert and Nissim (2005) explore the use of 

WordNet for different coreference resolution subtasks. All of them present systems which 

infer coreference relations from a set of potential antecedents by means of a WordNet 

search. Tetreault and Allen (2004) use a semantic parser to add semantic constraints to 
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the syntactic and agreement constraints in their Left-Right Centering algorithm. Bean and 

Riloff (2004) have sought to acquire automatically some semantic patterns that can be 

used as contextual information to improve coreference resolution, using techniques 

adapted from information extraction. Their experiments were conducted on collections of 

texts in two topic areas (terrorism and natural disasters). 

3.2 Multiple Hypothesis Propagation and Ranking Algorithms 

Traditional statistical NLP methods have generated a single hypothesis as their output. 

Generating N-Best hypotheses in speech recognition is a well-studied problem. One of 

the early works is the BBN model introduced in (Chow and Schwartz, 1989) for speech 

recognition. (Eppstein, 2001) listed an extensive bibliography. (Mohri and Riley, 2002) 

proposed a very efficient algorithm to find N-Best hypotheses. 

In recent years, re-ranking techniques have been successfully applied to enhance the 

performance of NLP components based on generative models. A baseline generative 

model produces N-best hypotheses, which are then re-ranked using a rich set of local and 

global features in order to select the best hypothesis.  

3.2.1 Algorithms 

There has been a considerable body of work in the last few years on various trainable 

ranking algorithms such as Coordinate Descent RankBoost (Rudin et al., 2005) and 

PRank (Crammer and Singer, 2001).  

Three state-of-the-art supervised ranking techniques are adopted in this thesis, 

Maximum Entropy Modeling-based Ranking (MaxEnt-Rank), Support Vector Machine-
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based Ranking (SVMRank) (Joachims 2002; Herbrich et al., 2000), and a new boosting-

style ranking approach called p-Norm Push Ranking (Rudin, 2006). This algorithm is a 

generalization of RankBoost (Freund et al. 1998; Freund et al. 2003) which concentrates 

specifically on the top portion of a ranked list. Our work in this thesis was the first 

successful application for this approach.  

3.2.2 Applications 

These algorithms in the above section have been used primarily within the context of a 

single NLP component, with the most intensive study devoted to substantial 

improvements in name tagging, parsing and machine translation. Some prior work will be 

presented as follows. 

3.2.2.1 Name Tagging 

Collins (2002) applied RankBoost and Voted Perceptron (Freund and Schapire, 1999) to 

re-rank the 20 Best hypotheses generated from a maximum-entropy name tagger. The 

boosting algorithm is a modification of the method in (Freund et al., 1998), an adaptation 

of AdaBoost. These two methods achieved 15.6% to 17.7% relative reduction in error 

rates over the baseline.  

Zhai et al. (2004) applied the mechanism of weighted voting among multiple 

hypotheses to re-rank Chinese name hypotheses for speech data. This voting scheme is 

incorporated as one feature in the name re-ranker. 
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3.2.2.2 Machine Translation 

Re-ranking techniques have also been applied to SMT, such as MaxEnt-Rank (Och and 

Ney, 2002) and gradient methods (Och, 2003). (Shen et al., 2004) applied a Voted 

Perceptron algorithm to MT Re-Ranking, and the resulting algorithm provided state-of-

the-art performance in the NIST 2003 Chinese-English large data track evaluation. 

3.2.2.3 Parsing 

In recent years, re-ranking techniques have resulted in significant improvements in 

parsing. (Collins and Duffy, 2002) applied the Voted Perceptron algorithm to re-ranking 

parsing results and obtained a 5.1% relative reduction in error rates. Other various 

machine learning algorithms have been employed in parse re-ranking, such as RankBoost 

(Collins, 2003; Collins and Koo, 2003; Kudo et al., 2005, Chen et al., 2002) and 

SVMRank (Shen and Joshi, 2003). These techniques have resulted in a 13.5% error 

reduction in labeled recall/precision over the previous best generative parsing models.  

Shen and Joshi (2003) compared two different sample creation methods, and presented 

an efficient training method by separating the training samples into subsets. Shen and 

Joshi (2004) introduced a new perceptron-like ordinal regression algorithm for parse re-

ranking.  

MaxEnt-Rank (Charniak and Johnson, 2005) and Kernel Based Ranking Methods 

(Henderson and Titov, 2005) have also proved effective to enhance the performance of 

state-of-the-art parsers. 



17 

3.2.2.4 Semantic Role Labeling 

Recent work on Semantic Role Labeling has shown that to achieve high accuracy a joint 

inference on the predicate argument structures of the entire tree should be applied. 

Toutanova (2005) used log-linear re-ranking model based on constraints among 

arguments, and obtained competitive performance in CONLL 2005. Moschitti et al.(2006) 

applied tree kernels to re-rank the candidate arguments for each predicate.  

3.2.2.5 Spoken Language Processing 

Re-ranking techniques are particularly effective for more noisy data such as speech 

transcripts. Huang et al. (2007) applied RankBoost algorithm to enhance Chinese part-of-

speech tagging, and achieved 18% relative reduction in errors compared to the baseline 

tagger without re-ranking. 

3.3 Interactions among NLP Subtasks 

This section will present some previous work on capturing interactions among NLP 

subtasks. The need for interaction of different natural language components has been 

recognized at least since the 1960’s. To see how these interactions might be structured, a 

number of integrated systems were built for microworlds (Winograd, 1972), children’s 

stories, and other toy applications. Studies were also conducted of formal (logical) 

representations for integrating this information, such as the work of Hobbs et al. (1993). 

There were also extensive studies of the role of text coherence in language understanding 

(Hobbs, 1985; Halliday and Hasan, 1976). 
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3.3.1 Interactions among Entity Type, Entity SubType and Mention Type 

Tagging 

(Florian et al., 2006) adopted a joint model to incorporate the mutual dependencies 

among entity type, entity subtype and mention type tagging for the mention extraction 

task, and achieved significant improvement in F-measure over the monolithic model 

(“All-In-One” model) for English, Chinese and Arabic.  

3.3.2 Interactions between Name Structure Parsing and Coreference 

Resolution 

(Charniak, 2001) employed a simple probabilistic name model, with a linear sequence of 

components.  Charniak has demonstrated how coreference resolution can improve the 

learning of name structure, and name structure can improve coreference resolution; the 

system got 97% correct English name structures. 

3.3.3 Interaction between Mention Detection and Coreference Resolution 

Joint Inference between mention detection and coreference resolution has become a topic 

of keen interest. Wellner et al. (2004) used a conditionally-trained graphical model to 

incorporate the interaction between extraction of mentions (here, mentions mean various 

database fields such as title, author, journal, year, etc.) and coreference resolution. N-Best 

mention hypotheses were generated and then the coreference was accomplished by 

approximate inference via a greedy graph partitioning algorithm. Experimental results 

showed significant improvements in coreference by using uncertainty information from 

extraction, and in extraction accuracy using results of coreference. 
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3.3.4 Interaction between Mention Detection and Relation Detection 

There have been recent efforts to simultaneously extract mentions and relations by 

capturing their mutual dependencies and exploiting the global inference based on the 

interactions. 

Roth and Yih (2002, 2004, 2007) combined information from named entities and 

semantic relation tagging, adopting a similar overall goal as in this thesis but using a 

quite different approach based on linear programming. The predictors that identify 

entities and relations among them are first learned from local information in the sentence. 

The constraints induced by the mutual dependencies among entity types and relations 

constitute a relational structure over the outcomes of the predictors and are used to make 

global inference. 

Roth and Yih (2002) formulated global inference using a Bayesian network, where 

they captured the influence between a relation and a pair of entities via the conditional 

probability of a relation, given a pair of entities. This approach however, could not 

exploit dependencies between relations.  

Roth and Yi (2004; 2007) proposed a Linear Programming (LP) formulation in which 

to cast inference. Given name boundaries in the text, separate classifiers are first trained 

for name classification and semantic relation detection. Then, the output of the classifiers 

is used as a conditional distribution given the observed data. This information, along with 

the constraints among the relations and entities (specific relations require specific classes 

of names), is used to make global inferences by linear programming for the most 

probable assignment. They obtained significant improvements in both name classification 
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and relation detection. Different methods, defined combining in different ways the entity 

and relation classifiers, were evaluated: In the first one, a basic entity classifier, identical 

to the entity classifier in the separate approach, is trained. Its predictions on the two entity 

arguments of a relation are then used conjunctively as additional features in training the 

relation classifier. Similarly, a second pipeline first trains the relation classifier; its output 

is then used as additional features in the entity classifier. The third pipeline model is the 

combination of the above two. A final step tests the conceptual upper bound of the 

entity/relation classification problem. It assumes that the entity classifier knows the 

correct relation labels and the relation classifier knows the right entity labels. This 

additional information is then used as features in training and testing.  

Roth and Yih limited themselves to name classification, assuming the identification 

(the exact boundaries of entities) given.  This may be a natural subtask for mixed case 

English data, where capitalization is a strong indicator of a name so name identification is 

relatively easy. But this assumption may not be available in practice, thus the approach is 

much less useful for other languages such as Chinese, where there is no capitalization or 

word segmentation, and boundary errors on name identification are frequent. Expanding 

their approach to cover identification would have greatly increased the number of 

hypotheses and made their approach slower.   

Choi et al. (2006) applied this approach for identifying opinion expressions and the 

relations between opinions. They showed that such global, constrait-based inference can 

significantly boost the performance of both opinion identification and relation detection.  
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3.3.5 Interaction between Information Extraction and Semantic Role 

Labeling 

A few previous works have tried to bridge IE and other NLP tasks such as semantic role 

labeling (SRL). Some shallow IE analysis such as name tagging has been used to pre-

process the input texts for SRL systems (Carreras and Marquez, 2004; Carreras and 

Marquez, 2005). For example, a person mention (name or nominal phrase) is likely to 

appear as an “Agent” argument for the predicate “announce”; a location mention is likely 

to act as an “ARGM-LOC” argument. 

On the other hand, recently SRL has been applied to enhance some IE components. 

Wattarujeekrit (2005) used semantic roles to enhance name tagging in the molecular 

biology domain. A domain-customizable IE system may be designed if we know: (a) 

predicates (“triggers”) relevant to a domain; and (b) which of their arguments fill 

template slots. So it’s natural to apply a semantic role labeling (SRL) system that can 

generate predicate-argument structures on the output of full parsers to improve IE. One of 

such attempts was the work described in (Surdeanu et al., 2003). They obtained about 

14% better IE F-measure using SRL results. (Grishman et al., 2005) achieved significant 

improvement in event detection using the patterns based on predicate-argument structures 

(Meyers et al., 2001) connecting the trigger to all the event arguments. 

3.3.6 Interaction between Entity Extraction and Entity Translation 

All the stage interactions described above focused on the monolingual analysis pipeline. 

(Huang and Vogel, 2002) presented a cross-lingual joint inference example to improve 

the extracted named entity translation dictionary and the entity annotation in a bilingual 
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training corpus. They used a more ‘traditional’ approach to encode the interaction 

between different NLP tasks: sharing the training resources across tasks. This thesis 

expands the idea of alignment consistency to the task of entity extraction in a 

monolingual test corpus.   

 (Florian et al., 2007) used a similar idea to expand the mention detection training data 

for Spanish by translating and projecting an annotated English corpus, and significantly 

improved Spanish mention detection. This approach is expected to be effective in 

particular when machine translation performs well for the given language pair. 

3.4 Conclusion 

All these works noted the advantage of exploiting multiple hypotheses and then using 

richer knowledge for re-ranking, but the features in re-ranking are all restricted to the 

original goal task itself. The re-ranking models for name tagging, for example, normally 

rely on structures generated within the baseline name tagger only. (Collins, 2002) was 

limited to local features involving lexical information and 'word-shape' in a 5-token 

window. In contrast, the name re-ranker (secion 7.1) in this thesis will make use of a 

richer set of global features, involving the detailed evidence from the subsequent IE 

stages such as coreference resolution. In this way the re-ranker can incorporate 

information from a wider context, spanning the entire document and even going across 

documents. 

   In contrast to the traditional approaches of encoding sophisticated semantic features to 

enhance NLP tasks, this thesis will present an approach of using semantic relation 

detection results to infer and correct coreference results. Relation detection implicitly 



23 

selects relevant deeper context. This allows us to naturally capture deep, although still 

relatively lightweight, semantic knowledge with low cost. 

In addition, compared to the prior work using stage interactions, this thesis will focus 

more on capturing selectional preferences (e.g. probabilities of semantic types as 

arguments of particular semantic relations as computed from the corpus) instead of 

boolean constraints as shown in the linear programming framework by Roth and Yih 

(2002, 2004, 2007). 
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4. A BASELINE INFORMATION EXTRACTION 

 AND TRANSLATION SYSTEM 

This thesis has a solid base from which to work, in the form of Chinese and English IE 

systems which have been developed and applied over the course of the last several ACE 

evaluations (2002-2007). The core stages include entity detection and tracking, relation 

detection, event pattern acquistion and entity translation.  

4.1 Baseline System Overview 
 
 
 
 
 
 
 
 
                                                                          

 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4-1.  Baseline Information Extraction and Entity Translation Pipeline 

Nominal
Classifier

Source Language
Raw Document

Tokenizer

Name  
Tagger

Name Mentions

Coreference Resolver

POS 
Tagger

Nominal Mentions 

Chunker

Relation Tagger

Entities/Relations/Event

Event Patterns

Source Language
Entities

Entity Translation 

Target Language 
Entities 



25 

The overall architecture of our baseline English and Chinese IE pipeline is presented in 

Figure 4-1. In addition, we developed a Chinese-to-English entity translation component. 

4.2 Baseline System Components 

Each component is briefly described in the following subsections.  

4.2.1 Tokenizer 

At the first step the input text is divided into sentences and tokenized. The Chinese 

system uses a word segmenter from Tsinghua University similar to the version described 

in (Wan and Luo, 2003). For English the tokens are looked up in a large general English 

dictionary that provides part-of-speech information and the base form of inflected words. 

4.2.2 Name Tagger and Name Structure Parsing 

The Chinese baseline name tagger consists of a HMM tagger augmented with a set of 

post-processing rules. The HMM tagger generally follows the Nymble model (Bikel et al, 

1997). Within each of the name class states, a statistical bigram model is employed, with 

the usual one-word-per-state emission. The various probabilities involve word co-

occurrence, word features, and class probabilities. Since these probabilities are estimated 

based on observations seen in a corpus, several levels of “back-off models” are used to 

reflect the strength of support for a given statistic, including a back-off from words to 

word features, as for the Nymble system. 

 The following improvements have been made to the model. To take advantages of 

Chinese language-specific name structures, name structure parsing is done using an 

extended HMM which includes a larger number of states (14). The name structure 
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parsing results include the family name and given name of persons, the prefixes of the 

diminuitive names, the modifiers and suffixes of organization names. This new HMM can 

handle name prefixes and suffixes, and transliterated foreign names separately. The event 

trigger word lists and a title list were extracted from the ACE05 event training corpus, 

and a TIME word list was extracted from TIMEX data. These were then used to construct 

additional features in the Nymble model. In total 19 features are employed in this 

baseline tagger. 

Finally a set of post-processing heuristic rules are applied to correct some omissions 

and systematic errors using name lists (for example, a list of all Chinese last names; lists 

of organization and location suffixes) and particular contextual patterns (for example, 

verbs occurring with people’s names).  They also deal with abbreviations and nested 

organization names. List matching is applied to identify facility, weapon and vehicle 

names.  

The English name tagger is based on a HMM including six states for each of the five 

main name types (Person, GPE, Location, Location, and Facility), as well as a not-a-

name state.  These six states correspond to the token preceding the name; the single name 

token (for names with only one token); the first token of the name; an internal token of 

the name (neither first nor last); the last token of the name;  and the token following the 

name.  These multiple states allow the HMM to capture context information and limited 

information about the internal structure of the name. 
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4.2.3 POS Tagger and Chunker 

For POS tagging, Chinese adopts the Tsinghua Chinese part-of-speech (POS) tagger and 

while the English POS tagger is based on a bigram HMM . The Chinese chunker is based 

on SVM and English chunker based on MaxEnt. The main features used in chunking are 

the bigram conjunctions of POS features. For example, for a word Wi with POS tag Pi, 

assume the POS tags for the context of Wi are  Pi-2, Pi-1, Pi+1, Pi+2, we use the conjunction 

of these tags as features: Pi-2Pi-1, Pi-1Pi, PiPi+1 and Pi+1Pi+2. 

4.2.4 Nominal Mention Tagger 

Entity type assignment for the nominal heads is done by table look-up. The nominal head 

lists are generated from ACE training corpora, and a small part from Chinese Hownet3. 

4.2.5 Coreference Resolver  

The baseline coreference resolver is a two-stage process. First, high-precision heuristic 

rules make some positive and negative reference decisions. Rules include simple string 

matching (e.g., names that match exactly are resolved), agreement constraints (e.g., a 

nominal will never be resolved with an entity that doesn't agree in number), and reliable 

syntactic cues (e.g., mentions in apposition are resolved). When such a rule applies, it 

assigns a confidence value of 1 or 0 to a candidate mention-antecedent pair. 

The remaining pairs are assigned probability values by a collection of maximum 

entropy models. To address the special properties of different mention types, the system 

is separated into different models for names, nominals, and pronouns. Each model 

                                                 
3 www.keenage.com/ 
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operates on a distinct feature set, and for each instance only one of these three models is 

used to produce a probability that the instance represents a correct resolution of the 

mention. A threshold is applied to this probability: if some resolution has a confidence 

above the threshold, the highest confidence resolution will be made. Otherwise the 

mention is assumed to be the first mention of an entity.  

Both the English and the Chinese coreference models incorporate the following main 

features: 

 representing agreement of various kinds between mentions (number, gender, 

humanness) 

 degree of string similarity 

 synonymy between mention heads 

 measures of distance between mentions (such as the number of intervening sentences) 

 the presence or absence of determiners or quantifiers 

For each pair of anaphor and its candidate antecedent (i, j), the features are shown in 

Table 4-1. For English name re-ranker, a separate rule-based English coreference 

resolution system (Grishman, 2004) was used. 
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Language Feature Names Feature Descriptions 
STR_MATCH substring match 
Detj if j starts with “the”, “this”, “that”, “these”, “those”… 
NUMBER if noun is a singular, plural or unknown 
ALIAS if i is a person alias name to j 
Apposition if j is in apposition to i 
Synonymy if i is the synonym of j 
Identical if i and j are identical 
Positional distance between the mentions in terms of # of sentences 
SameHead if i and j have the same heads 

 
 
 
English 
&  
Chinese 

Human in PER pair, if the nominal mention has Human feature 
(Chinese determines from Hownet; English checks pronoun)

AnaphorHead head of j 
EntityType the entity types of I and j 
MentionType the mention type of I and j 
Possessive if i and j are possessive 
Generic if j is generic mention 
ModifierMatch if i and j have compatible left/right modifiers 
Quantifier Quantifier attached to j, if any 

 
English 
Only 

HobbsDistance Hobbs distance between i and j 
DIST if (i, j) are in the same sentence 
GPEAbb if i is an abbreviation name of j 
GPEsuffix if nominal has the same GPE suffix word as name 

 
Chinese 
Only 

Beginning if i locates in the beginning of sentence  
 

Table 4-1. Features for the Baseline Coreference Resolver 
 

4.2.6 Relation Tagger 

The relation tagger uses a K-nearest-neighbor algorithm, in which the training examples 

are recorded and during test the training example most similar to the test example is used 

to classify the instance.  (In case of multiple training examples equally similar to a test 

case, frequency in the training corpus is used to break ties.)  A mention pair is considered 

as a possible instance of a relation only when:  

 the number of mentions between their heads is less than a threshold (different 

threshold values for different types) 
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 the coreference probability produced for the pair by the baseline resolver is lower 

than a threshold 

Each training / test example consists of the pair of mentions and the sequence of 

intervening words. Associated with each training example is either one of the ACE 

relation types or no relation at all.  A distance metric between two examples is defined 

based on: 

 whether the heads of the mentions match 

 whether the ACE types of the mentions match (for example, both are people or both 

are organizations) 

 whether the ACE subtypes of the mentions match 

 whether the sequence of the heads of the constituents between the two mentions 

match (the English system basically follows the highest cut through the parse between 

the two mentions, Chinese system prunes the intervening words by chunking 

information and stop-word list) 

 in the English system, whether the syntactic relation paths between the two mentions, 

as obtained from a parse tree match (Grishman et al., 2005). 

To tag a test example, the algorithm finds the k nearest training examples (where k = 3) 

and use the distance to weight each neighbor, then select the most common class in the 

weighted neighbor set. 

To provide a crude measure of the confidence of the relation tagger, two thresholds are 

defined, Dnear and Dfar.   

     If the average distance d to the nearest neighbors d < Dnear, it is considered as a 

definite relation; 
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If Dnear < d < Dfar, it is considered as a possible relation; 

If d > Dfar, the tagger assumes that no relation exists (regardless of the class of the 

nearest neighbor). 

4.2.7 Event Pattern Acquisition 

Chinese event patterns are extracted from the ACE05 training corpus, For each event 

instance the trigger word (A trigger is the word that most clearly expresses the event 

occurrence) is replaced by its event type and subtype, and each argument by its entity 

type. Then POS tagging and chunking are applied on each event training instance. Then 

the patterns are edited and generalized by hand, replacing tokens by their POS tag, chunk 

type, or a wild card or deleting them entirely if they are not relevant to detecting the event 

type. Some patterns are collapsed, and some patterns which appear too specific or too 

general are deleted. To insure that patterns are not over-generalized by the hand editing, 

the training corpus is split in two and patterns derived from one half are, after hand 

editing, applied to the other half to review their accuracy in event prediction. Additional 

event trigger words that appear frequently in name contexts are also collected from a 

syntactic dictionary, a synonym dictionary and Chinese PropBank V1.0 (Xue and Palmer, 

2003). In the test procedure, each document is annotated with POS tagging and chunking, 

and then scanned against the patterns derived from the training corpus.  

The experiments in this thesis don’t use English event tagger directly. Instead the co-

occurrence information between name type and verbs is extracted from COMLEX 

(Macleod et al., 1998). We will present the details in section 7.1.2.6. 
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4.2.8 Entity Translation 

The entities generated by Chinese IE are then translated into English. The RWTH Aachen 

Chinese-to-English machine translation system (Zens and Ney, 2004) is used. It’s a 

statistical, phrase-based machine translation system which memorizes all phrasal 

translations that have been observed in the training corpus. It computes the best 

translation using a weighted log-linear combination of various statistical models: an n-

gram language model, a phrase translation model and a word-based lexicon model. The 

latter two models are used in source-to-target and target-to-source directions. 

Additionally, it uses a word penalty and a phrase penalty.  

The model scaling factors are optimized on the development corpus with respect to the 

BLEU score similar to (Och 2003). Almost all bilingual corpora provided by LDC were 

used for training, which account for about 200 million running words in each language. 

Language modeling used the English part of the bilingual training corpus and in addition 

some parts of the English GigaWord corpus. The total language model training data 

consists of about 600 million running words. This MT system produces a translation for 

each source document, and also the word-to-word mapping derived from phrase-based 

alignment. 

For each individual Chinese mention, this MT system is used to translate it in isolation. 

Here, the only difference from text translation is that, as subsentential units are translated, 

sentence boundaries are not assumed at the beginning and end of each input segment. 

This isolated translation scheme is applied instead of the entity projection based on word 

alignment because: 
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 It produces less alignment noise. Note the word alignments are indirectly derived 

from phrase alignment, and thus context words often become noise for mention 

translation 

 Manual evaluation on a small development set showed that isolated translation 

obtains (about 14%) better F-measure. 

4.3 Conclusion 

The above framework represents a monolingual English IE system, a Chinese IE system, 

and a Chinese to English entity translation system. These are relatively simple, cleanly 

structured components. All of the enhancements presented in this thesis will be evaluated 

using these components as a baseline. 
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5. TYPES OF LINGUISTIC INTERACTION 

Our focus for this chapter is on exploring specific interactions to enhance the 

performance of information extraction. They are presented in some detail, both as 

evidence of the promise of our approach and as an indication of how these can be 

captured and organized into a re-ranking model in the next chapter. 

According to the different range of knowledge sources we explored, we divided the 

interactions into two types: 

(1) Mono-lingual Interaction: within IE pipeline, using the feedback from subsequent 

stages to correct the results of  the previous stages;  

(2) Cross-lingual Interaction: using the feedback from machine translation to improve 

IE. 

In the following these global interactions will be presented based on their motivation 

from linguistic intuitions and the error analysis from the baseline systems.  

5.1 Cross-Stage Interaction  

This section describes the interactions which improve name tagging (section 5.1.1) and 

coreference resolution (section 5.1.2) by using the feedback from subsequent IE stages. 

5.1.1 Stage Interactions for Correcting Name Tagging Errors 

As our first experiment, we investigate how name tagging can be improved using later IE 

stages.  
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A detailed understanding of name tagging errors is a prerequisite for further 

performance improvements. The task of name tagging can be decomposed into two 

subtasks: 

• Name Identification – The process of identifying name boundaries in the sentence. 

• Name Classification – Given the correct name boundaries, assigning the 

appropriate name types to them. 

Assuming:  

S: name set returned by the name tagger 

K: key name set 

then the name tagging errors can be further subdivided by the following types: 

Spurious Error = {s | s∈S, k∈K, s doesn’t overlap with any k}.;   

Missing Error = {k | s∈S, k∈K, k doesn’t overlap with any s}; 

Boundary Error = {s | s∈S, k∈K, s partially overlaps with k}. 

Classification Error = {s | s∈S, k∈K, s and k match on boundaries but have different 

name types}. 

The next sections shall illustrate, through a series of examples, the potential for 

feedback from subsequent IE stages to correct different types of name tagging errors in 

English and Chinese texts.  

5.1.1.1 Name Identification and Classification Error Analysis 

In mixed-case English texts, most proper names are capitalized. So capitalization 

provides a crucial clue for name boundaries.  
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In contrast, a Chinese sentence is composed of a string of characters without any word 

boundaries or capitalization. Even after word segmentation there are still no obvious 

clues for the name boundaries. However, the following coarse “usable-character” 

restrictions can be applied to reduce the search space. 

Standard Chinese family names are generally single characters drawn from a set of 437 

family names (there are also 9 two-character family names, although they are quite 

infrequent) and given names can be one or two characters (Gao et al., 2005). 

Transliterated Chinese person names usually consist of characters in three relatively fixed 

character lists (Begin character list, Middle character list and End character list). Person 

abbreviation names and names including title words match a few patterns. The suffix 

words (if there are any) of Organization and GPE names belong to relatively 

distinguishable fixed lists. However, this “usable-character” restriction is not as reliable 

as the capitalization information for English, since each of these special characters can 

also be part of common words. 

English and Chinese HMM name taggers (as described in section 4.2.2) are applied to 

identify names, and use best-first search to generate N-Best multiple hypotheses for each 

sentence, and also compute the margin metric defined as follows: 

Margin = LogProbability (Best Hypothesis) – LogProbability (Second Best Hypothesis) 

Figure 5-1 shows the identification F-Measure for the baseline (the first hypothesis), 

and the N-best upper bound, the best of the N hypotheses tested on 100 ACE Chinese 

texts (N=30) and 20 English texts (N=20), scored with respect to the official ACE04 keys 

prepared by the Linguistic Data Consortium. The results are scored using different 

models: English MonoCase (EN-Mono, without capitalization), English Mixed Case 
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(EN-Mix, with capitalization), Chinese without the usable character restriction (CH-

NoRes) and Chinese with the usable character restriction (CH-WithRes). 

 
 

Figure 5-1. Baseline and Upper Bound of Name Identification 

 

Figure 5-1 shows that capitalization is a crucial clue in English name identification 

(improving the F measure by 5.6% over the mono-case score). The “usable” character 

restriction plays a major role in Chinese name identification, increasing the F-measure 

4%. The figure also shows that the best of the top N hypotheses is very good. 
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Figure 5-2. Baseline and Upper Bound of Name Classification 

 

Figure 5-2 shows the classification accuracy of the above four models. The figure 

indicates that capitalization does not help English name classification. 

The Chinese name identification errors can be divided into missed names (21%), 

spurious names (29%), and boundary errors (50%). Confusion between names and 

nominals (phrases headed by a common noun) is a major source of both missed and 

spurious names (56% of missed, 24% of spurious).  In a language without capitalization, 

this is a hard task even for people; one must rely largely on world knowledge to decide 

whether a phrase (such as the "criminal-processing team") is an organization name or 

merely a description of an organization. The other major source of missed names is 

words not seen in the training data, generally representing minor cities or other locations 
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in China (28%). For spurious names, the largest source of error is names of a type not 

included in the key (44%) which are mistakenly tagged as one of the known name types. 

The following sections will show that different types of knowledge are required for 

correcting different types of errors. 

5.1.1.2 Name Tagging from an IE View 

From Chapter 4 we can see that several stages follow name tagging in the IE pipeline 

such as coreference, semantic relation extraction and event extraction. All these stages 

are performed after name tagging since they take names as input “objects”. However, the 

feedback from these subsequent stages can also provide valuable constraints to identify 

and classify names. Each of these stages connects the name candidate to other linguistic 

elements in the sentence, document, or corpus, as shown in Figure 5-3.   

                                               

                                           
 

 
 
 
 
 

 
 
 
 

Figure 5-3. Name Candidate and Its Global context 

 

Specifically, this thesis will take advantage (among other properties) of the coherence 

of a discourse (Hobbs, 1985; Halliday and Hasan, 1976): that a correct analysis of a 
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discourse reveals a large number of connections between its elements, and so (in general) 

a more tightly connected analysis is more likely to be correct. 

Consider, for example, the problem of identifying person names; the name tagger, in 

isolation, may have difficulty deciding whether a sequence of tokens is a person name, a 

name of another type, or not a name at all. If the name (or a similar name) appears 

elsewhere in the document, coreference resolution may help resolve the ambiguity; if an 

event tagger determines that the name appears as the employee of some organization or 

the attacker of a bombing event, this event information can help resolve the ambiguity. 

Therefore a correct name tagging (for example) will license more coreference relations as 

well as more semantic relations or events (such as ‘X is located in Y’, ‘X works for Y’, 

‘X attacked Y’, etc.). The baseline name tagger (HMM) uses very local information; such 

feedback from later extraction stages allows us to draw from a wider context in making 

final name tagging decisions. 

In the following two related Chinese (translated) texts are used as examples, to give 

some intuition of how these different types of linguistic evidence improve name tagging.4 

 

Example 5-1: Yugoslav election 

[…] More than 300,000 people rushed the <bei er ge le>0 congress building, forcing 
<yugoslav>1 president <mi lo se vi c>2 to admit frankly that in the Sept. 24 election 
he was beaten by his opponent <ke shi tu ni cha>3. 

    <mi lo se vi c>4 was forced to flee <bei er ge le>5; the winning opposition party's 
<sai er wei ya>6 <anti-democracy committee>7 on the morning of the 6th formed a 
<crisis-handling committee>8, to deal with transfer-of-power issues. This crisis 
committee includes police, supply, economics and other important departments. 

                                                 
4  Rather than offer the most fluent translation, we have provided one that more closely 

corresponds to the Chinese text in order to more clearly illustrate the linguistic issues. 
Transliterated names are rendered phonetically, character by character. 
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In such a crisis, people cannot think through this question: has the <yugoslav>9 
president <mi lo se vi c>10 used up his skills? 

      According to the official voting results in the first round of elections, <mi lo se vi 
c>11 was beaten by <18 party opposition committee>12 candidate <ke shi tu ni 
cha>13. […] 

 
 
Example 5-2: Biography of these two leaders 

 
[…]<ke shi tu ni cha>14 used to pursue an academic career, until 1974, when due to 
his opposition position he was fired by <bei er ge le>15 <law school>16 and left the 
academic community. 

    <ke shi tu ni cha>17 also at the beginning of the 1990s joined the opposition activity, 
and in 1992 founded <sai er wei ya>18 <opposition party>19. 

This famous new leader and his previous classmate at law school, namely his wife 
<zuo li ka>20 live in an apartment in <bei er ge le>21. 

The vanished <mi lo se vi c>22 was born in <sai er wei ya>23 ‘s central industrial 
city. […] 

 

5.1.1.3 Interaction Between Name Tagging and Name Structure Parsing 

Constraints and preferences on the structure of individual names can capture local 

information missed by the baseline name tagger. They can correct several types of 

identification errors, including in particular boundary errors. For example, “<ke shi tu ni 

cha>3” is more likely to be correct than “<shi tu ni cha>3” since “shi” (什) cannot be the 

first character of a transliterated name. 

Name structures help classify names too. For example, “anti-democracy committee7” is 

parsed as “[Org-Modifier anti-democracy] [Org-Suffix committee]”, and the first 

character is not a person last name or the first character of a transliterated person name, 

so it is more likely to be an organization than a person name.  
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5.1.1.4 Interaction Between Name Tagging and Relation Detection 

Any context which can provide selectional constraints or preferences for a name can be 

used to correct name classification errors. Both semantic relations and events carry 

selectional constraints and so can be used in this way. 

Relations are good indicators of the types of their arguments. For instance, if the 

“Personal-Social/Business” relation (“opponent”) between “his” and “<ke shi tu ni 

cha>3” is correctly identified, it can help classify “<ke shi tu ni cha>3” as a person name. 

Relation information is sometimes crucial to classifying names. “<mi lo se vi c>10” and 

“<ke shi tu ni cha>13” are likely person names because they are “employees” of 

“<yugoslav>9” and “<18 party opponent committee>12”. “<sai er wei ya>23”can be 

easily tagged as GPE because it has part-whole relation with “city”. 

Relation information can provide evidence for name identification too. The basic 

intuition is that a name which has been correctly identified is more likely to participate in 

a relation than one which has been erroneously identified.   For a given range of margins 

from the HMM, Table 5-1 shows the probability that a Chinese name in the first 

hypothesis is correct, for names participating and not participating in a relation:  

Margin In Relation(%) Not in Relation(%) 
<4 90.7 55.3 
<3 89.0 50.1 
<2 86.9 42.2 

<1.8 84.1 34.7 
<1.5 81.3 28.9 
<1.2 78.8 23.1 
<1 75.7 19.0 

<0.8 67.3 15.3 
<0.5 66.5 14.3 
<0.2 66.4 11.0 

 
Table 5-1. Probability of a name being correct 
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Table 5-1 confirms that names participating in relations are much more likely to be 

correct than names that do not participate in relations. It also shows, not surprisingly, that 

these probabilities are strongly affected by the HMM margin. So it is natural to use 

participation in a relation (coupled with a margin value) as a valuable feature for name 

tagging. 

5.1.1.5 Interaction Between Name Tagging and Event Detection 

Information about expected sequences of constituents surrounding a name can be used to 

correct name boundary errors. In particular, event extraction is performed by matching 

patterns involving a "trigger word" (typically, the main verb or nominalization 

representing the event) and a set of arguments.  When a name candidate is involved in an 

event, the trigger word and other arguments of the event can help determine the name 

boundaries.  For example, in the sentence “The vanished mi lo se vi c was born in sai er 

wei ya ‘s central industrial city”, “mi lo se vi c” is more likely to be a name than “mi lo 

se”, “sai er wei ya” is more likely be a name than “er wei”, because these boundaries 

will allow us to match the event pattern “[Adj] [PER-NAME] [Trigger word for 'born' 

event] in [GPE-NAME]’s [GPE-Nominal]”. 

Events, like relations, can also provide effective selectional preferences to correctly 

classify names. For example, “<mi lo se vi c>2,4,10,11,22” are likely person names because 

they are involved in the following events: “claim”, “escape”, “built”, “beat”, “born”.  

Besides these fine-grained ACE-type events, we incorporate all indicative verbs in the 

wide context to disambiguate name types. For example, in “Chiao and McArthur clearly 
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enjoyed their 240-mile-high construction work”, “Chiao” can be confirmed as a person 

name because it appears as an argument of “enjoy”. 

5.1.1.6 Interaction Between Name Tagging and Coreference Resolution 

This section considers why coreference is expected to help name tagging. Unless a name 

is really well known (“George Bush”), it is likely to be referred to again, either by 

repeating the same name and/or describing it with nominal mentions in the text. Put 

another way, names which are recognized by the system but are not coreferenced with 

any other mentions are quite likely to be mistakes. These name mentions will have the 

same spelling (though if a name has several parts, some may be dropped) and same 

semantic type. So if the boundary or type of one mention can be determined with some 

confidence, coreference can be used to disambiguate other mentions, by favoring 

hypotheses which support more coreference. 

For example, if “< mi lo se vi c>2” is confirmed as a name, then “< mi lo se vi c>10” is 

more likely to be a name than “< mi lo se>10”, by refering to “< mi lo se vi c>2”. Also 

“This crisis committee” supports the analysis of “<crisis-handling committee>8” as an 

organization name in preference to the alternative name candidate “<crisis-handling>8”. 

For a name candidate, high-confidence information about the type of one mention can 

be used to determine the type of other mentions. For example, for the repeated person 

name “< mi lo se vi c>2,4,10,11,22” type information based on the event context of one 

mention can be used to classify or confirm the type of the others. The person nominal 

“This famous new leader” confirms “<ke shi tu ni cha>17” as a person name. “his wife” 

helps to classify <zuo li ka>20 as a person name because they refer to the same entity.  
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To confirm this intuition, we gathered accuracy statistics on our Chinese baseline 

system output for names which are not on a list of high frequency names and are 

recognized by the HMM with a margin below some threshold. The results are shown in 

Table 5-2. 

Number of 
Mentions/Entity 

1 
 

2 3 4 5 6 7 8 >8 

PER 43.9 87.1 91.2 88.0 91.6 92.0 94.7 92.3 97.4
GPE 55.8 88.8 96.1 100 100 100 100 95.8 97.5
ORG 64.7 80.6 89.5 94.3 100 100 -- -- 100 

 
Table 5-2. Accuracy (%) of names with low margin 

 

The table shows that the accuracy of name recognition increases as the entity includes 

more mentions. It also indicates that for singletons (names without coreferring mentions), 

the accuracy ranges from 43.9% for people names to 64.7% for organization names. For 

names with one coreferring mention, the accuracy improves to 80.6% for organizations 

and 87.1% for people; for those with more than one coreferring mention, the accuracies 

for all types are above 90%. So, although the singletons constitute only about 10% of all 

names, increasing their accuracy can significantly improve overall performance. 

Coreference information can play a great role here.   

Take the 157 PER singletons as an example; 56% are incorrect names. Among the 

correct names, 71% can be confirmed by the presence of a title word or a Chinese last 

name. Therefore, without strong confirmation features, singletons are much less likely to 

be correct names. This feature particularly helps to disambiguate Chinese name 

abbreviations. Name abbreviations are difficult to recognize correctly due to a lack of 

training data.  Usually people adopt a separate list of abbreviations or design separate 
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rules (Sun et al. 2002) to identify them. But many wrong abbreviation names might be 

produced because they can appear as common words in text (e.g. “中” can mean “China” 

or “middle”; “以” can mean “Israel” or “as”). If one can check whether a link exists 

between a name abbreviation candidate and a full name, this information can be used to 

confirm or discard the candidate. 

5.1.2 Stage Interactions for Correcting Coreference Errors 

Coreference resolution has proven to be a major obstacle in building robust systems for 

information extraction, question answering, text summarization and a number of other 

natural language processing tasks. The lack of semantics in the current methods leads to a 

performance bottleneck. In order to correctly identify the discourse entities which are 

referred to in a text, it seems essential to reason over the semantic relations, as well as the 

event representations embedded in the text. In this thesis we explore whether coreference 

resolution can benefit from semantic knowledge sources from the detection of relations 

and events. 

5.1.2.1 Interaction between Coreference Resolution and Relation Detection 

Coreference is by definition a semantic relationship: two noun phrases corefer if they 

both refer to the same real-world entity. Therefore we expect a successful coreference 

system should exploit world knowledge, inference, and other forms of semantic relations 

in order to resolve hard cases. If, for example, two mentions refer to people who work for 

two different organizations (in the same time-frame), then these mentions are less likely 

to corefer. Further progress will likely be aided by flexible frameworks for representing 
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and using the information provided by this kind of semantic relation between noun 

phrases.  

The ACE relations provide a coarse classification of a broad range of predicates. 

Repeated relations may therefore provide a valuable additional source of information for 

coreference; these sources should be more reliable guides for coreference than simple 

lexical context or even tests for the semantic compatibility of heads and modifiers. Some 

examples from real texts below will support this intuition. 

 
Example 5-3 

 
[…] The lawyer for Vice President Al Gore said Wednesday their only chance for 
victory in his contest of the Florida election would be shattered if they have to wait 
until Saturday to begin counting disputed ballots, and they began an appeal to the 
Florida Supreme Court to do the counting itself, immediately. 

    … 
And it could take weeks if not months to count them all, the point that Bush's chief trial 
lawyer here, said he was trying to make in requesting that the ballots be transported here.  
[…] 

 
Two mentions that do not corefer share the same nominal head (“lawyer”). The 

coreference link can be pruned by noting that both occurrences of “lawyer” participate in 

an Person-Social (Business) relation, while the person name arguments of these two 

relation instances do not corefer (“Vice President Al Gore” vs. “Bush”). 

If two mentions belong to different inventors, manufacturers, user-or-owners, business 

groups, ethnic groups or families, or located in different places, or they are residents of 

different countries, employees of different organizations, or they have different 

ideologies, then they are less likely to corefer.  
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Example 5-4 
 

[…] But the unknown culprits, who had access to some of the company's computers 
for an undetermined period, were not able to view or steal the company's crucial 
source code for its Windows or Office software, a company spokesman said Friday 
afternoon. 

 
Speaking earlier to Microsoft programmers and reporters at a seminar in Stockholm, 
Sweden, Steven Ballmer, the company's chief executive, said, ``It is clear that 
hackers did see some of our source code,'' Reuters and The Associated Press 
reported. […] 

 
 
“chief executive” stands in relation EMP-ORG/Employ-Executive with “the company”, 

while a “company spokesman” is in relation EMP-ORG/Employ-Staff with the same 

company. So these two mentions are very unlikely to corefer. 

 
Example 5-5 

 
[…] The Texas governor and Republican nominee was described as in good spirits, 
but disappointed after Friday's Florida Supreme Court order for an immediate 
recount of so-called undervotes missed in machine tallies.  
… 
But Bush officials did little to hide their obvious dismay with Friday's 4-3 state 
Supreme Court ruling favoring Democrat Al Gore. […] 

 
 
If we have detected a coreference link between the two “Supreme Court” mentions,  as 

well as EMP-ORG/Subsidiary relations between this organization and two GPE mentions 

“Florida” and “state”, it is likely that the two mentions both refer to the same state. 

Without this inference, it might be difficult to detect this coreference link. 

   Another obvious constraint which we can obtain from relation knowledge is two related 

mentions don’t corefer. Most of such errors can be avoided by substring or head matching, 

but deeper semantic relation constraint can certainly help further filter the incorrect 

coreference links. For example, “Assad ” and “Hafez Assad” don’t corefer in the 

following sentence because they have ACE relation “Personal-Social (Family)”:  



49 

Example 5-6 
[…] Assad, 35, has focused on domestic issues since his father, Hafez Assad, died 
in June after 30 years in power. 

 

Further progress will likely be aided by flexible frameworks for representing and using 

the information provided by this kind of semantic relation between mentions. This thesis 

uses an ontology that describes ACE relations between entities along with a training 

corpus annotated for relations under this ontology, the output of a relation tagger can be 

used to refine the results of coreference resolution. 

5.1.2.2 Interaction between Coreference Resolution and Event Detection 

This thesis also attempted to use event information as additional constraint rules in 

coreference resolution. As an example, consider a fragment from ACE data: 

 
Example 5-7 

 
[…] Last Saturday night, rebels in the Central Africa Republic, captured the airport 
in the capital city of Bangui and the residence of President Ange-Felix Patasse, who 
is out of the country. 

 
The rebels have captured the country's main international airport, said a top 
official in a 300-strong African security force policing the city. […] 

 

If we can detect “the airport in the capital city of Bangui” and “the country’s main 

international airport” are the places involved in the “Transaction/Transfer-Ownership” 

event (triggered by “captured”) with the same person entity “rebels”, then these two 

airports are likely to corefer. 
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Example 5-8 
 
[…] The Hong Kong Jockey Club is in talks about buying out the horse racing club in 
neighboring Macau, a newspaper reported Tuesday. […] 

 

In this example, “Hong Kong Jockey Club ” is the “buyer” whereas “the horse racing 

club” is the “artifact” of the event “Transaction/Transfer-Ownership” (triggered by “buy 

out”), so these two clubs are unlikely to corefer.  

 

Example 5-9 
 

[…] Army forces rolled past dozens of dead Iraqi soldiers and bombed-out hulks of Iraqi 
military equipment as they made their way toward Baghdad from the area around Karbala.  
[…] 

 
 
If we detect that “Baghdad” is the “destination” of “movement” event (triggered by 

“way toward”) and “the area around Karbala” is the “origin”, then this can be used as an 

additional feature to determine these two mentions are not coreferential. 

So Event detection provides the semantic relationships between the arguments and 

triggers, thus allowing us to include such document-level event information into the 

relations holding between two candidate mentions. 

5.2 Cross-lingual Interaction between Entity Extraction and Entity 

Translation 

The interaction between two NLP tasks may allow them to share training data and 

resources indirectly, and thus produce better results for each. This thesis will focus on 

exploring such cross-task interactions between IE and machine translation. 



51 

Currently IE performance varies from language to language; for many stages English 

IE achieves better performance than other languages because of richer linguistic 

resources. Therefore, if an IE stage faces a performance bottleneck for language S using 

all the monolingual resources in S, it may be helpful to bridge S with English using 

machine translation, and incorporate the results of the same stage in English as useful 

‘feedback’.  

In other words, one further source of information for improving IE are bitexts – 

corpora pairing the text to be tagged with its translation into one or more other languages. 

Such bitexts are becoming available for many language pairs, and now play a central role 

in the creation of machine translation and name translation systems. By aligning the texts 

at the word level, it’s possible to infer properties of a sequence s in language S from the 

properties of the sequence of tokens t with which it is aligned in language T. For example, 

focusing on the task of improving name tagging, the basic intuition for this approach is 

the following:  knowing that t is a name, or merely that it is capitalized (for T = English) 

makes it more likely that s is a name. So if there are multiple, closely competing name 

hypotheses in the source language S, the bitext can be used to select the correct analysis.  

Some examples are presented as follows, for using word-aligned bitexts to improve 

source language (S) IE, with Chinese-English pair and Chinese-Japanese pair. 

• Chinese → English  

Chinese does not have white space for tokenization or capitalization, features which, 

for English, can help identify name boundaries and distinguish names from nominals. 

Therefore using Chinese-English bitexts can help capture such indicative information to 

improve Chinese name tagging. For example, 
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Example 5-10 
 
(a) Results from Chinese name tagger 
美德联盟立刻委任了一名执行人员出任 <ENAMEX TYPE="ORG">三菱新 
 </ENAMEX>总裁。 
 
(b) Bitext 
Chinese:   三菱      新              
 
English:  Mitsubishi  new 
 
(c) Name tagging after using bitext 
美德联盟立刻委任了一名执行人员出任 <ENAMEX TYPE="ORG">三菱 
</ENAMEX>新总裁。 
 

Based on the title context word “总裁 (president)”, the Chinese name tagger 

mistakenly identified “Mitsubish new” as an organization name. But the un-capitalized 

English translation of “new” can provide a useful clue to fix this boundary error. 

• English → Chinese 

On the other hand, Chinese has some useful language-specific properties for entity 

extraction. In English without global contexts sometimes it’s hard to classify an 

abbreviation name, but if we can translate (expand) them into Chinese full names based 

on bitexts, additional useful clues from the full names can be used for disambiguation.  

In addition, an English name tagger heavily relying on capitalization features tends to 

mistakenly identify agreements, regulations, exhibitions and meetings as organization 

names, because they appear in the same form of capitalized strings. But in Chinese, the 

‘usable-character’ feature mentioned in section 5.1.1.1 - particular character or word 

vocabulary for names – can be exploited as useful ‘feedback’ for fixing these errors. For 

example, 
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Example 5-11 
 
(a) Results from English name tagger 
The flashpoint in a week of bitter <ENAMEX TYPE="ORG">West Bank</ENAMEX> clashes. 
 
(b) Bitext 
English:  West Bank 
 
Chinese:   西岸 
 
(c) Name tagging after using translation 
The flashpoint in a week of bitter <ENAMEX TYPE="LOC"> West Bank</ENAMEX> 
clashes. 
 

“Bank” in English can be the suffix word of either a ORG or LOC name, while its 

Chinese translation “岸 (shore, side)” indicates that “West Bank” is more likely to be a 

LOC name. 

• Chinese → Japanese 

It’s difficult to identify Japanese names in Chinese texts because of their flexible name 

lengths. However, if they can be ‘back-translated’ into Japanese, the Japanese-specific 

information could be used for names – they cannot include kana – to fix the name 

boundary: 

Example 5-12 
 
(a) Results from Chinese name tagger 
满洲时期的官员包括实业部次长<ENAMEX TYPE="PERSON">岸信介等</ENAMEX>。 
 
(b) Bitext 
Chinese:  岸信介 等                
 
Japanese: 岸信介 など 
 
(c) Name tagging after using bitext 
满洲时期的官员包括实业部次长<ENAMEX TYPE="PERSON">岸信介</ENAMEX>等。 
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などThe kana “ ” in translation helps to fix the name boundary from “岸信介等” 

to”岸信介”. 

The translation knowledge source has an additional benefit: because name variants in S 

may translate into the same form in T, translation can also aid in identifying name 

coreference in S.  

5.3 Conclusion 

The chapter has shown that the interaction between NLP stages can provide more 

comprehensive treatment of linguistic phenomena. To summarize, this thesis explores the 

diverse ‘feedback’ information in the following Figure 5-4. 

 
 
 
                                                                          

 
 
 

 
 
 
 
 
 
 

 
 
 

Figure 5-4. Outline of Feedback 
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 6. INTERACTION MODELS AND ALGORITHMS 

This chapter will present a new framework to efficiently and effectively incorporate the 

interactions in Chapter 5.   

6.1 Introduction 

Before introducing this new framework, this section will discuss two other possible 

alternative solutions in order to show the necessity of a new design. 

   Many current NLP stages fall into the general category of history-based noisy channel 

models (Brown et al., 1990; Black et al., 1993), where each stage is represented as a 

derivation and the probability of the possible hypothesis is then calculated. Therefore, the 

first natural solution is directly adding interaction knowledge as new features in these 

stages. However, adding global features based on the feedback from subsequent stages 

may require major changes of the model to take the new features into account, and also 

multiple runs of the entire pipeline. 

Another alternative solution is to apply sequence models such as Conditional Random 

Fields (CRFs, Lafertty et al., 2001) and Maximum-margin Markov networks to optimize 

a global objective function over the space of all sequences, leveraging global features of 

the input. However, the main challenge in applying these joint methods more widely 

throughout NLP is that they are more complex and more expensive. For example, the 

integer linear programming framework proposed by Roth and Yih (2002, 2004, 2007) 

considers exhaustive hypotheses for name classification assuming the identification (the 

exact boundaries of entities) given, which can lead to a lot of possibilities for the real 
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name tagging task consisting of identification and classification. (Florian et al., 2006) 

also pointed out that the joint model ran twice as slow as the sequential and monolithic 

models. 

This thesis incorporates interaction knowledge using a relatively simpler mechanism. 

The sequential IE framework is retained, with each stage producing multiple hypotheses. 

Then the interactions with subsequent stages are encoded as feedback properties. Based 

on these properties, we apply either correction rules or re-ranking models to select the 

best hypothesis. This relatively simpler mechanism can allow us to apply interaction 

features, algorithms and scoring metric to address each stage. In addition, this staged 

design has the advantage of reducing the number of interaction features in any single 

model, thus preventing the optimization process from being overwhelmed by too many 

features for the amount of training data.  

6.2 General Framework 

6.2.1 Overview 

The new NLP framework based on stage interaction is shown in Figure 6-1, and the 

general algorithm of incorporating interaction knowledge is presented in Figure 6-2. The 

central idea is to conduct inference only after the candidate results for the target stage 

have been narrowed down to a small set of hypotheses H, assuring a high probability of 

the best hypothesis belonging to H (a high performance upper-bound). This is a more 

pragmatic approach to filter the hypotheses in the search space to a manageable level so 

as to alleviate the scalability problem. 
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The focus of this thesis is on improving IE performance, so the different stages inside 

IE task are explored, and the feedback from one subsequent task – machine translation - 

is used as additional feedback. The next sections will describe the key modules in this 

framework. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     
 
 
 
 
 
 
 
 

Figure 6-1. Stage-Interaction based NLP Framework 
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Figure 6-2. Stage Interaction based Correction Algorithm 

6.2.2 Target Element and Multiple Hypotheses Representation 

The general goal of this framework is to accurately select the assignment that maximizes 

preference of a target element. In our application, the choice of such ‘element’ can be 

customized based on the stage we aim to improve., such as entity detection, relation 

detection, or name tagging. Table 6-1 presents some examples of target element and their 

hypotheses for different stages. 

6.2.3 Feedback Knowledge Selection 

Despite the intuition that linguistically-derived sophisticated interaction knowledge 

should be beneficial to IE, there have been few reliable demonstrations of real gains in 

performance. It’s not sufficient to directly augment the feature space of a baseline stage 

1. Arrange the various NLP tasks Task1, Task2, … Taskt in a sequential pipeline. 
2. For i = 1 to t 

1) Arrange the stages Stage1, Stage2, … Stages of Taski in a sequential pipeline. 
2) For j = 1 to s 

A. Select the set of target elements (mention, entity, sentence, document, etc.) 
to improve: Element1, Element2, …Elemente. 

B. For k = 1 to e 
a) Apply the baseline model of Stagej to generate the set of  

multiple candidate hypotheses H = {h1, h2, …, hn} for Elementk 
b) Process each hypothesis in H through subsequent stages 

Stagej+1, …Stages, or subsequent tasks Taski+1, …Taskt,  
and get results H_SubsequentResult  

c) Select feedback knowledge H_Feedback from H_SubsequentResult  
d) Use a rule-based or supervised learning based module incorporating 

H_Feedback to determine the best hypothesis hbest from H; In the rule-
based approach correct H_SubsequentResult and then go back to (c) if 
necessary.  

e) Output hbest to the next stage or task. 
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with all the feedback results from subsequent stages and tasks. Often, such a direct 

approach raised performance issues because these interaction representations are not 

amenable to large-scale feature engineering. More importantly, subsequent stages in the 

pipeline can introduce much noise unless features are carefully selected.  

Therefore, in order to apply the interaction knowledge more effectively, the careful 

selection and engineering of features will be needed. It will be necessary to recognize the 

situations where we can expect to improve performance, and encode them in a robust and 

controlled manner that is known to deliver useful additional information. 

The new framework presented in Figure 6-2 selectively uses and quantifies the 

interaction information which has high reliability, and provide confidence measures for 

additional global features which otherwise would be unreliable to be used in the baseline 

stages. For example, when using the feedback from coreference to improve name tagging, 

instead of using directly the results of whether two mentions are coreferred or not as 

features, a “CorefNum” feature is encoded: the names in one hypothesis are referred to by 

CorefNum other mentions, because this feature is more likely to reliably help in selecting 

the best hypothesis. More details about the selection of feedback knowledge will be 

presented in the case studies in Chapter 7 and 8. 
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Target  
Stage 

Target  
Element 

Multiple Hypotheses 
(Best Hypothesis *) 

 
Name  

Tagging 

Sentence 
“Slobodan Milosevic was born in 
Serbia.” 

h0: Slobodan Milosevic was born in 
<PER>Serbia</PER> .  
h1: <PER>Slobodan</PER> Milosevic 
was born in <GPE>Serbia</GPE> . 
*h2: <PER>Slobodan Milosevic</PER> 
was born in <GPE>Serbia</GPE>. 
…  

 
Coreference 
Resolution 

 

Mention-Antecedent Pair 
“the airport in the capital city of 
Bangui” –“the country’s main 
international airport” 
 

*h0: “the airport in the capital city of 
Bangui” and “the country’s main 
international airport” corefer. 
h1: “the airport in the capital city of 
Bangui” and “the country’s main 
international airport” don’t corefer. 

 
 
 
 

Entity 
Extraction 

Cross-lingual Entity Pair 
 
 

Source Mention1     Target Mention1 
Source Mention2     Target Mention2 

…                      … 
     
 
 
 
 

h0:          阿贾比                     Agabi 
阿贾比由               Agabi from 

哈米德.阿贾比        Hamid Agabi 
阿贾比                   Agabi 

 
*h1:        阿贾比                    Agabi 

阿贾比                   Agabi 
哈米德.阿贾比       Hamid Agabi 

阿贾比                    Agabi 
 
h2:        阿贾比由                 Agabi from 

阿贾比由               Agabi from 
哈米德.阿贾比由    Hamid Agabi from
    阿贾比由                  Agab from 

 
Table 6-1. Examples for Target Element and Multiple Hypotheses 

6.3 Inference Details 

Now the critical question becomes: how to use a suitable method to incorporate the 

interaction information? 

Two different approaches are examined and compared: rule-based and re-ranking. The 

following sections shall describe their motivations and implementations in detail and 

compare their requirements and characteristics, in order to understand which methods are 

best to provide the greatest improvement in IE on particular stages. 
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6.3.1 Rule-based System 

The simplest way to exploit the interaction knowledge sources is to convert them into 

correction rules, and apply them in the preprocessing or post-processing phase of the 

baseline model. A reliability weight can be assigned to each rule to determine the rule’s 

accuracy, and then apply the constructed rules to adjust (filter/recover) or correct the 

sequential baseline outputs.  

For example, a correction rule can be encoded for using relation detection results to 

filter out coreference links, “If person Mention1 is an executive member of a company, 

and person Mention2 is a staff member of the same company, then Mention1 and 

Mention2 do not corefer”. The translation feedback can be encoded to fix source language 

entity detection by heuristic rules such as “If Mention1 is translated into lower case in 

English with high confidence, then change its mention type to nominal”. 

6.3.2 Shift from Rules to Re-Ranking 

Correction rules don’t require any labeled data and can be applied to all granularities of 

hypotheses; for example, for the problem of name tagging, a hypothesis can be a 

candidate name mention, an entity consisting of coreferred names, a sentence with an 

alternative name labeling, or even a document labeled with name mentions. However, the 

rule-based approach has the following limitations: 

 Rules need to be encoded with very high accuracy. 

 Rules have to be formulated in condition-action form.  

 Much engineering effort and language specific knowledge are needed for adjusting 

the confidence values, thresholds and the priority order of different rules 
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 The binary action based on rules is not suitable for all circumstances. Some estimate 

of the correctness of a hypothesis will be needed, to give some rough indication of the 

confidence in the extraction of a particular piece of information. 

Many current IE stages are based on supervised learning models trained from hand-

labeled corpora. Such valuable labeled data can be re-used to learn automatically the 

coefficients to combine the feedback knowledge. However, it’s not feasible to simply 

assign constant weights and linearly combine them because for the following two reasons:  

 Weights can vary depending on training and test data. 

 The feature space may not be linearly separable; some interaction features may 

overlap. 

This thesis employs supervised re-ranking models as an alternative method to 

incorporate the interactions. Each stage generates N-Best hypotheses, and then the 

feedback information is used to re-rank these hypotheses.  Besides addressing the 

limitations of the rule-based approach mentioned above, the re-ranking approach is 

suitable for the system described in the thesis for the following reasons. 

Most stages in the English and Chinese baseline IE systems described in Chapter 4 are 

built on statistical models, so they are well suited to producing and maintaining multiple 

hypotheses about a sentence. For example, the HMM name tagger can produce multiple 

hypotheses in the form of N-Best lists; the MaxEnt-based coreference resolver can 

produce all possible positive coreference links.  

Another advantage of statistical baselines is that additional features comparing the 

hypotheses can be propagated through the pipeline, which includes the probability of 

each hypothesis, the margin between the first and second hypotheses, the voting rate 
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among all hypotheses, etc. All of them can be exploited as baseline confidence features in 

the re-ranking model.  

6.3.3 Re-Ranking 

This section shall first describe the general setting and the special characteristics of re-

ranking, and show how an approach based on multi-stage incremental re-ranking can 

effectively handle features across sentence and document boundaries. Then three re-

ranking models are presented– MaxEnt-Rank, SVMRank and p-Norm Push Ranking,  

6.3.3.1 Overview 

The general procedure of re-ranking is as follows. 

 Use baseline to generate N-Best hypotheses and initial ranking/confidence. 

 Build a second-phase supervised ranking model. 

 Encode the baseline output confidence and feedback  knowledge as features. 

 Predict new rankings for the hypotheses, generate the new top hypothesis as the final 

output. 

For example, in the name re-ranking model, each hypothesis is name annotation of the 

entire sentence; for the sentence “Slobodan Milosevic was born in Serbia”, the following 

hypotheses may be generated from the baseline model: 

• h0: Slobodan Milosevic was born in <PER>Serbia</PER> .  

• h1: <PER>Slobodan</PER> Milosevic was born in <GPE>Serbia</GPE> . 

• h2: <PER>Slobodan Milosevic</PER> was born in <GPE>Serbia</GPE> . 

… 
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Then the goal of re-ranking is to assign new ranking scores for these hypotheses and 

push the new best hypothesis to the top of the list: 

• h0: <PER>Slobodan Milosevic</PER> was born in <GPE>Serbia</GPE> . 

• h1: <PER>Slobodan</PER> Milosevic was born in <GPE>Serbia</GPE> . 

• h2: Slobodan Milosevic was born in <PER>Serbia</PER> .  

6.3.3.2 Training Hypotheses Generation 

An important step for supervised learning models is to obtain training data. The training 

data for re-ranking can be constructed directly from the labeled corpora for the baseline 

stage.  

Assume a training corpus (D) is labeled with reference IE annotations;, this thesis 

adopts two alternative ways – partial training and k-fold training - to obtain the training 

data (RD) for the re-ranking algorithm. The details are presented in Figure 6-3. 

In K-fold training, all the labeled baseline corpora can be utilized to obtain more 

training data for re-ranking, although the training procedure becomes much slower then 

partial training. 

6.3.3.3 Training and Test Algorithm 

The general re-ranking algorithm is shown in Figure 6-4. More details about sample 

creation and re-ranking models will be presented in the next subsections. 
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Figure 6-3. Re-Ranking Training Hypotheses Generation 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
 

 
Figure 6-4. Re-Ranking Training and Testing 

Training 
1. Train a baseline stage BM which can generate N-Best hypotheses for 

each sentence and produce a probability associated with each hypothesis. 
2. Apply BM to generate N-Best hypotheses Htrain for each sentence.  
3. Process each hypothesis h(i,train) in Htrain through subsequent stages or 

tasks. 
4. Create training samples Strain from Htrain 
5. For each training sample s(i,,train) in Strain, select inference features Ftrain 

from the output of step 3. 
6. Train a statistical re-ranking model RRM based on each s(i,,train), using 

Ftrain together with the probability from the baseline stage. 
 
Test 
1. Apply BM to generate N-Best hypotheses Htest for each test sentence. 
2. Process each hypothesis h(i, test) in Htest through subsequent stages or tasks. 
3. Create test samples Stest from Htest 
4. For each test sample s(i, test) in Stest, from the output of step 2 encode 

feature set Ftest with the same types as Ftrain. 
5. Apply RRM on Stest to determine a new ranking for Htest 
6. Output hbest on the top of the re-ranked Htest. 

Partial Training 
1. Separate the training data D into two portions D1 and D2. 
2. Train a baseline model BM on D1. 
3. For each sentence in D2 

(1) Apply BM to generate multiple hypotheses H = {h1, h2,…,hn}. 
(2) For each hi in H 

Measure the performance of hi against the key in the annotated 
corpus and get its score si. Add the pair < hi , si> into training data 
RD. 
 

K-Fold Training 
1.  Split the training corpus D into k folds {D1, D2 … Dk}. 
2.  For i= 1 to k 

(1) Train a baseline model BMi on {D1, … Di-1} and {Di+1, … Dk}. 
(2) For each sentence in Di 

(a) Apply BM i to generate multiple hypotheses H = {h1, h2,…,hn}. 
(b) For each hi in H 

Measure the performance of hi against the key in the annotated 
corpus and get its score si. Add the pair < hi, si> into training data 
RD. 
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6.3.3.4 Sample Creation 

Two different sampling methods – Single Sampling and Pair-wise Sampling - are adopted 

to create re-ranking training and test samples. 

• Single Sampling 

The first approach is to use each single hypothesis hi as a sample. Only the best 

hypothesis of each sentence is regarded as a positive sample; all the rest are regarded as 

negative samples. In general, absolute values of features are not good indicators of 

whether a hypothesis will be the best hypothesis for a sentence; for example, a co-

referring mention count of 7 may be excellent for one sentence and poor for another. 

Consequently, in this single-hypothesis-sampling approach, each feature is converted to a 

boolean value, which is true if the original feature takes on its maximum value (among all 

hypotheses) for this hypothesis. This does, however, lose some of the detail about the 

differences between hypotheses. 

• Pair-wise Sampling and Pruning 

In pair-wise sampling each pair of hypotheses (hi, hj) is used as a sample. The value of a 

feature for a sample is the difference between its values for the two hypotheses.  

However, considering all pairs causes the number of samples to grow quadratically 

(O(N2)) with the number of hypotheses, compared to the linear growth with best/non-best 

sampling. To make the training and test procedures more efficient, the data is pruned in 

several ways. Pruning is performed by beam setting, removing candidate hypotheses that 

possess very low probabilities from the baseline, and during training the hypotheses are 

discarded with very low performance. The pairs very close in performance or probability 

are also discarded. 
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 Additionally, the Relative Pruning technique (Chiang 2005) is used, by which any 

hypothesis hi is discarded if: 

 Prob(hi) < α (the highest probability for the hypothesis set H).  

A “crucial pair” is defined as a pair of hypotheses such that, according to their 

performance, the first hypothesis in the pair should be more highly ranked than the 

second. That is, if for a sentence, the performance of hypothesis hi is larger than that of hj, 

then (hi, hj) is a crucial pair. 

6.3.3.5 Learning Functions 

This thesis investigated the following four learning functions for the re-ranking problem.  

• Score Based Direct Re-Ranking (SDRR) 

For each hypothesis hi, learn a scoring function f: H  R, such that f(hi) > f(hj) if the 

performance of hi is higher than the performance of hj. Then select the hypothesis which 

achieves the largest value for f(hi). 

• Classification Based Direct Re-Ranking (CDRR) 

For each hypothesis hi, learn f: H  {-1, 1}, such that f(hi) = 1 if hi has the top 

performance among H; otherwise f(hi) = -1. Then select the hypothesis which achieves 

the largest value for prob (f(hi)). 

• Pairwise-Comparison Indirect Re-Ranking (PIRR) 

For each “crucial” pair of hypotheses (hi, hj), learn f : H × H  {-1, 1}, such that f(hi, hj) 

= 1 if hi is better than hj; f (hi, hj) = -1 if hi is worse than hj. This is called as “indirect” 

ranking because an additional decoding step is needed to pick the best hypothesis from 
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these pair-wise comparison results. An example of the decoding algorithm will be 

described in section 6.4.5.5.1. 

•  Baseline-Comparison Indirect Re-Ranking (BIRR) 

For each hypothesis hi (i>0) learn f : H  {-1, 1}, such that f(hi) = 1 if hi is better than h0; 

f(hi) = -1 if hi is worse than h0, where h0 is the top hypothesis produced by the baseline 

system. If for all i (i>0) prob(f(hi) = 1) <=0.5, then select h0 as the best hypothesis; 

otherwise select the hypothesis which achieves highest prob(f(hi) = 1). The advantage of 

this model is that it can still benefit from pair-wise feature encoding, while avoiding the 

decoding step of resolving ambiguities as in PIRR. 

In the CDRR, PIRR and BIRR frameworks, the classification values can be further 

scaled into multiple variants. For example, one can have f: H  {-2, -1, 1, 2}; in CDRR 

it can indicate how close the performance of hi is to the top performance among H; in 

BIRR it can help distinguish whether hi is much better than h0 or they perform equally 

well. 

   Table 6-2 presents a simple example of these ranking functions for H= {h0, h1, h2}. 

Hypothesis Score (%) SDRR CDRR PIRR BIRR 

h0 
h1 
h2 

80 
90 
60 

f(h0) = 0.8
f(h1) = 0.9
f(h2) = 0.6

f(h0) = -1 
f(h1) = 1 
f(h2) = -1 

f(h0, h1) = -1 
f(h0, h2) = 1 
f(h1, h0) = 1 
f(h1, h2) = 1 
f(h2, h0) = -1 
f(h2, h1) = -1 

f(h1) = 1 
f(h2) = -1 

 
Table 6-2. Example for Re-Ranking Functions 
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6.3.3.6 Multi-Stage Incremental Re-Ranking 

If we revisit the framework in Figure 6-1 regarding re-ranking implementation, we can 

see that the cross-sentence and cross-document interaction constraints will give rise to 

new design issues. 

For example, coreference is potentially a powerful contributor for enhancing NE 

recognition, because it provides information from other sentences and even documents, 

and it applies to all sentences that include names. For a name candidate, 62% of its 

coreference relations span sentence boundaries.  However, this breadth poses a problem 

because it means that the score of a hypothesis for a given sentence may depend on the 

tags assigned to the same names in other sentences.5 

Ideally, when re-ranking the hypotheses for one sentence S, the other sentences that 

include mentions of the same name should already have been re-ranked, but this is not 

possible because of the mutual dependence. Repeated re-ranking of a sentence would be 

time-consuming, so the following alternative approach has been adopted.  

Note that it’s not needed to do as elaborate a re-ranking after each stage, since the 

ranking result at each stage doesn’t have to be precise; as long as each stage can keep the 

correct one in the top N hypotheses, at a high confidence level. Therefore, instead of 

incorporating all interaction information in one re-ranker, two re-rankers are applied in 

succession.  

   In the first re-ranking step, new rankings are generated for all sentences based on all 

interaction knowledge which can be obtained within sentences. Then in a second pass, a 

                                                 
5 For in-document coreference, this problem could be avoided if the extraction of an entire 

document constituted a hypothesis, but that would be impractical … a very large N would be 
required to capture sufficient alternative extractions in an N-best framework. 
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re-ranker is applied based on cross-sentence interaction between the candidate hypothesis 

of sentence S and the top-ranking hypothesis (from the first re-ranker) of all other 

sentences.6  In this way, the second re-ranker can propagate globally (across sentences 

and documents) high-confidence decisions based on the other evidence. 

At each re-ranking step the algorithm will generate the best name hypothesis directly 

and by-pass later re-ranking steps if the re-ranker has high confidence in its decisions. 

Otherwise the sentence is forwarded to the next re-ranker, based on other features. In this 

way the algorithm can adjust the ranking of multiple hypotheses and seek the best tagging 

for each sentence gradually. 

6.3.3.7 Learning Models 

It's worth trying several learning models to see if one does better to fit our re-ranking 

application.. There are many learning schema (MaxEnt, SVM, Boosting, etc.) and 

particular data properties may make some models work better than others. Some models 

have provable properties, for example regarding generalization error. This thesis chooses 

three state-of-the-art ranking algorithms that have good generalization ability: MaxEnt-

Rank, SVMRank, and p-Norm Push Ranking. The following sections will describe these 

algorithms. In Chapter 7 these algorithms will be applied and evaluated for re-ranking in 

the context of name tagging. 

• MaxEnt-Rank 

Maximum Entropy (MaxEnt) models are useful for the task of ranking because they 

compute a reliable ranking probability for each hypothesis. During training the Pairwise-

                                                 
6 This second pass is skipped for sentences for which the confidence in the top hypothesis 

produced by the first re-ranker is above a threshold. 
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Comparison Indirect Re-Ranking (PIRR) model is used to learn the ranking function f. 

During test the MaxEnt model produces a probability for each un-pruned “crucial” pair: 

prob(f(hi, hj) = 1), i.e., the probability that for the given sentence, hi is a better hypothesis 

than hj.  

An additional decoding step is needed to select the best hypothesis. Inspired by the 

caching idea and the multi-class solution proposed by (Platt et al. 2000), this thesis uses a 

dynamic decoding algorithm with complexity O(n), as shown in Figure 6-5. 

 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-5. MaxEnt-Rank Decoding 
 

Prune 
for i = 1 to n 

Num = 0; 
for j = 1 to n and j≠i 

if CompareResult(hi, hj) = “worse” 
Num++; 

  if Num>βthen discard hi from H 
Decoding 
Initialize: i = 1, j = n 
while (i<j) 

if CompareResult(hi, hj) = “better” 
discard hj from H; 
j--; 

else if CompareResult(hi, hj) = “worse” 
discard hi from H; 
i++; 

else break; 
Output 
If the number of remaining hypotheses in H is 1, then output it as the best 
hypothesis; else propagate all hypothesis pairs into the next re-ranker. 
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The probability values are scaled into three types: CompareResult(hi, hj) = “better” if 

prob(f(hi, hj) = 1) >δ1, “worse” if prob(f(hi, hj) = 1) <δ2, and “unsure” otherwise, 

where δ1≥δ2. 7  

• SVMRank 

A Support Vector Machines (SVMs, Cristianini and Shawe-Taylor, 2000) based model is 

also applied, which can theoretically achieve very low generalization error by 

emphasizing correct interactions while ignoring noisy ones. SVMRank uses the Pair-wise 

Sampling scheme and PIRR ranking function as for MaxEnt-Rank.  

In addition the following adaptations are made: the SVM outputs are calibrated, and 

the data is separated into subsets. To speed up training, our training samples are divided 

into k subsets. Each subset contains N(N-1)/k pairs of hypotheses of each sentence.  

The output of an SVM yields a distance to the separating hyperplane, but not a 

probability. This thesis has applied the method described in (Shen and Joshi, 2003), to 

map SVM’s results to probabilities via a sigmoid. Thus from the kth SVM, the probability 

for each pair of hypotheses is generated: 

)1),(( =jik hhfprob , 

namely the probability of hi being better than hj. Then combining all k SVMs’ results: 

       ∏ ==
k

jikji hhfprobhhZ )1),((),( . 

So the hypothesis hi with maximal value is chosen as the top hypothesis:  

∏
j

ji
h

hhZ
i

)),((maxarg . 

                                                 
7 In the final stage re-ranker we useδ1=δ2 so that we don’t generate the output of “unsure”, 

and one hypothesis is finally selected. 
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• p-Norm Push Ranking 

The third algorithm is a general boosting-style supervised ranking algorithm called p-

Norm Push Ranking (Rudin, 2006). This algorithm is a generalization of RankBoost 

(Freund et al. 1998, take p=1 for RankBoost) which concentrates specifically on the top 

portion of a ranked list. This algorithm is very efficient and can be turned into a margin-

maximization algorithm in the same way as soft margin RankBoost.  

The parameter “p” determines how much emphasis (or “push”) is placed closer to the 

top of the ranked list, where p≥1. When p is set at a large value, the rankings at the top of 

the list are given higher priority (a large “push”), at the expense of possibly making mis-

ranks towards the bottom of the list. The applications in this thesis do not care about the 

rankings at the bottom of the list (i.e., do not care about the exact rank ordering of the bad 

hypotheses), so this algorithm is suitable.  

There is a tradeoff for the choice of p; larger p yields more accurate results at the very 

top of the list for the training data. If the application considers more than simply the very 

top of the list, a smaller value of p may be desired. Note that larger values of p also 

require more training data in order to maintain generalization ability (as shown both by 

theoretical generalization bounds and experiments).  

If a large p is desired, the value of p must still be limited in order to allow 

generalization, given the amount of training data.  

The objective of the p-Norm Push Ranking algorithm is to create a scoring function f 

in the way of SDRR ranking function as described in section 6.3.3.5, namely:  

f: H R such that for each crucial pair (hi, hj), f(hi) > f(hj).  

The form of the scoring function is: 
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 f(hi) = ∑αkgk(hi), 

where gk is called a weak ranker: gk : H  [0,1]. The values of αk are determined by 

the p-Norm Push algorithm iteratively.  

The weak rankers gk use the feedback features from subsequent stages. Note that the 

algorithm is allowed to use both gk and g’k(hi)=1-gk(hi) as weak rankers, namely when gk 

has low accuracy on the training set; this way the algorithm itself can decide which to use.  

As in the style of boosting algorithms, real-valued weights are placed on each of the 

training crucial pairs, and these weights are successively updated by the algorithm. 

Higher weights are given to those crucial pairs that were misranked at the previous 

iteration, especially taking into account the pairs near the top of the list. A price is put on 

each negative sample hi: 

 ⎟
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where ++ → RRG :  is a convex, monotonically increasing function, such as the 

function used in this thesis: pzzG =)( for p large. At each iteration, one weak ranker gk is 

chosen by the algorithm, based on the weights. The coefficient αk is then updated 

accordingly.  

6.3.4 Conclusion 

One appeal of the re-ranking methods is their flexibility in exploiting feedback features 

from subsequent stages into a model: essentially any features which might be useful in 

discriminating good from bad hypotheses can be included. By capturing the quantified 

comparison results among hypotheses, these methods can be more effective when the 



75 

best hypothesis exists in a relatively large set of alternative hypotheses. They can capture 

and incorporate global features in a natural and efficient manner. To summarize, Table 6-

3 lists the main potential conditions for applying these three different joint inference 

approaches. 

 
Hypothesis Selection

Characteristics 

Inference 
Rules 

Re-Ranking 

Require training data No Yes 
Require explicit N-Best hypotheses 
Representation 

No Yes 

Require logical form inference knowledge Yes No 
Can quantify inference results and confidence No Yes 
Can easily incorporate large amount of 
realistic wider context interaction features 

No Yes 

Can easily incorporate features for 
discriminating good from bad hypotheses 

No Yes 

 
Table 6-3. Condition Comparison for Rule and Re-Ranking based Hypothesis Selection 
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7. CASE STUDY ON MONOLINGUAL INTERACTION 
 
This chapter will demonstrate the idea of mono-lingual interactions by two case studies:  

 Improving name tagging by incorporating feedback from subsequent IE stages: 

coreference resolution, relation detection and event extraction. 

 Improving coreference resolution using results from relation detection. 

7.1 Improving Name Tagging by Subsequent IE Stages 

The re-ranking approach is used to improve English and Chinese name tagging. N-Best 

name hypotheses are generated, then the results from subsequent IE stages are 

incorporated into re-ranking models. F-measure is used to measure the quality of each 

name hypothesis against the key. 

Section 7.1.1 will describe the generation of N-Best hypotheses, and section 7.1.2 will 

describe the diverse features used in re-ranking. Then section 7.1.3 and 7.1.4 will present 

the experimental results, analyze the results in terms of different types of name 

identification and classification errors, compare three re-ranking models, and show the 

benefit of multi-stage re-ranking for cross-sentence and cross-document inference. 

7.1.1 N-Best Hypotheses Generation 

The baseline HMM name tagger produces the N-Best hypotheses for each sentence. In 

order to decide when we need to rely on global (coreference and relation) information for 

name tagging, we want to have some assessment of the confidence that the name tagger 

has in the first hypothesis. In this thesis, the margin metric described in section 5.1.1.1 is 

used for this purpose.  
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Using cross-validation on the training data, the algorithm adjusts the number of 

hypotheses (N) that the baseline tagger will generate and store through the pipeline, as a 

function of the margin, in order to maintain efficiency while minimizing the chance of 

losing a high-quality hypothesis. The margin is then divided into ranges of values, and set 

a value of N ranging from 1 to 30. 

7.1.2 Re-Ranking Features 

This section will present the detailed feature encoding to capture the feedback properties 

to improve name tagging as described in Section 4. The second column of Table 7-1 

marks the language(s) for which each feature was applied. 

For each pair of hypothesis (hi, hj), a feature set is constructed for assessing the ranking 

of hi and hj. Based on the information obtained from inferences, the property score PSik is 

computed for each individual name candidate Nik in hi; some of these properties depend 

also on the corresponding name tags in hj. Then sum over all names in each hypothesis hi: 

∑=
k

iki PSPS  

Finally the quantity (PSi–PSj) is used as the feature value for a pair of hypotheses (hi, hj) 

to determine whether this sum is larger for hi or hj. The results of these comparisons are 

used as features in assessing the ranking of hi and hj. Table 7-1 summarizes the property 

scores PSik used in the different re-rankers for English and Chinese name tagging.  
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Source Language Property for comparing names Nik and Njk 
English & 
Chinese 

HMMMargin scaled margin value from HMM  
Baseline 

Chinese VotingRateik the voting rate for Nik among all the candidate hypotheses 

Chinese Idiomik -1 if Nik is part of an idiom; otherwise 0 
Chinese ORGSuffixik 1 if Nik is tagged as ORG and it includes a suffix word; 

otherwise 0 
 
Chinese 

PERCharik -1 if Nik is tagged as PER without family name, and it does 
not consist entirely of transliterated person name 
characters; otherwise 0 

 
Chinese 

TitleStructureik -1 if Nik = title word + family name while Njk = title word + 
family name + given name; otherwise 0 

Chinese Digitik -1 if Nik is  PER or GPE and it includes digits or 
punctuation; otherwise 0 

Chinese AbbPERik -1 if Nik = little/old + family name + given name while Njk 
= little/old + family name; otherwise 0 

 
 
Name  
Structure 
 

Chinese SegmentPERik -1 if Nik is GPE (PER)* GPE , while Njk is PER*; otherwise 
0 

Chinese PERContextik the number of PER context words if Nik and Njk are both 
PER; otherwise 0 

Local 
Context 

 
English 

LOCGPEFAC 
Contextik 

If there is preposition in the local cotext, 1 if Nik is tagged 
as LOC/GPE/FAC and -1 if other name types; otherwise 0 

Gazetteer English & 
Chinese 

GazetteerNameik 1 if Nik is tagged as the same type in one of the gazetteer 
name lists; otherwise 0 

 
Chinese 

Relation 
Constraintik 

If Nik is in relation R (Nik = EntityType1, M2 = EntityType2), 
compute Prob(EntityType1|EntityType2, R) from training 
data; otherwise 0 

 
 

Relation 
 
English 

Conjunction of  
InRelation i & 
Probability1i 

Inrelationik is 1 if Nik and Njk  have different name types, 
and Nik is in a definite relation while Njk  is not; otherwise 
0. 

Chinese Event 
Constrainti 

1 if all entity types in hi match event pattern, -1 if some do 
not match, and 0 if the argument slots are empty 

English Event 
Cooccurrencei 

The probability of the name type and a verb appears 
together in a nine-word window 

 
 
Event 

Chinese EventSubType Event subtype if the patterns are extracted from ACE data, 
otherwise “None” 

Chinese Headik 1 if Nik includes the head word of name; otherwise 0 

English & 
Chinese 

CorefNumik the number of mentions which corefer to Nik  

 
English & 
Chinese 

 
WeightNumik 

the sum of all link weights between Nik and its corefered 
mentions, assign 1 for same name-name coreference, 0.8 
for different name-name coreference; 0.5 for apposition; 
0.3 for other name-nominal coreference 

Chinese HCorefNumik the number of mentions which corefer to Nik and output by 
previous re-rankers with high confidence 

 
 
 
Co- 
reference 

English 
 

ECorefNumi the number of entities coreferred to the name candidates in 
hi 

 
Table 7-1. Name Re-Ranking Properties 
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The following subsections shall describe the features of the individual re-ranking 

stages in further detail. Section 7.1.2.1 introduces the confidence features derived from 

the baseline tagger, sections 7.1.2.2 to 7.1.2.4 describe the local features which were not 

explicitly captured by the baseline, and then the remaining sections present the feedback 

features. 

7.1.2.1 Baseline Confidence Features 

This section considers some features for gauging the confidence of name tags assigned by 

the baseline HMM tagger.   

• Margin 

A large margin indicates greater confidence that the first hypothesis is correct. Figure 7-1 

shows the position of the best hypothesis generated by the Chinese baseline tagger 

according to different values of margins, given N=20. 

  

Figure 7-1. The Ranking Position of Best Hypothesis vs. Margin 
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We can see that as the value of margin increases, more of the first hypotheses are the 

best analysis results.  A large margin indicates greater confidence that the first hypothesis 

is correct. So if the margin of a sentence is above a threshold, the first hypothesis is 

selected, dropping the others and by-passing the re-ranking. Scheffer et al. (2001) used a 

similar method to identify good candidates for tagging in an active learner.  

• Voting Rate 

In addition, the mechanism of weighted voting among hypotheses (Zhai et al., 2004) is 

used as an additional feature in the first-stage re-ranking. This approach allows all 

hypotheses to vote on a possible name output. A recognized name is considered correct 

only when it occurs in more than 30% of the hypotheses (weighted by their probability). 

The log probability produced by the HMM, iprob is used for hypothesis ih . This 

probability weight is normalized as:  

∑
=

q
q

i
i prob

probW
)exp(

)exp(  

For each name mention ikN in ih , define:  

)( ikq NOccur = 1 if ikN occurs in hq ; otherwise 0. 

Then its voting value is counted as follows: 

ikVoting = 1 if )( ikq
q

q NOccurW∑ × >0.3; otherwise 0. 

Finally get the voting rate of ih : ∑=
k

iki VotingVoting  
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7.1.2.2 Name Structure Features 

Ten features are included to capture Chinese name structure parsing evidence. For 

instance, penalizing candidate names overlapped with idiom words; giving credit to an 

organization name that includes an explicit, organization-indicating suffix (“Russian 

Nuclear Power Instituition” is more likely to be a correct name than “Russian Nuclear 

Power”). In some other features, higher property values are given to candidates matching 

possible name structures. For example, a common Chinese name tagging mistake gives 

rise to the sequence “GPE (PER)*GPE”, because transliterated GPE and PER names 

share part of the character lists. But this is an impossible name structure in Chinese, so a 

penalty is assigned to such a sequence if it appears in the candidate hypothesis. 

7.1.2.3 Local Context Features 

The ranking results and confidence values from the baseline may not emphasize some 

important local features. So the re-ranking stage re-uses the following two indicative 

local features.  

• Person Context 

In Chinese name tagging one of the most difficult challenges is detecting person name 

boundary because the characters in the candidate name together with context can 

compose a common word. We re-use the person context information as a re-ranking 

feature, to give credit for person names with particular contexts such as person titles and 

verbs occurring with people’s names. 
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• GPE/LOC/FAC Context 

Prepositions in local context can help distinguish GPE/LOC/FAC names from other types. 

So the algorithm checks whether there is a preposition in the five-token-window around 

the name candidate, and gives credit to GPE/LOC/FAC names while penalizing other 

types. For example, this feature can help confirm that “Petit Palais” is not a person name 

in the sentence “Gaspard Yurkievitch, a young French designer, showing in the Petit 

Palais, could make the grade in some stores with his offhand styles that some find cool.”  

7.1.2.4 Gazetteer Features 

The high-frequency name lists are collected from the training corpus, 

country/province/state/ city lists from Chinese wikipedia, and an English organization 

name list (Sekine and Nobata, 2004) including 20061 entries. If a name candidate is 

identified as the same type in one of these lists, the confidence for the corresponding 

hypothesis is increased.    

7.1.2.5 Relation Features 

The relation and event re-ranking features are based on matching patterns of words or 

constituents. They serve to correct name head boundary errors (because such errors 

would prevent some patterns from matching). Because they exert selectional preferences 

on their arguments, they also correct name type errors.  

The information of “in relation or not” can be used as a measure of confidence. In 

addition the relation patterns can be encoded as constraints for name type classification. 
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For each relation argument, a feature is included to represent the likelihood that relation 

appears with an argument of that name type. To formalize, 

 if Nik is involved in relation R(ARG1= Nik, ARG2=Mj), and 

if EntityType(Nik) = EntityType1, EntityType(M2)= EntityType2,  

then Prob(EntityType1 | EntityType2, R) is computed from relation training data.  

These probabilities are scaled into an additional indicator for Nik being identified as the 

correct entity type:  

 1:  EntityType1 is very likely correct; 

 0.5: EntityType1 is likely correct; 

 0: unsure 

 -0.5: EntityType1 is unlikely correct; 

 -1: EntityType1 is very unlikely correct  

For example, the name Nik matching the condition (PER | PER, Per_Social) is very 

likely to be correct; while (ORG | PER, Per_Social) is very unlikely to be correct, etc. 

This information helps to select the hypothesis with correct name type recognition.  

7.1.2.6 Event Features 

For Chinese the algorithm also compares the types of the names filling argument slots 

with the entity types required by the event pattern, and assigns a score which is positive if 

all entity types match, negative if some do not match, and zero if the argument slots are 

empty. Only 11% of the sentences in the test data contain instances of the ACE event 

types. To increase the impact of the event patterns, additional frequent event trigger 

words are included from Chinese PropBank, so that finally 35% of sentences contain 
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event "trigger words". A boolean flag is encoded to distinguish whether the pattern is 

extracted from ACE data. 

  For English, for each name in the ACE training data the algorithm checks whether there 

is a verb v in its nine-token-wide window context. Then the probabilities of the name type 

EntityType and v: Prob(EntityType|v) are compared. In addition, it roughly determines 

whether the name plays a subject or object role for v, based on simple heuristic rules 

using their relative positions and whether v is in a passive form.  Finally two probability 

tables for subject/object are extracted separately. In total 67390 verbs are collected from a 

morphological dictionary automatically derived from COMLEX Syntax (Macleod et al., 

1998). For example, in the subject table the statistics show: 

Prob(GPE|“hire”)= 0.029412, Prob(ORG|“hire”)= 0.176471, Prob(PER | “hire”)= 0 

 This indicates that when a name appears as the subject of “hire”, it’s more likely to be a 

GPE and ORG name instead of PER.  

In contrast, in the object table: 

Prob(PER|“hire”)= 0.153846, Prob(ORG|“hire”, object)= 0,  

Prob(GPE, | “hire”, object)= 0. 

This indicates a PER name is very likely to appear as the object of “hire”. These 

probabilities are scaled into ten bins and used as a re-ranking feature. 

7.1.2.7 Coreference Features 

Seven coreference features are captured for re-ranking the name hypotheses. For example, 

as mentioned in section 5.1.1.6, a name which is coreferred with more other mentions is 
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more likely to be correct, so the number of mentions referring to a name candidate 

(CorefNum) is used. 

One of the most common English errors is the ambiguity between name and nominal. 

If the baseline model cannot resolve this ambiguity, then it’s possible that a nominal head 

will be mistakenly tagged as a name and at the same time get credit from the CorefNum 

feature. In order to alleviate this problem, CorefNum is skipped if the English name 

candidate ncand satisfies the following conditions: 

((ncand is un-capitalized) and ((ncand includes single token) or (ncand is facility)))  

or (ncand shares a head with other nominal mentions in the same entity) 

The feature set also includes the weights of coreference links; for example, the link 

connecting two identical names will be assigned higher weight. For example, if the 

baseline tagger mistakenly identifies a name “American Council on Education” as 

“American Council”, the coreference resolver using substring matching feature will still 

give credit to this name based on coreference with other mentions of “American Council 

on Education”. But if different weights are assigned to capture the different coreference 

links, the re-ranker will prefer “American Council on Education” as a better name 

candidate. Other features are also encoded, such as how many other entities refer to the 

name candidates in the current hypothesis. 

In order to incorporate wider context, cross-document coreference is applied for the 

test set. In particular, taking a cluster of documents about a single topic (e.g., reports from 

different sources or a sequence of successive reports from one source), the entities, 

relations, and events can be expected to be mentioned repeatedly.  
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The documents are clustered using a name-driven cross-entropy metric and then the 

entire cluster is treated as a single document. All the name candidates in the top N 

hypotheses are taken for each sentence in a cluster T to construct a “query set” Q. The 

metric used for the clustering is the cross entropy H(T, d): 

∑
∈

×−=
Qx

xdprobxTprobdTH ),(log),(),( , 

where prob(T, x) is the distribution of the name candidate x in T , and prob(T, x) is the 

distribution of the name candidate x in document d. If H(T, d) is smaller than a threshold 

then we add d to T.  

These clusters are built two ways: first, just clustering the test documents; second, by 

augmenting these clusters with related documents retrieved from a large unlabeled corpus 

(with document relevance measured using cross-entropy). Then we can process similar 

documents containing instances of the same name candidate, and combine the evidence 

from these additional instances with disambiguating contexts. 

7.1.2.8 Conjunctions of Features 

In addition to the individual features, selected conjunctions of related features are also 

included. For example, for a given margin confidence, certain ranking position of the 

candidate hypothesis are more likely to be better or worse than the baseline. So we can 

incorporate the conjunction of margin and ranking position features for the BIRR model 

(section 6.3.3.5) in order to capture the different impacts of margin value on candidate 

hypotheses.  
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Some other conjunction features of other pairs are encoded, such as (CorefNumi - 

CorefNum j) and (InRelationi - InRelationj), HMMMargin and (InRelationi - InRelation j) 

with intuitions shown in Table 5-1. 

7.1.3 Case Study of Incremental Re-Ranking Framework on Chinese Name 

Tagging 

The incremental re-ranking framework (section 6.4.5.4) is applied to MaxEnt-Rank for 

Chinese name tagging. A small additional gain is obtained by further splitting the first re-

ranker into separate steps, with each step using the information from one subsequent 

stage. The overall architecture is presented in Figure 7-2.  

The baseline name tagger generates N-Best multiple hypotheses for each sentence. 

Then the results from subsequent components are exploited in four incremental re-

rankers. At each re-ranking stage, the information from one subsequent component is 

used, together with the probability score from the prior re-ranking stage. The high 

confidence hypotheses are generated as final output while low confidence hypotheses are 

sent through the next re-ranker. 
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Figure 7-2. Incremental Name Re-Ranking Architecture 

 

7.1.4 Experimental Results 

7.1.4.1 Data and Experimental Setting 

The re-ranking approach is tested for English and Chinese name tagging. Table 7-2 and 

Table 7-3 show the corpora used to train each stage and the test sets. Partial training 

(described in Figure 6-5) is used to generate training data for English name re-ranking, 
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and K-Fold training for Chinese name re-ranking. The rule-based coreference resolver is 

used for the English experiment. 

Component Data 
Baseline name tagger 1375 texts from ACE 02, 03, 04, 05 training data 
Nominal tagger English Penn TreeBank 
Relation tagger 328 ACE 04 texts 
Event pattern A “verb-subject” probability table including 1537 

entries and a ‘verb-object’ probability table including 
1594 entries extracted from ACE04 training data using 
3073 verbs in English PropBank 

 
 
 
 
 
Training 

Re-Ranker 23,674 samples from 310 texts from ACE 04 training 
data 

 
Test 

20 texts from ACE 04 training corpus, includes 743 
names: 361 persons, 246 GPEs, 107 organizations, 12 
locations, 13 facilities and 4 vehicles. 

 
Table 7-2. English Data Description for Name Re-Ranking 

 
Component Data 

Baseline name tagger 2978 texts from the People’s Daily in 1998 and 
1300 texts from ACE 03, 04, 05 training data 

Nominal tagger Chinese Penn TreeBank V5.1 
Coreference resolver 1300 texts from ACE 03, 04, 05 training data 
Relation tagger 633 ACE 05 texts, and 546 ACE 04 texts with 

types/subtypes mapped into 05 set 
Event pattern 376 trigger words, 661 patterns 
Name structure, 
coreference and relation 
based Re-Rankers 

1,071,285 samples (pairs of hypotheses) from ACE 
03, 04 and 05 training data 

 
 
 
 
 
Training 

Event based Re-Ranker 325,126 samples from ACE sentences including 
event trigger words 

 
Test 

100 texts from ACE 04 training corpus, includes 
2813 names: 1126 persons, 712 GPEs, 785 
organizations and 190 locations. 

 
Table 7-3. Chinese Data Description for Name Re-Ranking 
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7.1.4.2 Overall Performance 

The contributions of re-rankers in name identification and classification are evaluated 

separately, using MaxEnt-Rank(the OpenNLP package8 is used), with BIRR function for 

English and PIRR function for Chinese as described in section 6.3.3.5. Tables 7-4 and 7-5 

show the performance of Precision (P), Recall (R) and F-Measure (F) on identification, 

classification, and the combined task as re-rankers are added to the system.  

 
Identification Identification 

+Classification 
 

Model 
P R F 

Classification
Accuracy 

P R F 
Baseline 92.2 89.2 90.7 95.5 88.0 85.2 86.5 
+Re-Ranking 92.4 91.1 91.7 95.7 88.4 87.2 87.8 
Oracle (N=20) 93.9 97.3 95.6 99.0 93.0 96.4 94.6 

 

Table 7-4. English Name Identification and Classification 

 

Table 7-4 shows that re-ranking mainly helped to reduce English name identification 

missing errors. Although the overall gain in F-score is small (1.3%), the overall system 

achieves a 13.5% relative reduction on the missing rate over the baseline.  

Identification Identification 
+Classification 

 
Model 

P R F 

Classification
Accuracy 

P R F 
Baseline 93.2 93.4 93.3 93.8 87.4 87.6 87.5 
+name structure 94.0 93.5 93.7 94.3 88.7 88.2 88.4 
+relation 93.9 93.7 93.8 95.2 89.4 89.2 89.3 
+event 94.1 93.8 93.9 95.7 90.1 89.8 89.9 
+cross-doc 
coreference 

95.1 93.9 94.5 96.5 91.8 90.6 91.2 

Oracle (N=30) 97.6 98.8 98.2   98.6 96.2 97.4 96.8 
 

Table 7-5. Chinese Name Identification and Classification 
 

                                                 
8

 http://maxent.sourceforge.net/index.html 
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Table 7-5 shows that the gain is greater for classification (2.7%) than for identification 

(1.2%) for Chinese name tagging. Furthermore, we can see that the gain in identification 

is produced primarily by the name structure and coreference components. As we noted 

earlier in section 5.1.1.3, the name structures can correct boundary errors by preferring 

names with complete internal components, while coreference can resolve a boundary 

ambiguity for one mention of a name if another mention is unambiguous. The greatest 

gains were therefore obtained in boundary errors: the stages together eliminated over 1/3 

of boundary errors and about 10% of spurious names; only a few missing names were 

corrected, and some correct names were deleted. 

Both relations and events contribute substantially to classification performance through 

their selectional constraints. The lesser contribution of events is related to their lower 

frequency.  

Table 7-4 and 7-5 also show the oracle scores from this N-best / re-ranking strategy.  

Using the values of N (N<=20 or N<=30), the oracle F-measure is F=94.6% for English 

and F=96.8% for Chinese. This indicates that with relatively small values of N this 

approach is able to include highly-rated hypotheses for most sentences. 

In order to check how robust the re-ranking approach is for name tagging, the 

Wilcoxon Matched-Pairs Signed-Ranks Test is conducted for both languages. For 

English we applied the test on each individual text, and for Chinese we split the test set 

into 10 folds, with 10 texts in each fold. The results show that the improvement using 

English re-ranking is significant at a 96.3% confidence level. For Chinese name re-

ranking the improvements of gradually adding different feature types are significant at 
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the following confidence levels: 97.1% for name structure features; 95.3% for relation 

features; 94.4% for event features; and 98.0% for cross-doc coreference features.  

7.1.4.3 Impact of Cross-doc Coreference Features 

As described in Section 7.1.2.7, these gains can be magnified by clustering documents 

and using cross-document coreference in these clusters. The 100 texts in the Chinese test 

set were first clustered into 28 topics (clusters). Then cross-document coreference is 

applied on each cluster. Compared to single document coreference, cross-document 

coreference obtained 0.5% higher F-Measure, with small gains in both identification 

(0.6% vs. 0.4%) and classification (0.8% vs. 0.4%), improving performance for 15 of 

these 28 clusters.  

These clusters were then extended by selecting 84 additional related texts from a 

corpus of 15,000 unlabeled Chinese news articles (using a cross-entropy metric to select 

texts). 24 clusters gave further improvement, and an overall 0.2% further improvement 

on F-Measure was obtained.  

7.1.4.4 Ranking Algorithm Comparison 

Three re-ranking algorithms are evaluated: MaxEnt-Rank, SVMRank and p-norm Push 

Ranking described in section 6.3.4.7 on Chinese name tagging. SVMlight (Joachims, 1998) 

is used for SVMRank, with a linear kernel and the soft margin parameter set to the 

default value. For the p-Norm Push Ranking, 33 weak rankers are applied. The number of 

iterations was fixed at 110, this number was chosen by optimizing the performance on a 

separate development set of 100 documents. Both MaxEnt-Rank and SVM-Rank use 

PIRR ranking function, and p-norm Push Ranking uses SDRR ranking function. 
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Model P R F 
Baseline  87.4 87.6 87.5 
MaxEnt-Rank 91.8 90.6 91.2 
SVMRank 89.5 90.1 89.8 
p-Norm Push Ranking (p=16) 91.2 90.8 91.0 

 

Table 7-6. Re-Ranking Algorithm Comparison for Chinese Name Tagging  

 

Table 7-6 reports the overall performance for these three algorithms. All of them 

achieved improvements over the baseline. MaxEnt yields the highest precision, while p-

Norm Push Ranking with p = 16 yields the highest recall. Therefore MaxEnt Rank and p-

Norm Push Ranking proved about equally effective for this task. 

7.1.5 Remaining Error Analysis 

This section compares the remaining Chinese system errors with the human annotator’s 

performance.  

The use of 'feedback' from subsequent stages has yielded substantial improvements in 

Chinese name tagging accuracy, from F=87.5 with the baseline HMM to F=91.2. This 

performance compares quite favorably with the performance of the human annotators 

who prepared the ACE 2005 Chinese training data. The annotator scores (when measured 

against a final key produced by review and adjudication of the two annotations) were 

F=92.5 for one annotator and F=92.7 for the other. As in the case of the automatic tagger, 

human classification accuracy (97.2 - 97.6%) was better than identification accuracy (F = 

95.0 - 95.2%).   
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Figure 7-3 summarizes the error rates for the baseline system, the improved system 

without coreference based re-ranker, the final system with re-ranking, and a single 

annotator. 

 

 

Figure 7-3.  Chinese Name Error Distribution 

 

Figure 7-3 shows that the performance improvement reflects a reduction in 

classification and boundary errors. Compared to the system, the human annotator’s 

identification accuracy was much more skewed (52.3% missing, 13.5% spurious of all 

error types), suggesting that a major source of identification error was not difference in 

judgment but rather names which were simply overlooked by one annotator and picked 

up by the other. 
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Our analysis of the types of errors, and the performance of our knowledge sources, 

gives some indication of how further gains may be achieved.  The selectional power of 

event extraction is limited by the frequency of event patterns – only about 1/3 of 

sentences had a pattern instance.  Even with this limitation, a gain of 0.5% is obtained in 

name classification.  Capturing a broader range of selectional patterns should yield 

further improvements.  Nearly 70% of the spurious names remaining in the final output 

were in fact instances of 'other' types of names, such as book titles and building names; 

creating explicit models of such names should improve performance. 

7.2 Improving Coreference Resolution by Relation Detection 

This section will present another case study of cross-stage joint inference - using the 

output of the relation tagger to rescore coreference hypotheses and get the final 

coreference decisions.  

7.2.1 Approach Overview 

The framework of using relation features should, for example, be able to represent such 

basic interaction facts as whether the (possibly identical) people referenced by two 

mentions are in relations such as working in the same organization, or owning the same 

car, etc. Also it should be able to use this information to yield more accurate extraction 

results even when the local surface features at each individual stage are imperfect or fail 

altogether.  

Here the pipeline consists of two stages, coreference resolution and relation detection. 

The baseline coreference resolver, as noted before in section 4.2.7, uses both absolute 
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rules for ‘sure’ cases and a corpus-trained (MaxEnt) classifier for the remainder to 

produce a probability of coreference, without any relation information. Relation detection 

is applied next to acquire relation information. Particular coreference links are then re-

scored (or, the ‘corefer’ and ‘not-corefer’ decisions are re-ranked), using both the 

coreference probability from the coreference resolver and features representing the 

relation knowledge sources.  

7.2.2 Relation Feedback Features 

This section will describe the features encoded from the results of relation detection to 

rescore coreference hypotheses.  

Given the ACE-type relations, a semantic context for a candidate mention coreference 

pair (Mention 1b and Mention 2b) can be defined using a Relational Coreference Model 

(abbreviated as RCM) structure depicted in Figure 7-4.  

 

 
  
  
 
 
 
 

 

Figure 7-4. The Relational Coreference Model 

 

If both mentions participate in relations, the model incorporates the types and 

directions of their respective relations as well as whether or not their relation partners 

(Mention 1a and Mention 2a) corefer. These values (which correspond to the edge labels 
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Type2/Subtype2
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in Figure 7-4) can then be factored into a coreference prediction. This RCM structure 

assimilates relation information into a coherent model of semantic context. 

Any instance of the RCM structure needs to be converted into semantic knowledge that 

can be applied to a coreference decision. This problem is approached by constructing a 

set of RCM patterns and evaluating the accuracy of each pattern as positive or negative 

evidence for coreference. The resulting knowledge sources fall into two categories: rules 

that improve precision by pruning incorrect coreference links between mentions, and 

rules that improve recall by recovering missed links.  

To formalize these relation patterns, based on Figure 7-4, the following clauses are 

defined: 

A: RelationType1 = RelationType2 

B: RelationSubType1 = RelationSubType2 

C: Two Relations have the same direction 

Same_Relation: CBA ∧∧  

CorefA: Mention1a and Mention2a corefer 

CorefBMoreLikely: Mention1b and Mention2b are more likely to corefer 

CorefBLessLikely: Mention1b and Mention2b are less likely to corefer 

From these clauses the following plausible inferences are constructed: 

Rule (7-1) LikelyCorefBLessCorefAlationSame ⇒¬∧Re_  

Rule (7-2) LikelyCorefBLessCorefAlationSame ⇒∧¬ Re_  

Rule (7-3) LikelyCorefBMoreCorefAlationSame ⇒∧Re_   
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Rule (7-1) and (7-2) can be used to prune coreference links that simple string matching 

might incorrectly assert; and (7-3) can be used to recover missed mention pairs.  

The accuracy of Rules (7-1) and (7-3) varies depending on the type and direction of the 

particular relation shared by the two noun phrases. For example, if Mention1a and 

Mention 2a both refer to the same nation, and Mentions 1b and 2b participate in 

citizenship relations (GPE-AFF) with Mentions 1a and 2a respectively, 1b and 2b  should 

not necessarily refer to the same person. If 1a and 2a refer to the same person, however, 

and 1b and 2b are nations in citizenship relations with 1a and 2a, then it would indeed be 

the rare case in which 1b and 2b refer to two different nations. In other words, the 

relation of a nation to its citizens is one-to-many. 

Our system learns broad restrictions like these by evaluating the accuracy of Rules (7-1) 

and (7-3) when they are instantiated with each possible relation type and direction and 

used as weak classifiers. For each such instantiation cross-validation is used on our 

training data to calculate a reliability weight defined as: 

# |Correct decisions by rule for given instance|  /   

#| Total applicable cases for given instance | 

  The number of correct decisions is counted for a rule instance by taking the rule instance 

as the only source of information for coreference resolution and making only those 

decisions suggested by the rule’s implication (interpreting CorefBMoreLikely as an 

assertion that Mention 1b and Mention 2b do in fact corefer, and interpreting 

CorefBLessLikely as an assertion that they do not corefer). 

Every rule instance with a reliability weight of 70% or greater is retained for inclusion 

in the final system. Rule (7-2) cannot be instantiated with a single type because it requires 
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that the two relation types be different, and so this filtering is not performed for Rule (7-2) 

(Rule (7-2) has 97% accuracy across all relation types). 

This procedure yields 58 reliable (reliability weight > 70%) type instantiations of Rule 

(7-1) and (7-3), in addition to the reliable Rule (7-2). An additional 24 reliable rules can 

be recovered by conjoining additional boolean tests to less reliable rules. Tests include 

equality of mention heads, substring matching, absence of temporal key words such as 

“current” and “former,” number agreement, and high confidence for original coreference 

decisions (Mention1b and Mention2b). For each rule below the reliability threshold, the 

algorithm searches for combinations of 3 or fewer of these restrictions until achieving 

reliability of 70% or the search space has been exhausted.  

For example, the following two instantiations are considered as reliable: Two cities 

located in different countries are very unlikely to corefer (“PHYS/Located”); Two 

organizations producing the same airplane are very likely to corefer (“Artifact/Owner”). 

If a high reliability instantiation of one of these RCM rules applies to a given mention-

antecedent pair, the following features are included for that pair: the type of the RCM 

rule, the reliability of the rule instantiation, the relation type and subtype, the direction of 

the relation, and the tokens for the two mentions. 

7.2.3 Experimental Results 

7.2.3.1 Data and Scoring 

The system is evaluated on English and Chinese. Table 7-7 and 7-8 summarize the 

training corpora and blind test sets used for the components in these two languages. 
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Component Data 
Baseline  
coreference resolver 

311 newswire and newspaper texts from the ACE 
2002 and ACE 2003 training corpora 

Relation tagger 328 ACE 04 texts 

 
Training 

Re-Scorer 126 ACE 04 newswire texts 
Test 65 ACE 04 newswire texts 

 
Table 7-7. English Data Description for Coreference Re-Scoring 

  
Component Data 
Baseline  
coreference resolver 

767 texts from ACE 2003 and ACE 2004 training 
corpora 

Relation tagger 646 ACE 04 texts 

 
Training 

Re-Scorer 646 ACE 04 texts 
Test 100 ACE 04 texts 

 
Table 7-8. Chinese Data Description for Coreference Re-Scoring 

 
 
The MUC coreference scoring metric (Vilain et al., 1995) is used to evaluate our 

systems. This metric uses the ACE keys and only scores mentions which appear in both 
the key and system response.  

7.2.3.2 Overall Performance 

We performed experiments to evaluate the impact of coreference rescoring using relation 

information. Table 7-9 lists the results. 

Performance
Model 

Recall Precision F-measure 

Baseline 77.2 87.3 81.9 English 
Rescoring 80.3 87.5 83.7 
Baseline 75.0 76.3 75.6 Chinese 
Rescoring 76.1 76.5 76.3 

 
Table 7-9. Performance of Re-Scoring for Coreference Resolution 

 

Table 7-9 shows that the relation information provided some improvements for both 

languages. Relation information increased both recall and precision in both cases.  



101 

A sign test applied to a 5-way split of each of the test corpora indicated that for both 

languages, the system that exploited relation information significantly outperformed the 

baseline (at the 95% confidence level, judged by F-measure). 

7.2.4 Conclusion 

This section 7.2 has outlined an approach to improving coreference resolution through 

the use of semantic relations, and has described a system which can exploit these 

semantic relations effectively. The experiments on English and Chinese data showed that 

these small inroads into semantic territory do indeed offer performance improvements.  
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8. CASE STUDY ON CROSS-LINGUAL INTERACTION  

This chapter will present an example of cross-task interactions: combining the quite 

disparate knowledge sources from source language entity extraction and entity translation 

to produce better results for each. In contrast to the case studies presented in Chapter 7 

which used only mono-lingual interactions, this chapter will focus on incorporating cross-

lingual feedback. In the experiments presented in this chapter, the source language is 

Chinese and target language is English. 

8.1 Interaction between Entity Extraction and Entity Translation 

Section 5.2 presented examples that indicate how aligned bitexts can aid entity extraction. 

Huang and Vogel (2002) used these observations to improve the name tagging of a bitext, 

and the NE (named entity) dictionary learned from the bitext. However, in most cases the 

texts from which to extract entities will not be part of such bitexts. This section aims to 

use information which can be gleaned from bitexts to improve the tagging of data for 

which we do not have pre-existing parallel text.  

Therefore this thesis will instead use a phrase-based statistical machine translation 

system which is trained from these bitexts and thus in effect distills the knowledge in its 

training bitexts; the source-language entities will be translated using the entity translation 

system described in section 4.2.8; and then this translation will be used to improve the 

entity extraction of the original text, as the bitext examples shown in section 5.2. A new 

framework is proposed to incorporate the properties of the translated entities as follows. 



103 

Firstly a source language ‘baseline’ entity extraction system is applied to produce 

entities (SEntities), and then these entities are translated into target language T (TEntities). 

Coreference decisions are made on the source language level. The TEntities carry 

information from a machine translation system trained from large bitexts, information 

which may not have been captured in the monolingual entity extraction. The TEntities 

can be used to provide cross-lingual feedback to confirm the results or repair the errors in 

SEntities. A set of rules incorporating such feedback are applied iteratively9.  

However, the translations produced by the MT system will not always be correct. This 

thesis addresses this problem by using confidence estimation based on voting among 

translations of coreferring mentions, which will be referred to as a mention cache.  

Section 8.2.1 will verify the two hypotheses which are required to apply the cache 

scheme, and Section 8.2.2 will explain the details of these caches. 

8.2 Cross-lingual Voted Caches 

In the following, section 8.2.1 will present two hypotheses required to apply the cross-

lingual voted caches, and then section 8.2.2 will describe the implementation details. 

8.2.1 Hypotheses 

8.2.1.1 One Translation per Named Entity 

Named entities may have many variants, for example, “IOC” and “International Olympic 

Committee” refer to the same entity; and “New York City” alternates with “New York”; 

                                                 
9  In the Chinese-English experiments presented in this chapter, the correction procedure 

converges after 3-4 loops. 
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but all these different variants tend to preserve ‘name heads’ – a brief “key” alternation 

that represents the naming function (Carroll, 1985). Unlike common words for which 

fluency and vitality are most required during translation, translating a named entity 

requires preserving its functional property – the real-world object that the name is 

referring to. Inspired by this linguistic property, a hypothesis is proposed as follows: 

• Hypothesis (8-1).  One Translation per Named Entity: 

The translation of different name mentions is highly consistent within an entity.  

This hypothesis may seem intuitive, but it is important to verify its accuracy. On 50 

English documents (4360 mention pairs) from ACE 2007 Chinese to English Entity 

Translation training data with human tagged entities, this hypothesis’ accuracy is 

measured by computing: 

# | Coreferred mention pairs with consistent translations |  
 
# |Coreferred mention pairs | 

 

Two translations are considered as consistent if one is a name component (e.g 

“Kensington Land” = “Kensington”), acronym (e.g “European Union” = “EU”) or 

adjective form of the other (e.g “Iraqi = Iraq”).  

The accuracy of this hypothesis for different name types are: 99.6% for PER, 99.5% 

for GPE, 99.0% for ORG and 100% for LOC. This clearly indicates that Hypothesis (1) 

holds with high reliability. 

8.2.1.2 One Source Name per Translation 

Based on Hypothesis (8-1), a single ‘best (maximal) name translation’ can be selected for 

each entity with a name; and this best translation can be used as ‘feedback’ to determine 
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whether the extracted name mentions in source language are correct or not. If they are 

incorrect (if their translations are not consistent with the best translation), they can be 

replaced by a ‘best source language name’. This is justified by: 

 
• Hypothesis (8-2). One Source Name per Translation:  

Names that have the same translation tend to exhibit consistent spellings in the source 

language. 

In reviewing 101 Chinese documents (8931 mention pairs) with human translations 

from ACE07 entity translation training data, the accuracy of this hypothesis for all entity 

types was close to 100%; the exceptions appeared to be clear translation errors. 

Therefore, if the name mentions in one entity are required to achieve consistent 

translation as well as extraction (name boundary and type), then the within-doc or cross-

doc entity-level errors can be fixed with small sacrifice of (<1%) exceptional instances. 

8.2.2 Implementation 

Given an entity in source language SEntity and its translation TEntity, let SName(i) be a 

name mention of SEntity with translation TName(i). Then the above two properties 

indicate that if string TName(i) appears frequently in TEntity, then SName(i) is likely to 

be correct. On the other hand, if TName(i) is infrequent in TEntity and conflicts with the 

most frequent translation in boundary or word morphology, then SName(i) is likely to be 

a wrong extraction.  
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For a pair of languages S (source language)  T (target language), the following voted 

cache models are built in order to get the best assignment (extraction or translation 

candidate) for each entity: 

• Inside-S-T-Cache 

For the names of one entity (inside a single document), record their unique translations 

and frequencies; 

• Cross-S-T-Cache 

Corpus-wide (across documents), for each name and its consistent variants, record its 

unique translations and their frequencies; 

• Cross-T-S- Cache 

Corpus-wide, for each set of consistent name translations in T, record the corresponding 

names in S and their frequencies.  

These caches are depicted in Figure 8-1. They incorporate simple filters based on 

properties of language T to exclude translations which are not likely to be names. For T = 

English, the following translations are excluded: empty translations, translations which 

are single un-capitalized tokens, and, for person names, translations with any un-

capitalized tokens. In addition, in counting translations in the cache, consistent 

translations are grouped together. For English, this includes combining person name 

translations if one is a subsequence of the tokens in the other. The goal of these simple 

heuristics is to take advantage of the general properties of language T in order to increase 

the likelihood that the most frequent entry in the cache is indeed the best translation. 
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Figure 8-1. Cross-lingual Voted Caches 

For each entry in these caches, the frequency of each unique assignment is counted, 

and then the following Cross-lingual Margin (CMargin) measurement is used to compute 

the confidence of the best assignment: 

CMargin = Frequency (Best Assignment) –Frequency (Second Best Assignment) 

A large CMargin indicates greater confidence in the assignment. The value of CMargin 

will be incorporated into inference rules in the next section. 

The algorithm identifies name coreference relations in the source language and 

compares the extractions and translations of coreferring mentions, applying these voting 

caches operating over source and machine-translated entities. The source language 
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coreference information is thus incorporated as a confidence metric and the high-

confidence best assignment (extraction or translation) can be propagated through the 

corpus, replacing lower-confidence assignments. The detailed inference rules will be 

described in the next section. 

8.3 Inference Rules 

The language-specific information in SEntity and its entry in the cross-lingual caches can 

be combined to detect potential extraction errors and take corresponding corrective 

measures. 

Based on hypotheses (8-1) and (8-2), for a test corpus a group of entities is produced in 

both source and target languages, with high consistency on the following levels: 

Rule (8-1): Adjust Source Language Annotations to Achieve Mention-level 

Consistency: 

Rule (8-1-1): Adjust Mention Identification 

If a mention receives a translation that has a small CMargin as defined in section 8.2.2 

and violates the linguistic constraints in target language, then classify the mention as a 

nominal or discard it from the mention set. 

Rule (8-1-2): Adjust Isolated Mention Boundary 

Adjust the boundary of each mention of SEntity to be consistent with the mention 

receiving the best translation. 

Rule (8-1-3): Adjust Adjacent Mention Boundary 

If two adjacent mentions receive the same translation with high confidence, merge them 

into one single mention. 
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Rule (8-2): Adjust Source Language Annotations to Achieve Entity-level 

Consistency: 

If one entity is translated into two groups of different mentions, split it into two entities. 

Rule (8-3): Adjust Target Language Annotations to Achieve Mention-level 

Consistency: 

Enforce entity-level translation consistency by propagating the high-confidence best 

translation through coreferred mentions. 

These inferences are formalized in Table 8-1 and exemplified in Table 8-2. These rules 

are tested on a development set, and a few source-language-specific restrictions on their 

applicability were added to improve performance. Also, where the rules allowed for two 

alternative corrections, a language-specific criterion is added for choosing the correction. 

Specifically: for Rule (8-1-2) also checks that SName(i) and SName(j) are not a name and 

its acronym. Also for Rule (8-1-2), if SName(i) includes a conjunction the rule splits the 

name into two names, otherwise replacing it by SName (j). For Rule (8-1-1), since in 

Chinese most ambiguities between name and nominal arise in GPE or ORG names, GPE 

or ORG names are corrected into nominals, while PER names are deleted. Rule (8-1-3) 

was limited to merging mentions of selected entity type pairs, such as “PER-GPE” and 

“ORG-LOC” because they are unlikely to appear adjacent in Chinese. 
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Terms 
TConstraint Some constraint that name entities must satisfy in language T. For example, 

in the setting of S=Chinese and T=English, it includes the capitalization 
constraint. 

CorefMentionNum(i) the number of name mentions coreferring to SName(i) in SEntity 
BestTName(Cache) the best (most frequent) translation in Cache 
FreBestTName(Cache) the frequency of the best (most frequent) translation in Cache 
FreSeBestTName(Cache) the frequency of the second best (most frequent) translation in Cache 
CMargin(i,Cache) the CMargin (defined in section 8.2.2) of name SName(i) in Cache 
Predicates 
ViolateTConstraint(i) TName(i) does not satisfy TConstraint 
HasBestTran(j, Cache) SName(j) has translation BestTName(Cache) in Cache 
ConflictBoundary(i, j) SName(i) is consistent with SName(j) at one boundary but not the other 
HasFewCorefMentions(i) CorefMentionNum(i) < δ1 
HasLowConf(i, Cache) CMargin(i, Cache) < δ2 
ShareTranslation(i, j) TName(i) = TName(j) 
Adjacent(i, j) SName(i) and SName(j) are adjacent to each other 
EqualConf(SEntity) FreBestTName(Inside-S-T-Cache) > δ3 ∧  

FreSeBestTName(Inside-S-T-Cache) > δ4  
Overlap(i, j) SName(i) and SName(j) overlap in spelling 
Rule (8-1-1): Adjust Mention Identification 
if (ViolateTConstraint(i) ∧ (HasFewCorefMentions(i) ∨HasLowConf(i, Cross-T-S-Cache))) then 

Change SName(i) into nominal or delete it 

Rule (8-1-2): Adjust Isolated Mention Boundary 
 for all j ≠ i do 

if (ViolateTConstraint(i) ∧ HasBestTran(j, Inside-S-T-Cache) ∧ ConflictBoundary(i, j)) ∨ 
(HasBestTran(j, Cross-T-S-Cache) ∧ ConflictBoundary(i, j)) then  

Replace SName(i) with SName(j) or split it into SName(j) and another mention 
Rule (8-1-3): Adjust Adjacent Mention Boundary  
for all j ≠ i do 

if ShareTranslation(i, j) ∧ Adjacent(i, j) then Merge SName(i) and SName(j) into a single mention 
Rule (8-2): Adjust Entity-level Consistent Source Language Annotation (Coreference Resolution) 
if EqualConf(SEntity) ∧ ¬Overlap(i, j)  then Split SEntity into two entities 

Rule (8-3): Adjust Mention-level Consistent Target Language Annotation (Mention Translation) 
if ¬HasLowConf(i, Inside-S-T-Cache) then Replace TName(i) with BestTName(Inside-S-T-Cache) 
if ¬HasLowConf(i, Cross-S-T-Cache ) then Replace TName(i) with BestTName(Cross-S-T-Cache) 

 

Table 8-1. Inference Rules of Using Translation to Improve SEntity Extraction 

These rules are applied repeatedly until there are no further changes; improved 

translation in one iteration can lead to improved S entity extraction in a subsequent 

iteration. For example, for the following Chinese document,  

 



111 

<TEXT> 
<sent 1>加拿大第 37 届联邦议会 29 日举行会议，选举自由党议员米利肯为众议院

新议长。</sent> 
The 37th Canadian Federal Parliament held a meeting on the 29th and elected Liberal MP 
Miliken as House of Commons speaker. 
 
<sent2>今年 54 岁的彼得.米利肯是来自加拿大安大略省金斯敦地区的议员。</sent> 
The 54-year-old Peter Miliken is a MP from Kingston, Ontario, Canada. 

 
<sent3>米利肯是在５轮投票后当选的。</sent> 
Miliken was elected after five rounds of voting. 

</TEXT> 
 

The baseline system extracts and translates the following entity: 

{米利/Mili, 彼得.米利肯/ Peter Miliken, 米利肯/Miliken} 

By applying rule (8-1-2), the boundary of the first name mention “米利” can be fixed 

into “米利肯” because “米利肯” has the (maximal) best translation “Miliken”: 

{米利肯/Mili,彼得.米利肯/Peter Miliken, 米利肯/Miliken} 

then by applying rule (8-3) the translation “Mili” can be changed into the more 

frequent translation “Miliken” 10: 

{米利肯/Miliken,彼得.米利肯/Peter Miliken, 米利肯/Miliken} 

More examples are presented in Table 8-2. 

 

 
 
 
 
 
 
 
 

                                                 
10 Alternatively we could fix the English in this case by re-translating the corrected mentions. 

But in other cases rule (3) is needed to correct the translations. 
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Baseline After Using Inference Rule Rule Improvement  
SEntities                 TEntities SEntities              TEntities 

8-1-1 Name 
Identification 

总联盟                general union 
联盟 alliance 

 

 
 

8-1-2 
 

Isolated  
Name 

Boundary 
 

阿贾比                    Agabi 
阿贾比由             Agabi from 

哈米德.阿贾比        Hamid Agabi 
阿贾比                     Agabi 

阿贾比               Agabi 
阿贾比                  Agabi 

哈米德.阿贾比         Hamid Agabi 
阿贾比                     Agabi 

 
8-1-3 

Adjacent  
Name 

Boundary 

  乌兹                Uzbekistan 
别克斯坦               Uzbekistan   

    

乌兹别克斯坦         Uzbekistan 

8-2 Coreference 
Resolution 

约埃及 旦          Egypt and Jordan
约旦                         Jordan 

约旦                  Jordan 
约旦                  Jordan 
埃及                   Egypt 

 
 
 

8-3 

 
Name 

 Translation 

以色列                   Israel 
以色列                   Israel 
以色列                  Israel 
以                             as 
以        

以色列                     Israel 
以色列                     Israel 
以色列                     Israel 
以                             Israel 
以                             Israel 

 

Table 8-2. Example for Applying Cross-lingual Inference Rules 

8.4 Architecture Overview  

The overall system pipeline for language pair (S, T) is summarized in Figure 8-2. 
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Figure 8-2. A Symbiotic Framework of Entity Extraction and Translation 

8.5 Experimental Results 

This section will report present the experiments on using Chinese-to-English translation 

to improve Chinese entity extraction. 

8.5.1 Data 

The Chinese newswire data is taken from the ACE 2007 Entity Translation training and 

evaluation corpus and used as our blind test set. The test set includes 67 news texts, with 

2077 name mentions and 1907 entities. A separate development set including 100 news 

texts was used to develop the inference rules. 
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8.5.2 Improvement in Entity Extraction 

The name tagging performance on different entity types is shown in Table 8-3 as follows. 

Type Baseline After Using Inference Rules 
PER 89.9% 91.2% 
GPE 87.0% 86.9% 
ORG 85.7% 88.5% 
LOC 89.7% 90.6% 
FAC 80.9% 85.3% 
ALL 87.3% 89.2% 

 
Table 8-3. Improvement in Source Name Tagging F-measure 

 
Except for the small loss for GPE names, our method achieved positive corrections on 

most entity types (2.2% relative improvement in name tagging F-measure, representing a 

15.0% error reduction). 

Significant improvements were achieved on ORG and FAC names, mainly because 

organization and facility names in English texts have less boundary ambiguity than in 

Chinese texts. So they are better aligned in bitexts and easier to translate. The small loss 

in GPE names for the Chinese source is due to the poor quality of the translation of 

country name abbreviations. 

The rules can also improve nominal tagging by disambiguating mention types (name 

vs. nominal) and improve coreference by merging or splitting incorrect entity structures. 

All of these improvements benefit entity extraction. To get a sense of the overall 

performance of our method on entity extraction, Table 8-4 shows the results with the 

official ACE EDR Value metric11. 

 

                                                 
11  The description of the ACE entity extraction (EDR) metric can be found at: 

http://www.nist.gov/speech/tests/ace/ace07/doc/ace07-evalplan.v1.2.pdf 
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Type Baseline After Using Inference Rules 
PER 70.8 71.4 
GPE 73.6 74.4 
ORG 60.2 63.3 
LOC 43.9 43.6 
FAC 51.8 52.0 
ALL 66.6 67.9 

 

Table 8-4. Improvement in Source Entity Extraction 

Improvements in entity value substantially exceeding those for name F-measure reflect 

gains in nominal tagging and coreference. For example, GPE entities had worse name 

tagging but better coreference. LOC had better performance in name tagging but got 

worse ACE value, because some spurious name mentions were mistakenly changed to 

nominal mentions. This suggests employing a more effective supervised learning 

approach to assign weights and applying priorities for various inference rules. 

The improved mentions can be propagated to the entity level by re-running the Chinese 

coreference resolver at the end. By doing this further gains of 0.3 are obtained in ACE 

entity value. In other experiments, this method was found to achieve more gains for 

automatic speech recognition (ASR) transcripts than regular newswire texts. Transcripts 

usually don’t include sentence-internal punctuation, so adjacent mentions will be more 

likely to be mistakenly merged into one single mention. After applying rules (8-1-1), (8-

1-2) and (8-1-3) to split these mentions, coreference resolution can be applied again to 

assign correct coreference links to the new mentions. 
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8.5.3 Improvement in Entity Translation 

A further benefit of our system is a boost in the translation quality of Chinese entities. 

The official ACE 2007-ET scorer12 is used to measure the F-scores. The performance for 

translating different entity types is presented in Table 8-5. 

Table 8-5 shows that this approach achieved absolute improvement on entity 

translation (9.1% relative improvement in F-measure). The inference based on voting 

over mentions of an entity particularly improved translation for GPE abbreviation names 

such as “叙 (Syria)”, “拉美 (Latin America)” which otherwise will be missed or 

mistakenly translated into non-names, and fixed translated person foreign name 

boundaries. It also successfully translates more non-famous names because of the global 

propagation of correct assignments. Thus the method has used the interaction of entity 

extraction and translation to improve the performance of both. 

 
Type Baseline After Using Inference Rules 
PER 34.8% 36.7% 
GPE 44.7% 49.8% 
ORG 37.0% 39.9% 
LOC 18.3% 18.1% 
FAC 23.1% 23.3% 
ALL 35.1% 38.3% 

 

 
Table 8-5. Improvement in Entity Translation 

 

                                                 
12 The description of the ACE entity translation metric can be found online at 

http://www.nist.gov/speech/tests/ace/ace07/doc/ET07-evalplan-v1.6.pdf 
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8.5.4 Error Analysis 

The errors (cases where cross-lingual inference rules made entity extraction worse) reveal 

both the shortcomings of the entity translation system and consistent difficulties across 

languages.  

For a name not seen in training bitexts the MT system tends to mistakenly align part of 

the name with an un-capitalized token. For example,  

(a) Results from Chinese entity tagger 
一位发言人说，由 25 至 30 人组成的一群武装分子星期三在特里普拉邦首府阿加塔拉以南 60 公
里（38 英里）的<ENAMEX TYPE="GPE">图尔图里</ENAMEX>，袭击了村里江湖医生的家。 

 
(b) Bitext 

Chinese:  图 尔 图 里              
 

English:  plans 
 
(c) Entity Tagging after using bitext 

一位发言人说，由 25 至 30 人组成的一群武装分子星期三在特里普拉邦首府阿加塔拉以南 60 公
里（38 英里）的<NOMINAL>图尔图里</NOMINAL>，袭击了村里江湖医生的家。 

 

The GPE name “图尔图里” (“Tuertuli”) was correctly identified by the baseline name 

tagger, while it’s not in the bitext used to train the MT system; parts of it (the first and 

third character) were mistakenly aligned to an un-capitalized token “plans” in English. 

Also, there are words where the ambiguity between name and nominal exists in both 

Chinese and English, such as “国会–parliament”. Rule (8-1-1) fails in these cases by 

mistakenly changing correct names into nominal mentions. In these and other cases, a 

separate GPE name transliteration system could be developed from larger name-specific 

bitexts to re-translate these difficult names. Or the pipeline could incorporate the 

confidence values such as (Ueffing and Ney, 2005) generated from the MT system into 

our cross-lingual cache model.  
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8.6 Conclusion 

Bitexts can provide a valuable additional source of information for improving entity 

extraction. The above sections have demonstrated how the information from bitexts, as 

captured by an entity translation system, and then used to generate translations, can be 

used to correct errors made by a source-language entity extraction baseline. Such bitexts, 

between a language S and T, are now being harvested in fairly large quantities - much 

larger than we could afford to annotate by hand. Note that this approach does not assume 

that we have bitexts for the data we need to name-tag, only that there exist bitexts for data 

in the same general domain (and involving some of the same names). 

The work described in this chapter complements the research described by (Huang and 

Vogel, 2002). Unlike their approach requiring reference translations in order to achieve 

highest alignment probability, only the source language unlabeled document is needed. 

So this approach is more broadly applicable and also can be extended to additional 

information extraction tasks (nominal tagging and coreference). 

In place of correction rules, a joint inference approach can be adopted to generate 

alternative source language name tags (with probabilities), estimate the probabilities of 

the corresponding target language features, and seek an optimal tag assignment. Although 

the current approach only relies on limited target language features, a full target-language 

entity extractor (as Huang and Vogel (2002) did) could be used to provide more 

information as feedback (for example, name type information).  

 

 
 



119 

9. RELEVANT WORK 

Most of the work in this thesis has been published over the past three years; these 

publications are listed in Appendix A. Over this time a variety of related research has 

cited these publications; some of these papers are listed below. 

9.1 Joint Inference between Mention Detection and Coreference 

Resolution 

Joint Inference between mention detection and coreference resolution has become a topic 

of keen interest. However, most researchers used a quite different framework from our 

approaches.  

Zhou et al. (2005) applied Transformation Based Learning to incorporate the feedback 

from coreference resolution as rules to improve mention detection; they reported a 1.7% 

absolute improvement on ACE EDR value. 

Daume III (2006) proposed structured prediction algorithms for mention detection and 

coreference based on complex, non-local interaction features.  

Poon and Domingos (2007) used a Markov logic model consisting of logical formulas 

representing the interactions, to improve candidate mentions (citation records) and 

coreference resolution simultaneously. 

The idea of using the number of coreferring mentions for pruning errant names was 

applied to cross-document person name normalization in (Magdy et al., 2007). 

Very recently, Vilain et al. (2007) compared five name taggers, and demonstrated that 

the key issue is ensuring the tagging coherence at the whole-document level. This might 
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help alleviate error propagation with a dual-pass strategy that particularly afflicts long 

documents. The re-ranking approach presented in the thesis is one promising way to 

address the problem. 

9.2 Joint Inference between Name Tagging and Relation Detection 

(Yangarber and Jokipii, 2005) presented an information correction system, in which 

multiple hypotheses of related names were extracted from a large document collection; 

then these hypotheses were propagated to system outputs, and the corrected results were 

used as ‘feedback’ to back-propagate to repair components that induced incorrect 

information. 

9.3 Using Semantic Features for Coreference Resolution 

Since 2005 researchers in coreference resolution area have returned to the once-popular 

semantic-knowledge-rich approach, investigating a variety of semantic knowledge 

sources. (Ponzetto and Strube, 2005a; 2005b) used the semantic relationships between a 

predicate and its arguments as document-level constraints to improve coreference 

resolution. They also incorporated other semantic knowledge sources from WordNet and 

Wikipedia as features.  They improved 8.9% F-measure for broadcast news and 2.7% for 

newswire. 

  Ng (2007) automatically acquired semantic class knowledge from a version of the Penn 

Treebank with semantic classes labeled. Two features from the induced semantic classes 

were used: whether two mentions have the same semantic class, and whether they belong 
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to some particular semantic classes. These constraints provided 2% improvement in F-

measure. 

Jing et al. (2007) applied the joint inference rule (7-2) presented in Chapter 7 as 

constraints in coreference clustering. These constraints provided significant improvement 

over the IBM coreference resolver based on lexical and syntactic features (Luo at al. 

2004, Luo and Zitouni, 2005), especially for noisy mention inputs (broadcast 

conversation in their paper). They also benefited from this symbiosis framework between 

coreference and relations to extract a social networks and biographies for conversational 

transcripts. 

9.4 Re-Ranking for NLP 

In the incremental re-ranking framework proposed in Chapter 6, it’s assumed possible to 

generate the structurally correct solutions incrementally, through a sequence of partially 

completed solutions. Ginter et al. (2006) employed this idea and extended it to a new 

algorithm that aimed to identify the globally best solution, without fully completing all 

structurally correct solutions. 

Carvalho and Cohen (2007) applied the Classification based Direct Re-Ranking 

algorithm as described in Chapter 6 into the task of email recipient recommendation.  

9.5 Software Application 

Our Chinese name tagger is freely available for research purposes. There have been some 

successful applications in other NLP areas such as soundbite speaker name recognition 

(Liu and Liu, 2007a) and language modeling adaptation (Liu and Liu, 2007b). 
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10. CONCLUSIONS AND FUTURE WORK 

This chapter concludes the dissertation by summarizing joint inference work and 

proposing several directions for future work. 

10.1 Conclusion 

The key characteristic of this thesis is its role in solving the bottlenecks of two traditional 

IE frameworks: sequential and monolithic. The thesis proposed a new IE framework 

based on stage interactions.  This thesis has presented the detailed interaction features and 

a variety of re-ranking algorithms to implement this framework. The effectiveness of this 

framework has been demonstrated by three case studies: the interaction between 

coreference resolution/relation detection/event detection and name tagging; relation 

detection and coreference resolution; source language entity extraction and entity 

translation. These improvements are encouraging when one considers that these are only 

part of a larger set of interactions in a NLP pipeline which we can explore.  

10.2 Future Work 

This section proposes some other possible intriguing interactions which can be further 

explored. 

10.2.1 More Mono-lingual Interactions 

First, it should be possible to exploit more interactions between different IE stages. 
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10.2.1.1 Interaction between Chinese Word Segmentation and Name Tagging 

The current Chinese baseline name tagger is based on words instead of characters. (Jing 

et al., 2003) showed that a character-based HMM outperforms the word-based model by 

3-5.5% F-measure. Comparable gains may not be achieved because the Chinese word 

segmenter used in this thesis doesn’t have a granularity problem as mentioned by Jing et 

al. – the segmenter tends to segment unknown words (including name candidates) into 

individual characters. Therefore it has already approached in the direction of character-

based HMM.  

Despite this the name re-ranking can be extended to a character-based model, keeping 

multiple segmentations among the N-Best name hypotheses. When the best name 

hypothesis for each sentence is selected, the best segmentation result can be produced 

simultaneously. Ultimately the subsequent IE stages such as chunking can also benefit 

from the improved word segmentation results. 

10.2.1.2 Interaction with Nominal Tagging 

ACE nominal mention detection may be viewed as a specialized form of word sense 

disambiguation (WSD). We can, of course, use traditional WSD methods (based on a 

statistical analysis of context words) to address this task. However, it’s also possible to 

take advantage of the interactions with other stages, as for name identification and 

classification. The preference for coherent discourse suggests that isolated mentions (with 

no coreference or semantic links) are more likely to be errors, so semantic class 

assignments which license such links should be preferred. Experiments may need to be 



124 

conducted to compare the effectiveness of these approaches against traditional WSD 

methods. 

10.2.1.3 Interaction between Coreference Resolution and Event Detection 

• Within-document Coreference Resolution and Event Detection 

Section 5.1.2.2 showed that event detection results can be used as feedback to correct 

coreference resolution. In the current Chinese coreference resolver, this evidence is 

encoded as additional rules, for example, for any two entity mentions M1, M2 appearing 

as arguments in a event mention,  

(1) For Business/Life/Movement/Conflict/Contact/Justice/Transaction/Personnel- 

End-Position events, if M1, M2 are not in an apposition, they are unlikely to be 

coreferential; (2) For Personnel (Start-Position, Nominate, Elect) events, if M1 and M2 are 

persons, they are likely to be coreferential (for example, “Fred” and “president” will be 

coreferential in “Fred was named president.”). But more specific constraints need to be 

encoded as re-scoring features. It’s also expected that parallel event structures can aid 

coreference much the way parallel relation structures do. 

• Cross-document Coreference Resolution and Event Detection 

ACE events don’t appear often in the texts, but their benefits for coreference can be 

magnified by looking across documents. For example, if “the Palestinian” in document1 

and “Abbas” in document2 are involved in the same “attack” event contexts, then it’s 

more likely they are referring to each other. On the other hand, if “Halid Siehl 

Mohammed” and “Mohammed” were “arrested” in two different places at different times, 
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then they are unlikely to refer to the same entity. Such event-oriented cross-document 

coreference results can be further used to fill in missed arguments or correct wrong 

arguments for the relevant events. 

The intuition is clear, but more systematic studies need to be conducted to determine 

what type of event clustering is most effective. Some event-driven document clustering 

approaches such as the relevant sentence sets returned by an information retrieval engine 

can be options as pre-processing for getting candidate event clusters. Another problem for 

this idea is the difficulty of constructing key data for evaluation. Such data may be 

derived from existing reference data for question-answering tasks, or even evaluate the 

task indirectly based on the performance of its applications. 

10.2.2 More Cross-Task Joint Inference 

This approach could be applied more broadly, to different NLP tasks. There are a number 

of natural extensions and generalizations of cross-task interactions. 

10.2.2.1 Interaction between Source Entity Extraction and Target Entity Extraction 

The entity extraction and translation work described in Chapter 8 can be extended to 

cross-lingual bootstrapping. 

Another alternative approach is to directly operate on MT training data (sentence 

aligned bilingual corpus), using the interactions between source and target entity 

extraction. The source and target entity extractors can run in parallel with confidence 

estimation, and then for each pair of sentences <SSenti, TSenti>, the entity type 

annotations can be used together with confidence values to correct them based on 

annotation consistency. Using this entity-corrected bilingual corpus, more accurate entity 
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extractors can then be re-trained for each language. This procedure can be repeated until 

we get a bilingual corpus with satisfactory entity annotations and better entity extractors.  

10.2.2.2 Interaction between Source Event Extraction and Target Event Extraction 

Similarly, we can incorporate the interaction between source and target language event 

extractors to improve each. For example, if the Chinese event extractor is not sure of 

associating the pair of <STrigger, SArgumenti>, but if the English event extractor has 

high confidence at identifying <TTrigger, TArgumenti>, where STrigger-TTrigger and 

SArgumenti-TArgumenti are aligned by a MT system, then the likelihood of <STrigger, 

SArgumenti> can be increased correspondingly. A preliminary test on 19 ACE Chinese 

texts achieved 2.9 more ACE event value over a low baseline. 

Also the MT training data can be used in the same way as described in section 10.2.2.1 

to obtain more event training data for the two event extractors. 

10.2.2.3 Interaction between Speech Recognition and Information 

Extraction/Translation 

Recently there has been rapid progress in applying text processing techniques on the 

output of automatic speech recognition (ASR) (Makhoul et al., 2005). The potential ASR 

transcription errors, in particular name spelling errors, make IE more difficult. It’s 

possible to use text processing results as feedback to achieve document-level consistency 

and correct these errors. For example, 
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Example 10-1. Using Coreference Resolution Feedback to Correct ASR error 

<Sent1>嗯哼我们看到这个在中东的反应哈马斯方面当然就是马上就显得这么一

个裁决也当年呢萨姆还是给一些钱呢</Sent> 

<Sent2>其实你现在萨达姆虽然犯下那么多的这些</Sent> 

<Sent3>他们一向是这样说而且萨达姆</Sent> 

If the coreference resolver can cluster the three names “萨姆”, “萨达姆” and “萨达姆” 

into one entity based on substring, then it may be possible to recover the first name “萨

姆” into “萨达姆”. 

 

Example 10-2. Using Name Translation Feedback to Correct ASR error 

<Sent1>再看的是正在墨西哥访问的加州州长施瓦辛格周四就指出民主党在美

国中期选举得</Sent> 

<Sent2>施瓦辛格周四和墨西哥总统福克斯共进早餐</Sent> 

<Sent3>那么共和党籍的史瓦辛格也认为其他的共和党人也可以学习他和民主

党合作的经验</Sent> 

<Sent4>而施瓦辛格会在墨西哥逗留两天</Sent> 

The name “Schwarzenegger” appears four times in the text (“施瓦辛格”, “施瓦辛格”, 

“史瓦辛格” and “施瓦辛格”). They have the same pronunciations but the instance in 

sentence 3 “史瓦辛格” has wrong spelling. If the name translation component can 

successfully translate them into the correct English name “Schwarzenegger”, it’s possible 

to correct “史瓦辛格” into “施瓦辛格”. 
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Besides using the feedback knowledge as inference rules to correct such errors, they 

can also be incorporated to expand ASR vocabulary and conduct correction iteratively. 

10.2.2.4 Interaction between Speech Sentence Segmentation and Information 

Extraction 

Some automatic sentence segmentation and comma prediction systems (Zimmermann et 

al., 2006; Hillard et al., 2006) have been developed to assist better IE on ASR output. IE 

results may be used as feedback to select the best segmentation hypothesis. The central 

idea is to contain each individual entity mention, relation mention or event mention 

(including trigger and arguments) within one sentence. Some potential correction 

examples are presented as follows (manually translated Mandarin data). 

 

Example 10-3. Using Name Tagging to Correct Speech Sentence Segmentation error 

Speech Sentence Segmentation: 

<Sent1>Decide to continue protecting Chen Shuibian and contacting with 

Democracy</Sent> 

<Sent2>Progress Party’s active members</Sent> 

After Using Name Tagging Feedback: 

<Sent1>Decide to continue protecting Chen Shuibian and contacting with 

Democracy Progress Party’s active members</Sent> 
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Example 10-4. Using Nominal Detection to Correct Speech Sentence Segmentation 

error 

Speech Sentence Segmentation: 

<Sent1>Uh all the committees and departments are now creating their own </Sent> 

<Sent2>governmental websites</Sent>  

After Using Nominal Mention Detection Feedback: 

<Sent1> Uh all the committees and departments are now creating their own 

governmental websites </Sent> 

 

Example 10-5. Using Event Detection to Correct Speech Sentence Segmentation 

error 

Speech Sentence Segmentation: 

<Sent1>Uh Iraqi security agency members were very likely to have 

been</Sent> 

<Sent2>meeting with the Armed Force</Sent>  

After Using Event Detection Feedback: 

<Sent1>Uh Iraqi security agency members were very likely to have been 

meeting with the Armed Force</Sent> 
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Appendix A. RELEVANT PUBLICATIONS 

Some of the material in this thesis has appeared in the proceedings of natural language 

processing conferences. The first of our papers that proposed the idea of joint inference 

between IE stages appeared at an ACL 2004 workshop: 

Heng Ji and Ralph Grishman. 2004. Applying Coreference to Improve Name 

Recognition. Proc. ACL 2004 Workshop on Reference Resolution and Its 

Applications. pp. 32-39. Barcelona, Spain. 

In ACL 2005 we extended this idea and proposed the joint inference framework for the 

whole IE pipeline, and used name tagging as a case study. Besides coreference 

information we also incorporated semantic relations as feedback features. Another 

improvement was to incorporate all the interaction knowledge into a statistical re-ranking 

model: 

Heng Ji and Ralph Grishman. 2005. Improving Name Tagging by Reference 

Resolution and Relation Detection. Proc. ACL 2005. pp. 411-418. Ann Arbor, USA. 

Then we applied the joint inference framework to another case study on improving 

coreference resolution using the feedback from relation detection. And we demonstrated 

the idea on two languages – English and Chinese. The paper appeared at HLT/EMNLP 

2005: 

Heng Ji, David Westbrook and Ralph Grishman. 2005. Using Semantic Relations to 

Refine Coreference Decisions. Proc. HLT/EMNLP 2005. pp. 17-24. Vancouver, B.C., 

Canada 

 



131 

During the ACE 2005 evaluation we extensively explored many possible interactions 

among IE stages. For example, we incorporated event patterns to improve name tagging. 

The ACE 2005 system incorporated the joint inference methods described in the thesis: 

Heng Ji, Adam Meyers and Ralph Grishman. 2005. NYU’s Chinese ACE 2005 EDR 

System Description. Proc. ACE 2005 Evaluation/PI Workshop. Washington, US. 

Till the end of 2005 we tried incorporating some kinds of global information, and 

extended the feedback from coreference to the cross-document level. So it became 

necessary to analyze the remaining error types for name tagging. We divided the errors 

into different identification and classification types, and analyzed how joint inference 

helped to solve them. We also took a further step by studying the remaining errors that 

global features didn’t repair, and compared the results with a single human annotator. 

These results were published at COLING/ACL 2006: 

Heng Ji and Ralph Grishman. 2006. Analysis and Repair of Name Tagger Errors. 

Proc. COLING/ACL 2006. Sydney, Australia. 

We believe it’s also important to do research on the aspect of learning models for joint 

inference. During 2006 spring we applied a brand-new ranking algorithm “p-Norm Push 

Ranking” to implement joint inference for name tagging. Then we compared the results 

with two other re-ranking models: MaxEnt-Rank and SVMRank. The results were 

presented in the paper: 

Heng Ji, Cynthia Rudin and Ralph Grishman. 2006. Re-Ranking Algorithms for 

Name Tagging. Proc. HLT/NAACL 06 Workshop on Computationally Hard 

Problems and Joint Inference in Speech and Language Processing. New York, NY, 

USA. 
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During the fall of 2006, we tried to take a further step of applying joint inference to a 

cross-lingual IE system. We decided to look outside of IE, and use the outputs of 

machine translation as feedback to enhance source language name tagging and 

coreference resolution. By doing this we benefited from the bitexts (bilingual corpora and 

lists) that were indirectly incorporated in machine translation. This collaborative model 

was prestend at RANLP 2007:  

Heng Ji and Ralph Grishman. 2007. Collaborative Entity Extraction and Translation. 

Proc. International Conferences on Recent Advances in Natural Language 

Processing 2007. Borovets, Bulgaria. 
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