
Abstract of “Onions, Shallots and Leaks:

Anonymous Communications Through Public Networks”

– by Megumi Ando, Ph.D., Brown University, May 2020.

The downside of the world becoming more digitally connected is that it is now easier for

powerful adversaries to strongly discourage digital communications by conducting mass

surveillance. This has a chilling effect on freedom of speech. While proper encryption and

authentication can secure the confidentiality of messages’ content, communication patterns

(i.e., who is communicating with whom) can still leak from observed traffic over the Internet.

Onion routing is the most promising method for enabling anonymous communications. In

an onion routing protocol, messages travel through several intermediaries before arriving at

their destinations; they are wrapped in layers of encryption (hence they are called “onions”).

Despite the widespread use of onion routing in the real world (e.g., Tor, Mixminion), the

foundations of onion routing have not been thoroughly studied. In this dissertation, we

present new results on onion routing protocols and onion encryption schemes that lend

themselves to onion routing. Our results include:

1. An anonymous protocol with polylogarithmic (in the security parameter) onion cost

(onions transmitted per party) in the presence of the passive adversary who can mon-

itor a constant fraction of the nodes.

2. A differentially private protocol with polylogarithmic (in the security parameter) onion

cost in the presence of the active adversary who can control a constant fraction of the

nodes.

3. The first onion routing protocol that is simultaneously efficient, fault-tolerant and

anonymous in the active adversary setting. The protocol requires an expected poly-

logarithmic (in the security parameter) number of onions to be transmitted per mes-

sage.

4. A lower bound (matching our protocol) for achieving anonymity in the active ad-

versary setting. We show that for an onion routing protocol to be anonymous and

fault-tolerant, the onion cost is ω (log λ), where λ is the security parameter.

5. We also present the first provably secure “repliable” onion encryption scheme for

enabling the recipient of an onion to reply to the anonymous sender. Our work resolves

the previously open problem of formalizing onion encryption for two-way channels.
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Chapter 1

Introduction

To meet today’s standards of convenience, the world is becoming more reliant on complex

and non-homogeneous systems involving hardware, software, networks, data and people

(e.g., cloud computing, IoT, automated cars and the smart grid).

While the “automation of things” can have positive societal and economical impacts, an

increasingly interconnected world threatens our fundamental right to privacy. Automated

systems store, communicate and compute on private data, which, without taking extra

precautions, can leak unwanted private information. Thus, a general goal is to design

future systems with minimal private information leakages.

While proper encryption and authentication can secure the confidentiality of messages,

communication patterns (i.e., who is communicating with whom) can still leak from ob-

served traffic in a distributed system. In this dissertation, we present new results on routing

protocols and encryption schemes for suppressing such leakages.

1.1 Onion routing (OR) protocols

Consider the following example scenarios:

• In the first scenario, Anna is an employee of an authoritarian government. She wishes

to expose the wrongdoings of the government by sending her story to the NYTimes

without being exposed as the whistleblower.

• In the second scenario, Anna is a regular citizen in a country dictated by an author-

itarian government. She wishes to access certain banned websites and applications

(e.g., the NYTimes, Wikipedia, DuckDuckGo, Slack) without Internet traffic revealing

her browsing history.

1
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• In the third scenario, Field Agent Anna wishes to send a covert message to Field Agent

Roberto so that no one, including (possibly double agent) Roberto can determine her

IP location. Her message may traverse an autonomous system (AS) largely controlled

by a powerful country.

As illustrated by these examples, the downside of the world becoming more digitally

connected is that it is now easier for powerful adversaries to strongly discourage digital

communications by conducting mass surveillance of individuals’ Internet activities.

Anonymous channels are a prerequisite for protecting user privacy. But how can we

achieve anonymous channels in an Internet-like network that consists of point-to-point links?

Suppose that Anna wishes to send a message anonymously to Roberto. To begin with, Anna

can encrypt the message and send the encrypted message to Roberto so that only Roberto

can read the message. However, an eavesdropper, Eli, observing the sequence of bits coming

out of Anna’s computer and the sequence of bits going into Roberto’s computer can still

determine that Anna and Roberto are communicating with each other if the sequences of

bits match. So, Anna can use onion routing to send her message to Roberto instead.

Onion routing [Cha81] is the most promising approach to anonymous channels to-date.

In onion routing, messages are sent via intermediaries, and wrapped in layers of encryption,

resulting in so-called onions; each intermediary’s task is to “peel off” a layer of encryption

and send the resulting onion to the next intermediary or its final destination. The onion

“looks different” at every layer, and so its route through the network cannot be traced from

merely observing the sequences of bits that Anna transmits and Roberto receives. However,

even with Anna sending her message to Roberto encoded as an onion, her communication

can still be tracked by a resourceful eavesdropper with an extensive view of the network

traffic (e.g., an ISP-level or an AS-level adversary) who can observe the “flow” of Internet

traffic.

Tor (which stands for “The onion router”) [DMS04] is a widely-used distributed network

consisting of thousands of relay nodes and used by two million users per day1 to commu-

nicate anonymously2. Tor boasts efficiency, fault tolerance (i.e., if an onion gets dropped,

other onions still make it through) and scalability (i.e., the system continues to perform

well even as more parties join). These practical benefits have so far outweighed concerns

that onion routing lacks provable security in the standard setting where the adversary has

1https://metrics.torproject.org/userstats-relay-country.html

2Tor is somewhat different than the onion routing protocol as described above, but we begin with the
simpler version of onion routing.

https://metrics.torproject.org/userstats-relay-country.html
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the full view of the network traffic [JWJ+13, SEV+15, WSJ+18]. Johnson et al. [JWJ+13]

showed that approximately 80% of users can be deanonymized by an adversarial relay node

within six months, and almost all users can be deanonymized by AS within three months.

This is detrimental when combined with the fact that one-third of all Tor relay nodes are

hosted by only six autonomous systems [SEV+15]3.

In this thesis, we explore how we can achieve provable security from powerful (e.g., AS-

level) adversaries without completely sacrificing the practical properties we already enjoy

in Tor: efficiency4, fault tolerance and scalability.

Adversary model For our results on onion routing, we will assume that the adversary can

access network traffic on all links, but that message packets are dropped only at corrupted

nodes. When a message packet is sent directly from Anna to location Leo5, in actuality,

the packet is routed through many physical nodes in the network; thus, it is reasonable to

assume that the message could be logged somewhere en route. An adversary controlling a

large AS is well positioned to eavesdrop on the entire Internet. In practice, as revealed by

Snowden, this is what the NSA has already done [Edg17]. On the other hand, standard

network protocols (i.e., TCP/IP) give us some assurance that message packets are not

dropped on the links, so it is reasonable to model the adversary the way that we do, and,

in fact, this is the standard model in the cryptography literature [Gol98].

Informally, a protocol is anonymous if the standard adversary cannot distinguish the

scenario in which Anna sends to Roberto (scenario 0) from the scenario in which Anna sends

to Leo instead (scenario 1) or, alternatively, the scenario in which Anna is not sending a

message to anyone (scenario 2). For formal definitions, see Definitions 2 and 10.

In recent years, a few efficient (having low communication complexity) and provably se-

cure onion routing protocols have been proposed [vdHLZZ15,TGL+17,KCDF17]. However,

3While the original attack by Øverlier and Syverson [ØS06] assumed a static set up (without Internet
churn), recent attacks (see Raptor attacks [SEV+15] and Tempest attacks [WSJ+18]) exploit the dy-
namic nature of the Internet to increase both the adversarial view as well as the adversary’s deanonymiz-
ing capabilities. Using such attacks, Sun et al. demonstrated that approximately 30% of Tor circuits
can be deanonymized by an AS within three weeks [SEV+15].

4Compared with Tor, our protocols have longer latency. This is unavoidable since it was recently shown
that an honestly formed onion must pass through a polylogarithmic (in the security parameter) number
of intermediaries before being received by the recipient to provide anonymity from the passive adversary
who monitors a constant fraction of the relays [Chr20].

5The names most commonly used for illustrating problems in cryptography and security are Alice and
Bob who are users who wish to communicate securely, and Eve, the eavesdropper. In this thesis, we will
use instead, the names of the thesis committee members, Anna, Roberto, Eli and Leo. Anna, Roberto
and Eli naturally correspond to Alice, Bob and Eve since Anna begins with an “A”, Bob is short for
Robert and Eli begins with an “E”.
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these protocols are still impractical either because they send all messages through the same

set of dedicated servers [vdHLZZ15] or are fragile (no one receives his/her message if any

one message packet is dropped) [TGL+17,KCDF17]. In Chapters 2 and 3, we will present

our anonymous onion routing protocols that are efficient, fault-tolerant and scalable (i.e.,

properly load-balanced).

Our contributions Suppose that Eli suspects that Anna is streaming communication

to Roberto. If Eli is an active adversary, he may try to disrupt Anna’s communication

by dropping all the onions Anna emits. If Roberto then stops receiving (as many) onions,

Eli can infer that his suspicion was correct: Anna is communicating with Roberto! In

the asynchronous communications model, disrupting communication is “easy”: Eli can

guarantee that no onion formed by Anna makes it to the recipient. Likewise, even in the

synchronous communication model, if Eli can adaptively choose which nodes to corrupt,

disrupting communication is still “easy”. For every onion o sent by Anna, Eli can corrupt

the party p who receives o in time to direct p to drop the onion obtained from processing

o before the next round.

As anonymity in the asynchronous or adaptive setting is hopeless, in this thesis, we

examine the required number of onion transmissions for achieving anonymity in the syn-

chronous and non-adaptive setting. Specifically, our protocols are secure whenever corrup-

tions at round r do not depend on the view at round r. This is reasonable given the brevity

of a single round. For our lower bound, assuming non-adaptivity does not lead to any loss

of generality.

Like all previous results [vdHLZZ15,TGL+17,KCDF17] in provably secure onion routing,

our results are for the simple input-output (simple I/O) setting in which each participant

desires to send a fixed-length message to a unique interlocutor. Our contributions are as

follows:

1. An anonymous protocol, Πp, with polylogarithmic (in the security parameter) commu-

nication complexity (multiplicative) blowup in the presence of the passive adversary

who can monitor a constant fraction of the nodes. This result can also be thought of

as provable mixing (hiding the senders/origins) in the passive adversary setting. See

§2.5.

2. A differentially private protocol, Πa, with polylogarithmic (in the security parameter)

communication complexity blowup in the presence of the active adversary who can

control a constant fraction of the nodes. This result can also be thought of as provable
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mixing in the active adversary setting. See §2.6.

3. The first onion routing protocol, Π./, that is simultaneously efficient, fault tolerant,

and anonymous in the active adversary setting. The protocol requires an expected

polylogarithmic number of onions to be transmitted per message. See §3.5.

4. A lower bound (matching 3) for achieving anonymity in the active adversary setting.

We show that for an onion routing protocol to be anonymous and fault-tolerant, there

exists a sender who sends a polylogarithmic number of onions. See §3.4.

These results were published as separate papers [ALU18,ALU19].

1.2 Onion encryption (OE) schemes

While Chapters 2 and 3 are about onion routing protocols (e.g., hiding the communication

patterns from the traffic flow in networks), Chapter 4 is about onion encryption schemes.

Informally, an onion encryption scheme is a suite of algorithms for forming and processing

onions, (G,FormOnion,ProcOnion), with useful properties for ensuring anonymity when used

in an onion routing protocol. The algorithm G generates key pairs for the participants. The

algorithm FormOnion forms an onion from the message and routing information, and the

algorithm ProcOnion peels an onion and returns the peeled onion.

Before we describe what makes an onion encryption scheme correct and secure (in Chap-

ter 4), we first explain why a public-key encryption scheme (Gen,Enc,Dec) is not an ideal

onion encryption scheme.

Suppose that Anna wants to form an onion for Roberto that routes through Carol and

David before reaching Roberto. First, Anna encrypts her message m under Roberto’s public

key pkB. The resulting ciphertext c← Enc(pkB,m) is what she wishes Roberto to receive.

Next, Anna encrypts the instructions “send c to Roberto” under David’s public key pkD,

resulting in the ciphertext cD ← Enc(pkD, “send c to Roberto”). Next, she encrypts the

instructions “send cD to David” under Carol’s public key pkC , resulting in the ciphertext

cC ← Enc(pkC , “send cD to David”). In our example, the onion is cC , and each node can

decrypt the appropriate layer until Roberto receives the intended ciphertext c. Each mix-

server, Carol or David, knows only the identities of adjacent nodes on the routing path.

The above is essentially how Chaum described onion routing in the seminal 1981 paper

introducing mixes [Cha81].

However, as noted by Camenisch and Lysyanskaya (CL) [CL05], using a public key

encryption scheme in this way can reveal how far an onion is from the recipient (in hops).
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This is because the size of the onion necessarily grows with the number of layers it has.

Revealing this information is not ideal since, in this case, only onions with the same number

of remaining layers will mix at honest nodes. In their seminal work on onion routing [CL05],

Camenisch and Lysyanskaya address this issue; they formally defined onion encryption

schemes, provided the first description of an ideal functionality Fonion of onion encryption

schemes in the universal composability (UC) model [Can01] and presented a construction

that UC-realizes Fonion.

While CL provided a formal treatment of onion encryption schemes for one-way anony-

mous channels, they left open the problem of onion encryption for two-way anonymous

channels. An onion formed from an onion encryption scheme for one-way communication

is not “repliable” in that the onion’s recipient is unable to respond to the onion’s anony-

mous sender. In contrast to this, an onion encryption scheme for two-way communication

includes an additional algorithm, FormReply, for forming a return onion O′ from a reply

message m and the onion O received by the recipient. For this reason, we shall call such an

onion encryption scheme, a repliable onion encryption scheme.

Despite the widespread use of two-way communication channels, for example, web brows-

ing, no formalism for repliable onion encryption schemes existed. The popular Tor network

allows the recipient to respond to the anonymous sender through a Tor circuit (a two-way

channel established over TLS) [DMS04]. However, Tor is not anonymous in the standard

adversary model, in large part because creating and maintaining Tor circuits is “leaky”.

Chaum presented a reply option (a mechanism for the recipient to reply to the sender) in

his 1981 paper [Cha81]. However, as mentioned previously, this solution is not cryptograph-

ically secure either. Babel [GT96], Mixminion [DDM03], Minx [DL04] and Sphinx [DG09]

also provide a reply option but also don’t provide any formal definition or rigorous proof

of security. This left a gap between proposed ideas for a repliable onion encryption scheme

and rigorous examinations of these ideas. For instance, Kuhn et al. [KBS19] pointed out a

fatal security flaw in the current art-of-the-art, Sphinx. They also pointed out some defini-

tional issues in CL’s and proposed fixes for some of these issues but left open the problem

of formalizing repliable onion encryption.

Our contributions In this thesis, we formally define and realize repliable onion encryp-

tion. Our results are as follows:

1. The first description of an ideal functionality, FROES, for repliable onion encryp-

tion schemes. We describe FROES in the simplified universal composability (SUC)
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model [CCL15] as opposed to the full-blown UC model as this choice simplifies how

the parties communicate with one another. The description of the ideal functionality

FROES can be found in §4.3.

2. The first provably secure repliable onion encryption scheme: Shallot Encryption

Scheme. Our scheme builds on a CCA2-secure cryptosystem with tags, a block cipher

and a collision-resistant hash function. We give our construction in §4.4 and prove

that it SUC-realizes FROES in §4.5.

These results were published as a separate paper [AL20].



Chapter 2

Simple and Provably Secure OR

Protocols

2.1 Overview and related work

Tor The Tor network [DMS04] is a distributed network consisting of thousands of re-

lay nodes and used by two million users per day1 to communicate anonymously. Tor is

based on a highly efficient design that favors practicality over provable security. It has

low latency firstly, because onions are sent to their next destinations without delay, and,

secondly, because each Tor circuit (i.e., routing path) consists of only three relay nodes

(i.e., intermediaries) by default. The Tor architecture sacrifices provable security for low

latency since it does not ensure that onions are “mixed” together and so cannot guarantee

anonymity from the network adversary with a full view of the network traffic. Moreover,

if an honestly formed onion is routed through only a constant number of intermediaries,

then the probability that all the intermediaries are corrupted parties is non-negligible (in

the security parameter).

2.1.1 Known provably secure OR protocols

On the flip side, researchers have known about provably secure methods that are too im-

practical in real systems. For example, Rackoff and Simon [Rac93] and Raymond [Ray01]

pointed out that perfect secrecy can be achieved by broadcasting every message, thereby

increasing the communication complexity by a linear (in the size of the network) factor.

However, this approach is computationally expensive and only protects from the network

1https://metrics.torproject.org/userstats-relay-country.html

8
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adversary who observes the traffic on links but doesn’t corrupt nodes but doesn’t protect

from the passive or active adversary.

Much more recently, researchers have proposed onion routing protocols that are both

efficient and provably secure; these are Vuvuzela [vdHLZZ15], Stadium [TGL+17] and

Atom [KCDF17]. These protocols are secure in the setting where communication is mod-

eled to be synchronous. In Vuvuzela and in Stadium, parties are either communicating in

pairs or talking to themselves. In Atom, every party is sending a short message to a public

bulletin board.

Vuvuzela Vuvuzela is a communications protocol suite by van den Hooff et al., consisting

of a conversation protocol (for communicating messages) and a dialing protocol (for setting

up who is communicating with whom) [vdHLZZ15]. Each user is assumed to behave honestly

and is communicating with one party; Anna is sending a message to Roberto if and only

if Roberto is sending a message to Anna. During setup, each user forms an onion using a

message, the dedicated sequence S = (S1, S2, . . . , SN ) of mix-servers and the public keys

associated with the servers.

At every round i ∈ [N − 1] of the protocol run, server Si receives an ordered sequence

of onions from the users or the previous server Si−1. Si peels the onions, injects some

dummy onions to the sequence, randomly permutes the sequence of onions and, at the next

round, sends the permuted sequence of onions to the next server Si+1. When the last server

SN receives a sequence of onions, at round N , SN peels the onions revealing a “dead-drop”

address for each onion. By design, two onions share a dead-drop address, with overwhelming

probability, only if a communicating pair formed these onions. SN switches the order of

every pair of onions with the same dead-drop address and, at roundN+1, sends the sequence

of onions back to the previous server SN−1. At each round i ∈ {N + 1, . . . , 2N − 1} (in the

reverse direction from SN back to the users), S2N−i un-permutes the sequence of onions,

drops the dummy onions that it added in the forward direction, peels the remaining onions

and sends the new sequence of onions to the next server S2N−i−1. If the server is the first

server S1, it sends the peeled onions to their intended recipients (i.e., the users).

Vuvuzela’s conversation protocol is secure when at least one of the servers is honest. The

presence of the honest server guarantees that the adversary cannot map the onions sent by

the users to onions received by the users. Through the injection of dummy onions, the

number of communicating pairs is made differentially private from the (possibly corrupt)

last server SN . However, each server must receive, process and transmit all messages (along

with dummy onions). This creates congestion in the network.
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Stadium Stadium is an OR protocol by Tyagi et al. [TGL+17] that “load-balances”

Vuvuzela. Rather than passing through a dedicated sequence of mix-servers, in Stadium,

the onions pass through different sequences of groups of servers. Each group of servers is

large enough to contain at least one honest party (with overwhelming probability), and the

group’s job is to shuffle incoming onions and split the outgoing onions to be received by

different groups of servers in the next round. Stadium relies on verifiable shuffling [Abe98]

to ensure that corrupted nodes cannot cheat by dropping onions or biasing the locations of

outgoing onions.

Atom Atom is an anonymous messaging protocol for microblogging [KCDF17]. Like in

Stadium, each “node” of Atom’s overlay network is a group of servers that is guaranteed to

include at least one honest server (with overwhelming probability); such a group of servers

is referred to as an anytrust group. Atom’s overlay network is a random permutation

network, e.g., a butterfly network or a square network. So long as the anytrust groups

behave honestly, this ensures that the messages sent through the network provably mix.

When an anytrust group receives a set of onions, the servers in the group collectively peel

the incoming onions and shuffle and batch the peeled onions. Like in Stadium, the protocol

for doing this relies heavily on verifiable shuffling, with the idea that an honest server in

the group will detect any cheating (modifying or dropping onions) by a corrupted party.

In contrast to Vuvuzela, Stadium and Atom are both properly load-balanced. However,

both are highly fragile; if a corrupted party drops a single onion, the protocol is aborted.

In such a case, no user receives his/her message. A variant of Atom is more fault-tolerant

but only achieves the much weaker k-anonymity rather than full anonymity.

2.1.2 Our contributions

In this chapter, we present two practical and provably secure onion routing protocols, Πp

and Πa:

1. We prove that Πp is anonymous (Definition 2) from the passive adversary capable of

monitoring any constant fraction κ ∈ [0, 1) of the servers when the server load (i.e.,

the number of outgoing onions per server per round) is Ω
(
log1+ε λ

)
and the round

complexity is Ω
(
log1+ε λ

)
, where ε > 0 is any positive constant and λ is the security

parameter. See Theorem 2.

2. We prove that Πa is differentially private (Definition 5) from the active adversary

capable of corrupting and controlling any constant fraction κ ∈ [0, 1) of the parties
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when the server load (i.e., the number of outgoing onions per party per round) is

Ω
(

log2(1+ε) λ
)

and the round complexity is Ω
(
log1+ε λ

)
, where ε > 0 is any positive

constant and λ is the security parameter. See Theorem 3.

To prepare onions, we use a cryptographic scheme that is strong enough that, effectively,

the only thing that the active adversary can do with onions generated by honest parties is

to drop them; (see the onion cryptosystem by Camenisch and Lysyanskaya [CL05] for an

example of a sufficiently strong cryptosystem). Unfortunately, even with such a scheme, it

is still tricky to protect Anna’s privacy against an adversary that targets Anna specifically.

Suppose that the adversary guesses that Anna is communicating with Roberto. If the

adversary succeeds in blocking all of Anna’s onions and not too many of the onions from

other parties, and then Roberto may receive fewer onions than other parties, then the

adversary’s hunch that it was Anna will be confirmed.

How do we prevent this attack? For this attack to work, the adversary would have to

drop a large number of onions — there is enough cover traffic in our protocol that dropping

just a few onions does not do much. But once a large enough number of onions is dropped,

the honest mix-servers will detect that an attack is taking place and will shut down before

any onions are delivered to their destinations. Specifically, if enough onions survive half of

the rounds, then privacy is guaranteed through having sufficient cover; otherwise, privacy is

guaranteed because no message reaches its final destination with overwhelming probability.

So the adversary does not learn anything about the destination of Anna’s onions.

In order to make it possible for the mix-servers to detect that an attack is taking

place, our honest users create “checkpoint” onions. These onions don’t carry any messages;

instead, they are designed to be “verified” by a particular mix-server in a particular round.

These checkpoint onions are expected by the mix-server, so if one of them does not arrive,

the mix-server in question realizes that something is wrong. If enough checkpoint onions

are missing, the mix-server determines that an attack is underway and shuts down. Two

different users, Anna and Allison, use a PRF with a shared key (this shared key need not be

pre-computed, but can instead be derived from a discrete-log based public-key infrastructure

under the decisional Diffie-Hellman assumption) in order to determine whether Anna should

create a checkpoint onion that will mirror Allison’s checkpoint onion. See Section 2.6.

Other related work Prior anonymity protocols with provable security tend to rely on

heavy cryptographic machinery to achieve high security standards. Rackoff and Simon’s
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1993 paper offers the closest solution to ours. Like us, Rackoff and Simon show their so-

lution is secure by proving a rapid convergence of Markov processes. Unlike our approach,

an inflexible network architecture is used to make their security argument tractable. Ad-

ditionally, Rackoff and Simon use secure multiparty computation (SMPC) for providing

security against active adversaries. Thus, while Rackoff and Simon’s solution for passive

adversaries [Rac93] was shown to have a short O
(
log2 n

)
delay in a later paper by Czu-

maj [Czu99], their main protocol [Rac93] relies heavily on SMPC and is believed not to

scale [Ray01]. Another earlier example of an anonymity protocol that uses SMPC but with

a much narrower purpose, is the dining cryptographer’s protocol, which Chaum first intro-

duced as a means to study secure multiparty Boolean-OR computation [Cha88b]. Other

related cryptographic tools used in constructing anonymity protocols include oblivious RAM

(ORAM) and private information retrieval (PIR) [Coo95, Cor15]. Corrigan-Gibbs et al.’s

Riposte solution makes use of a global bulletin board and has a latency of a couple of

days [Cor15].

Comparatively, the only cryptographic primitives used in our constructions are a public-

key encryption scheme and a pseudorandom function (PRF). Compared with earlier solu-

tions designed to be secure against active adversaries, our protocol, Πa, is arguably a more

practical approach with added scalability from proper load-balancing and flexibility from

dynamic routing.

Information-theoretically secure approaches provide alternatives to provably secure meth-

ods. Some notable examples in the literature include Berman et al.’s work on obscurant

networks [Ber04], Köpf and Basin’s analysis using guessing entropy [BFTS04], Chatzikoko-

lakis et al.’s work on quantifying anonymity leakage in terms of channel capacities [CPP08],

and work with min-entropy leakage by Dodis et al. [Dod04] and Alvim et al. [AAC+11].

2.2 Preliminaries

This section and the next (§2.3 Modeling the problem) pertain to Chapters 2 and 3.

2.2.1 Notation

For a set S, we denote the cardinality of S by |S|, and s←$S is an item from S chosen

uniformly at random. For an algorithm A(x), y ← A(x) is the (possibly probabilistic)

output y from running A on the input x. In this paper, log(x) is the logarithm of x base 2.

For strings x and y, “x||y” is the concatenation of x and y.
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We say that a function f : N 7→ R is negligible in the parameter λ, written f(λ) =

negl(λ), if for a sufficiently large λ, f(λ) decays faster than any inverse polynomial in

λ. When λ is the security parameter, an event Eλ is said to occur with (non-)negligible

probability if the probability of Eλ can(not) be bounded above by a function negligible

in λ. An event occurs with overwhelming probability (abbreviated w.o.p.) if its comple-

ment occurs with negligible probability. We use the standard notion of a pseudorandom

function [Gol01, Ch. 3.6].

2.2.2 OE schemes and OR protocols

Onion encryption schemes Our work on onion routing builds upon a secure onion

encryption scheme. Recall that an onion encryption scheme [CL05] is a triple of algorithms:

(Gen,FormOnion,ProcOnion). The algorithm Gen generates a public-key infrastructure for

a set of parties. The algorithm FormOnion forms onions; and the algorithm ProcOnion

processes onions.

Let [N ] be a set of participants. For every i ∈ [N ], let (pki, ski) ← Gen(1λ) be the key

pair generated for party i ∈ [N ], where λ is the security parameter.

Let M be the message space consisting of messages of the same fixed length, and let

the nonce2 space S consist of nonces of the same fixed length. FormOnion takes as input

a message m from M, an ordered list (p1, p2, . . . , pR+1) of parties from [N ], the public

keys (pkp1 , pkp2 , . . . , pkpR+1
) associated with these parties, and a list (s1, s2 . . . , sR) of (pos-

sibly empty) strings that are nonces from S associated with layers of the onion. The

party pR+1 is interpreted as the recipient of the message, and the list (p1, p2, . . . , pR+1) is

the routing path of the message. The output of FormOnion is a sequence (o1, o2, . . . , oR+1)

of onions. Such a sequence is referred to as an evolution, but every oi in the sequence is an

onion. Because it is convenient to think of an onion as a layered encryption object where

processing an onion or produces the next onion or+1, we sometimes refer to the process of

revealing the next onion as decrypting the onion, or peeling the onion. For every r ∈ [R],

only party pr can peel onion or to reveal the next layer,

(pr+1, or+1, sr+1)← ProcOnion(skpr , or, pr),

which contains the peeled onion or+1, the next destination pr+1, and the nonce sr+1. Only

the recipient pR+1 can peel the innermost onion oR+1 to reveal the message,

m← ProcOnion(skpR+1 , oR+1, pR+1).

2Here, a nonce is pseudorandom short number.
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In our constructions, a sender of a message m to a recipient j “forms an onion” by

generating nonces and running the FormOnion algorithm on the message m, a routing path

(p1, p2, . . . , pR, j), the public keys (pkp1 , pkp2 , . . . , pkpR , pkj) associated with the parties on

the routing path, and the generated nonces; the formed onion is the first onion o1 from the

list of outputted onions. The sender (i.e., the party who formed the onion) sends o1 to the

first party p1 on the routing path, who processes o1 and sends the peeled onion o2 to the

next destination p2 and so on, until the last onion oR+1 is received by the recipient j who

processes it to obtain the message m.

Let o0 and o1 be any two onions that only (honest) party i can process such that one of

the onions was formed by an honest party using the message-recipient pair (m0, recipient0),

and the other was formed by an honest party using the pair (m1, recipient1). Importantly,

the adversary who can adaptively interact with the honest parties cannot tell which message-

recipient pair produced which onion. See Camenisch and Lysyanskaya’s paper [CL05] for

formal definitions.

Onion routing protocols An onion routing protocol is a protocol in which all message

packets passed between the participants of the protocol are treated as sets of cryptographic

onions, i.e., the protocol directs parties to put on the outbound channels only outputs of

FormOnion and ProcOnion and to apply ProcOnion to their incoming packets.

2.3 Modeling the problem

We consider a setting where N parties, labeled 1, 2, . . . , N , participate in an onion routing

protocol. We assume that the protocol progresses in global rounds and that an onion sent

at round r is received instantaneously at the same round r. We assume that the number N

of participants and every other quantity in the protocol is polynomially bounded in the

security parameter λ.

In this thesis, we analyze single runs of onion routing protocols.

Our results are for a standard setting [Gol98] where the adversary is active and non-

adaptive: Unless stated otherwise, we consider the active adversary who can observe the

traffic on all links and, additionally, can non-adaptively corrupt and control a constant

fraction of the parties. By non-adaptively corrupt, we mean that the corruptions are made

independently of any run. Once the adversary corrupts a party, she can observe the internal

state and computations of the corrupted party and arbitrarily alter the behavior of the party.

(Adversaries making adaptive corruptions are not considered since they can trivially block



15

network traffic from an honest party, thus making anonymity impossible.)

Let Aκ denote the set of all active adversaries who corrupt up to κ fraction of the parties.

Inputs An input σ = (σ1, σ2, . . . , σN ) to the protocol is a vector of inputs to the parties,

where σi is a set of message-recipient pairs for party i. For m ∈ M and j ∈ [N ], the

inclusion of a message-recipient pair (m, j) in input σi means that party i is instructed to

send message m to recipient j.

Let Σ be a set of input vectors. Let A be the adversary, and let Bad be the set of

parties controlled by A. Fixing Bad imposes an equivalence class on Σ: Each equivalence

class is defined by a vector (d1, d2, . . . , dN ). For each corrupted party i ∈ Bad, di = (σi, Oi)

“fixes” the input σi for i and also, the set Oi of messages instructed to be sent from honest

parties to i. For each honest party i ∈ [N ] \Bad, di = Vi “fixes” the number Vi of messages

instructed to be sent from honest parties to i. An input vector belongs to the equivalence

class (d1, d2, . . . , dN ) if for every i ∈ Bad, di = (σi, Oi), the input for i is σi and the set

of messages from honest parties to i is Oi; and if for every i ∈ [N ] \ Bad, di = Vi, and

the number of messages from honest parties to i is Vi. Two input vectors σ0 and σ1 are

equivalent w.r.t. the adversary’s choice Bad for the corrupted parties, denoted σ0 ≡Bad σ
1,

if they belong to the same equivalence class imposed by Bad.

Outputs and views Let $ = ($1, $2, . . . , $N , $A) denote the vector of random tapes used

by the N participants and the adversary A.

By OΠ(1λ,pp,states,$),A(σ) =
(

O
Π(1λ,pp,states,$),A
i (σ)

)
i∈[N ]

, we mean the outputs (for honest

parties, the messages received) for the N parties from running protocol Π interacting with

adversary A with public parameters “pp” and internal states “states” on input the security

parameter λ and vector σ of inputs, using vector $ for random tapes. In general, when

talking about multiple statistical quantities in a run of protocol Π, we implicitly mean that

the quantities are conditioned on the same setting (i.e., pp, states and $). We will, therefore,

often use the shorthand OΠ,A(σ).

For a given adversaryA, we abbreviate by VΠ,A(σ), the adversary’s view from interacting

with protocol Π on input σ. The view consists of all the onions on every wire of network,

the states of the corrupted parties, the randomness used by the adversary and, additionally,

the numbers of messages received by the honest parties. We will sometimes denote by

VΠ,A,Bad(σ), the adversary’s view conditioned on her choice Bad for the corrupted parties

(in other words, when the adversary’s randomness for choosing the corruptions is fixed but

not the randomness for the other random choices in the system).
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We define correctness w.r.t. interactions with the passive adversary as follows.

Definition 1 (Correctness). A communications protocol Π is correct if for any input σ and

for every recipient j ∈ [N ], j’s output O
Π,Ap
j (σ) in a run of Π interacting with the passive

adversary Ap corresponds to the multiset of all messages for j in σ. That is,

OΠ,A
j (σp) = {m |(m, j) ∈M(σ)} ,

where M(σ) denotes the multiset of all message-recipient pairs in σ.

2.4 Definitions

2.4.1 Statistical definitions of anonymity

For the analyses in this chapter, we assume an idealized version of an encryption scheme,

in which the ciphertexts are information-theoretically unrelated to the plaintexts that they

encrypt and reveal nothing but the length of the plaintext. When used in forming onions,

such an encryption scheme gives rise to onions that are information-theoretically indepen-

dent of their contents, destinations and identities of the mix-servers. The standard and

natural notion of security under this model is,

Definition 2 (Statistical anonymity). A protocol Π(1λ, pp, states, $, σ) is statistically

anonymous from the adversary A who corrupts up to a constant 0 ≤ κ < 1 fraction of

the parties for input vectors from the set Σ if for any choice Bad for corrupted parties such

that |Bad| ≤ κN and for any pair σ0, σ1 ∈ Σ of inputs such that σ0 ≡Bad σ
1, the adversary’s

views VΠ,A,Bad(σ0) and VΠ,A,Bad(σ1) are statistically indistinguishable, i.e.,

VΠ,A,Bad(σ0) ≈s VΠ,A,Bad(σ1).

Π is. perfectly secure from A if VΠ,A,Bad(σ0) = VΠ,A,Bad(σ1) instead.

Definition 3 (Distance between inputs). The distance d(σ0, σ1) between two inputs σ0 =

(σ0
1, . . . , σ

0
N ) and σ1 = (σ1

1, . . . , σ
1
N ) is given by

d(σ0, σ1)
def
=

N∑
i=1

|σ0
i∇σ1

i |,

where (·∇·) denotes the symmetric difference.

Definition 4 (Neighboring inputs). Two inputs σ0 and σ1 are neighboring inputs if

d(σ0, σ1) ≤ 1.
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We also consider a weaker notion of anonymity, which we call differential anonymity

(abbreviated DA) since it is essentially Dwork et al.’s differential privacy definition [DR14,

Definition 2.4].

Definition 5 ((ε, δ)-DA). A protocol Π(1λ, pp, states, $, σ) is (ε, δ)-DA from the adversary A
who corrupts up to a constant 0 ≤ κ < 1 fraction of the parties for input vectors from

the set Σ if for any choice Bad for corrupted parties such that |Bad| ≤ κN , for any pair

σ0, σ1 ∈ Σ of inputs such that σ0 ≡Bad σ
1 and for any set V of views,

Pr
[

VΠ,A,Bad(σ0) ∈ V
]
≤ eε · Pr

[
VΠ,A,Bad(σ1) ∈ V

]
+ δ.

While differential privacy is defined with respect to neighboring inputs, it also pro-

vides, albeit weaker, guarantees for non-neighboring inputs; it is known that the security

parameters degrade proportionally in the distance between the inputs [DR14].

2.4.2 Efficiency measures

Our main measure of efficiency of OR protocols is onion cost, Our measure of efficiency

of OR protocols is onion cost, which measures how many onions are transmitted by each

party in the protocol.

Let outΠ,A
i (σ, r) denote the number of honestly formed onions that party i transmits

directly (to another party) in the r-th round of a protocol run of Π interacting with adver-

sary A on input vector σ, and let outΠ,A
i (σ) denote the total number of honestly formed

onions that party i transmits directly (to another party) in a protocol run of Π interacting

with adversary A on input vector σ.

Definition 6 (Onion cost). For an OR protocol Π(1λ, pp, states, $, σ), an adversary A and

an input set Σ, the onion cost of Π interacting with A w.r.t. Σ is the expected number of

honest onions transmitted per party in a run of Π interacting with A on a random input

σ←$ Σ from Σ, i.e.,

OCΠ,A(Σ)
def
= Eσ,i,$

[
outΠ,A

i (σ)
]
.

The expectation is taken over the uniformly random input σ←$ Σ, the uniformly random

party i←$ [N ] and the randomness $ of the protocol.

For an adversary class A, the onion cost of Π interacting with A w.r.t. Σ is the maximum

onion cost over the adversaries in A, i.e., OCΠ,A(Σ)
def
= maxA∈A OCΠ,A(Σ).

The onion cost is measured in unit onions, which is appropriate when the parties pass

primarily onions to each other.
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It is also an attractive measure of complexity because it is algorithm-independent: If we

measured complexity in bits, it would change depending on which underlying encryption

scheme was used. Since an onion contains as many layers as there are intermediaries, its

bit complexity scales linearly with the number of intermediaries. (We assume that every

message m can be contained in a single onion.) To translate our lower bound from onion

complexity to bits, we will consider onions to be at least as long (in bits) as the message m

being transmitted and the routing information.

Definition 7 (Server load). For an OR protocol Π(1λ, pp, states, $, σ), an adversary A and

an input set Σ, the server load of Π interacting with A w.r.t. Σ is the expected number of

honest onions transmitted per party per round in a run of Π interacting with A on a random

input σ←$ Σ from Σ, i.e.,

SLΠ,A(Σ)
def
= Eσ,i,r,$

[
outΠ,A

i (σ, r)
]
.

The expectation is taken over the uniformly random input σ←$ Σ, the uniformly random

party i←$ [N ], the uniformly random round and the randomness $ of the protocol.

Definition 8 (Round complexity). For an OR protocol Π(1λ, pp, states, $, σ), an adver-

sary A and an input set Σ, the server load of Π interacting with. A w.r.t. Σ is the expected

number of rounds in a run of Π interacting with A on a random input σ←$ Σ from Σ.

In addition to having low (i.e., polylog in the security parameter) onion cost, we will

show that our OR protocols have low (i.e., polylog in the security parameter) server load

and low (i.e., polylog in the security parameter) round complexity.

2.5 Πp, anonymity in the passive adversary setting

Like the active adversary, the passive adversary can observe all network traffic on all links

and can corrupt a constant fraction of the nodes. Unlike the active adversary, the passive

adversary does not control the corrupted nodes and merely monitors the internal states and

computations of the corrupted nodes. Here, we present a simple OR protocol that provides

anonymity from the passive adversary while being practical with low onion cost and low

server load.

We assume that every user sends and receives the same number of messages as any other

user; otherwise, the sender-receiver relation can leak from the differing numbers of messages

sent and received by the users. In other words, every user essentially commits to sending a
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message, be it the empty message ⊥ to itself. Let SimpleIO be the set of all input vectors

of the form

σ = ({(m1, π(1))}, . . . , {(mN , π(N))}),

where π : [N ] → [N ] is a permutation function over the set [N ], and m1, . . . ,mN are

messages from the message space M. We present our protocol Πp in the setting in which

the input vector is constrained to belong to SimpleIO. We call this setting the simple I/O

setting.

2.5.1 Description of Πp

Let [N ] be the set of users and S = {S1, S2, . . . , Sn} ⊂ [N ], the set of servers. Πp uses a

secure onion encryption scheme, denoted OE = (Gen,FormOnion,ProcOnion), as a primitive

building block. For every i ∈ [N ], let (pki, ski) ← Gen(1λ) be the key pair generated for

party i, where λ denotes the security parameter. (See §2.2.2 for a description of onion

encryption schemes.)

During setup, each user i ∈ [N ] creates an onion. On input σi = {(m, j)}, user i

picks R servers p1, p2, . . . , pR independently and and uniformly at random and then

forms an onion using the message m, the routing path (p1, p2, . . . , pR, j), the public

keys (pkp1 , pkp2 , . . . , pkpR , pkj) associated with the parties on the routing path and a list

(⊥,⊥, . . . ,⊥) of empty nonces.

1 : p1, . . . , pR ← [N ]

2 : (o1, . . . , oR+1)← FormOnion(m, (p1, . . . , pR, j), (pkp1 , . . . , pkpR , pkj), (⊥, . . . ,⊥))

3 : return o1

Figure 2.1: In Πp, instructions for forming an onion on input the security parameter 1λ,
the participants [N ], the set S ⊆ [N ] of servers, the participants’ public keys, the message
m and the recipient j.

At the first round of the protocol run, user i sends the formed onion to the first server p1

on the routing path. After every round r ∈ [R] (but before round r+1) of the protocol run,

each server processes the onions it received at round r. At round r+ 1, the resulting peeled

onions are sent to their respective next destinations in random order. At round R+1, every

user receives an onion and processes it to reveal a message.

Correctness and efficiency Clearly, Πp is correct. In Πp, N messages are transmitted

in each of the R+ 1 rounds of the protocol run. Thus, the round complexity is R+ 1, and

the onion cost is O(N(R+ 1)). The server load is O
(
N
n

)
.
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2.5.2 Proof that Πp is anonymous

To prove that Πp is anonymous (Definition 2) from the passive adversary, we first prove

that it mixes onions in the presence of the network adversary, i.e., the adversary who can

observe all network traffic but cannot corrupt any nodes.

Theorem 1. Πp is anonymous (Definition 2) from the network adversary when the server

load is Ω
(
log1+ε λ

)
and the round complexity is Ω

(
log1+ε λ

)
, i.e., N

n = Ω
(
log1+ε λ

)
and

R = Ω
(
log1+ε λ

)
.

Proof. Let N
n = α log1+ε λ for α = Ω(1); so that after each round, every location receives

α log1+ε λ onions in expectation. We recast our problem as a balls-in-bins problem, where

the balls are the onions and the bins, the locations. At every round of the protocol, all

αn log1+ε λ balls (i.e., onions) are thrown uniformly at random into n bins (i.e., each onion

is routed to one of n locations chosen independently and uniformly at random).

Fix any target sender U , and let Xr = (Xr
1 , . . . , X

r
n) be a vector of non-negative numbers

summing to one, representing A’s best estimate for the location of U ’s ball after r rounds

(and before round r+ 1); for every i ∈ [N ], Xr
i is the likelihood that bin i contains U ’s ball

after r rounds. Let (Xr
fr(1), . . . , X

r
fr(n)) be the result of sorting (Xr

1 , . . . , X
r
n) in decreasing

order, where fr : [N ] → [N ] is a permutation function over the set [N ]. For every i ∈ [N ],

let bri = fr(i) be the index of the bin with the i-th largest likelihood at round r.

W.l.o.g. we assume that n is divisible by three. We partition the bins into three groups

Gr1, Gr2 and Gr3; such that Gr1 contains all the balls in the top one-third most likely bins

br1, . . . , b
r
n
3
; Gr3 contains all the balls in the bottom one-third most likely bins br2n

3
+1
, . . . , brn;

and Gr2 contains all the balls in the remaining bins brn
3

+1, . . . , b
r
2n
3

.

For each j ∈ [3], let Orj ∈ Grj be a ball with the maximum likelihood of being U ’s onion

among the balls in group Grj . For any d ∈ (0, 1), let d′ = 1 − 1
1+d . Let crj be the bin

containing Orj . The bin crj contains at least (1 − d′)α log1+ε λ balls (Chernoff bounds for

Poisson trials [MU05]). It follows that with overwhelming probability,

Pr
[
Orj is U ’s onion

]
≤ (1 + d)

Xr
crj

α log1+ε λ
≤ (1 + d)

Xr
(j−1)n

3
+1

α log1+ε λ
, (2.1)

where Xr
(j−1)n

3
+1

is the likelihood of the most likely bin in group Gj .

The number of balls contained in each group Grj is arbitrarily close to the expected

number α
3n log1+ε λ of balls in a group (Chernoff bounds). Thus, the most probable bin br+1

1

after the next round receives at most (1+d)α
3 log1+ε λ balls from each of the three groups:
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Gr1, Gr2 and Gr3. From (2.1), this implies that with overwhelming probability,

Xr+1
1 ≤ (1 + d)2

3

3∑
j=1

Xr
(j−1)n

3
+1
.

Using a symmetric argument, we can conclude that with overwhelming probability,

Xr+1
n ≥ (1− d)2

3

3∑
j=1

Xr
jn
3

,

where Xr
jn
3

is the likelihood of the least likely bin in group Gj .

For all r ∈ [R], define gr = Xr
1 −Xr

n as the difference in likelihoods between the most

and least likely bins at round r.

gr+1 ≤
(1 + d)2

∑3
j=1X

r
(j−1)n

3
+1

3
−

(1− d)2
∑3

j=1X
r
jn
3

3
≤ 1

2
(Xr

1 −Xr
n) =

gr

2
,

where the latter inequality follows from telescopic cancelling, since

Xr
n
3

+1 ≤ X
r
n
3
,

and

Xr
2n
3

+1
≤ Xr

2n
3

.

The difference gr is at least halved at every round. By round log1+ε λ, the difference is

negligible in λ. Thus, after traveling R random hops, each onion becomes “unlinked” from

its sender.

In the proof above, the bins were partitioned into three groups at every round. By

partitioning the bins into an appropriately large constant number of groups, we can show

that Πp achieves statistical privacy after R = Ω
(
log1+ε λ

)
rounds.

We are now ready to prove the main result of this section:

Theorem 2. Πp is anonymous (Definition 2) from the passive adversary capable of

monitoring any constant fraction κ ∈ [0, 1) of the servers when N
n = Ω

(
log1+ε λ

)
and

R = Ω
(
log1+ε λ

)
, where λ ∈ N denotes the security parameter.

Proof. We prove this by cases.

In the first case, σ1 is the same as σ0 except that the inputs of two users are swapped,

i.e., d(σ0, σ1) = 2. Using Chernoff bounds for Poisson trials, there are at least some polylog
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number of rounds where the swapped onions are both routed to an honest bin (not neces-

sarily the same bin). From Theorem 1, after the polylog number of steps, the locations of

these two target onions are statistically indistinguishable from each other.

In the second case, d(σ0, σ1) > 2. However, the distance between σ0 and σ1 is always

polynomially bounded. By a simple hybrid argument, it follows that VΠ,A(σ0) ≈s VΠ,A(σ1)

from case 1.

2.6 Πa, differential anonymity in the active adversary setting

We present an OR protocol, Πa, that is secure from the active adversary. The setting

for Πa is different from that of Πp (Section 2.5) in a few important ways. Whereas Πp is

fully anonymous from the passive adversary, Πa is differentially anonymous from the active

adversary. Like in Vuvuzela and Stadium, participants are talking in pairs or to themselves.

The upside is each party can now send an arbitrary number of messages.

We let [N ] be the set of N parties participating in a protocol. Every party is both a user

and a server. As before, OE = (Gen,FormOnion,ProcOnion) is a secure onion encryption

scheme; and for every i ∈ [N ], (pki, ski) ← Gen(1λ) denotes the key pair generated for

party i, where λ is the security parameter. Further, we assume that every pair i, k ∈ [N ] of

parties share a common secret key,3 denoted by ski,k.

F is a pseudorandom function (PRF) [Gol01, Ch. 3.6].

2.6.1 Description of Πa

We describe the protocol by the setup and routing algorithms for party i ∈ [N ]; each honest

party runs the same algorithms.

Setup Let α, β > 0 be any positive constants such that the number of intermediaries per

onion is R = β log1+ε λ, and the expected server load is N
n = α log1+ε λ + 1. (These are

system parameters that adjust the rate at which the errors vanish.)

During the setup phase, party i prepares a set of onions from its input.

For every message pair {m, j} in party i’s input, party i picks a sequence p1, p2, . . . , pR

of parties, where each party p` is chosen independently and uniformly at random, and

forms an onion from the message m, the routing path (p1, p2, . . . , pR, j), the public

3In practice, the shared keys do not need to be set up in advance; they can be generated as needed from
an existing PKI, e.g., using Diffie-Hellman.
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keys (pkp1 , pkp2 , . . . , pkpR , pkj), and a list (⊥,⊥, . . . ,⊥) of empty nonces. See lines 2-5

in the pseudocode below.

Party i also forms some checkpoint onions, where a checkpoint onion is an onion formed

using the empty message ⊥. For every party k ∈ [N ] and round r ∈ [R], with fixed

frequency α
N log1+ε λ, party i forms a checkpoint onion designed to reveal the checkpoint

(i.e., the nonce value) F (ski,k, sid+r, 1) to party k at round r. The nonce value is computed

using a pseudorandom function F keyed with the shared key ski,k. See lines 6-12 in the

pseudocode below.

1 : O = ∅

2 : for each J
def
= {m, j} ∈ σi

3 : p1, . . . , pR ← [N ]

4 : (o1, . . . , oR+1)← FormOnion(m, (p1, . . . , pR, j), (pkp1 , . . . , pkpR , pkj), (⊥, . . . ,⊥))

5 : add o1 to O
6 : for (k, r) ∈ [N ]× [R]

7 : if F (ski,k, sid + r, 0) ≡ 1 (which occurs with frequency α log1+ε λ/N)

8 : p1, . . . , pR+1 ← [N ]

9 : s = (⊥, . . . ,⊥)

10 : s[r] = (ckpt, F (ski,k, sid + r, 1))

11 : (o1, . . . , oR+1)← FormOnion(m, (p1, . . . , pR+1), (pkp1 , . . . , pkpR+1
), s)

12 : add o1 to O
13 : return O

Figure 2.2: In Πa, instructions for forming onions on input the security parameter 1λ, the
session id sid, the parties [N ], the parties’ public keys and the input σi.

Routing By construction, party i forms a checkpoint onion to be expected by honest

party k at round r iff party k forms a symmetric checkpoint onion to be expected by party i

at round r. Each party (i or k) independently computes b = F (ski,k, sid + r, 0) and, if b ≡ 1,

forms a checkpoint onion with checkpoint s = (ckpt, F (ski,k, sid + r, 1)). If party i forms a

checkpoint onion with nonce s embedded in the r-th layer, then party i expects to receive

a checkpoint onion at the r-th round that, when processed, reveals the same nonce s. If

many expected checkpoint nonces are missing, then party i can deduce that something is

wrong and aborts the protocol run.

After every round r ∈ [R] (but before round r + 1), party i peels the onions it received

at round r and counts the number of missing checkpoint nonces. If the count exceeds a

threshold value t, the party aborts the protocol run; otherwise, at round r + 1, the peeled
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onions are sent to their next destinations in random order.

After the final round, party i outputs the set of messages revealed from processing its

the onions it receives at round R+ 1.

Correctness and efficiency Recalling that correctness is defined with respect to the

passive adversary (see Definition 14), Πa is clearly correct.

Unless an honest party aborts the protocol run, all messages that are not dropped by the

adversary are delivered to their final destinations. In Πa, the communication complexity

is O
(
N log3(1+ε) λ

)
, since the round complexity is R + 1 = O

(
log1+ε λ

)
rounds, and the

expected server load is O
(

log2(1+ε) λ
)

.

2.6.2 Proof that Πa is differentially anonymous

To prove that Πa is secure, we require that the thresholding mechanism does its job.

Lemma 1. In Πa: If F is a random function, t = c(1 − d)(1 − κ)2α log1+ε λ for some

c, d ∈ (0, 1), and an honest party does not abort within the first r rounds of the protocol run,

then with overwhelming probability, at least (1− c) of the checkpoint onions created between

honest parties survive at least (r − 1) rounds, even in the presence of an active adversary

who corrupts a constant κ ∈ [0, 1) fraction of the parties.

The proof relies on a known concentration bound for the hypergeometric distribu-

tion [HS05].

Proof. Let A be any active adversary capable of corrupting a constant κ ∈ [0, 1) fraction

of the parties. Since A controls the corrupted parties, she can know the checkpoint round,

location, and nonce of any onion created between a corrupted party and any other party.

Thus, we assume that any onion created between a corrupted party and any other party can

be replaced by A without the replacement being detected by any honest party. Suppose

that A has help from a dark angel who marks every onion created between a corrupted

party and any other party, so that A can replace all marked onions without detection.

Even so, without eliminating some unmarked onions, some positive constant fraction of the

checkpoint onions would survive (Chernoff bounds).

Let an onion created between two honest parties be called unmarked, and consider only

unmarked onions. For any onion with a checkpoint in the future, the probability that

the adversary A can drop the onion without any honest party detecting that the onion was
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dropped is negligibly small; A cannot produce the correct checkpoint nonce with sufficiently

high probability.

At any round r, A is unable to distinguish between any two unmarked onions. Let

u denote the total number of unmarked onions. Again relying on Chernoff bounds, with

overwhelming probability

u ≥ (1− d1)(1− κ)2αRN log1+ε λ

for any 0 < d1 < d.

Let vr denote the cumulative number of unmarked onions that have been eliminated by

A so far at round r. If an honest party i does not detect more than

(1− d2)cu

RN
≥ (1− d1)(1− d2)c(1− κ)2α log1+ε λ = (1− d)c(1− κ)2α log1+ε λ

missing onions, then with overwhelming probability, vr−1 ≤ cu [HS05]. It follows that at

least 1− c of all checkpoint onions created between honest parties survive until round r−1,

with overwhelming probability.

We now prove that Πa is differentially anonymous from the active adversary.

Theorem 3. In Πa: If F is a random function, N ≥ 3
1−κ , and t = c(1−d)(1−κ)2α log1+ε λ

for some constants c, d ∈ (0, 1), then for

αβ ≥ −36(1 + ε/2)2 ln (δ/4)

(1− c)(1− κ)2ε2
,

Πa is (ε, δ)-DA from the active adversary who corrupts a constant fraction κ ∈ [0, 1) of the

parties.

Proof. The proof is by cases.

Case 1: All honest parties abort within the first half of the protocol run. With over-

whelming probability, no onion created by an honest party will be delivered to its final

destination (Chernoff bounds), and so the adversary doesn’t learn anything.

Case 2: Some honest party doesn’t abort within the first half of the protocol run. Let A
be any adversary that non-adaptively corrupts a constant κ ∈ [0, 1) of the parties. Suppose

that for every onion that survive the first half of the protocol run, a dark angel provides

A with the second half of the onion’s routing path. Further, suppose that no other onions

are dropped in the second half of the protocol run. (If more onions are dropped, then Πa is

secure from the post-processing theorem for differential privacy [DR14, Proposition 2.1].)
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For any two neighboring inputs σ0 and σ1, the only difference in the adversary’s views,

VΠa,A(σ0) and VΠa,A(σ1), is the routing of a single onion O. If there is an honest party

who does not abort within the first half of the protocol run, then from Lemma 1, some

constant fraction of the checkpoint onions created by the honest parties survive the first

half of the protocol run with overwhelming probability. So, from Theorem 2, the onions are

no longer linked to their senders by the end of the first half of the protocol run. Thus, the

only information that A could find useful is the volume of onions sent out by the sender ps

of the extra onion O and the volume of onions received by the receiver pr of O.

Let X denote the number of checkpoint onions created by ps. For every (k, r) ∈ [R] ×
[N ], an honest sender ps creates a checkpoint onion with probability α log1+ε λ

N ; so X ∼
Binomial(H, p), where H = LN , and p = α log1+ε λ

N .

Let Y ∼ Binomial(G, q) be another binomial random variable with parameters G =
R(1−κ)2N2

3 and q = (1−c)α log1+ε λ
N2 . For N ≥ 3

1−κ and sufficiently small d > 0, G ≤ (1 −
d)L

(
(1−κ)N−1

2

)
; thus, with overwhelming probability, Y is less than the number of checkpoint

onions created between honest non-ps parties and received by pr in the final round (Chernoff

bounds).

Let O def
= N× N be the sample space for the multivariate random variable (X,Y ).

LetO1 be the event that |X−E[X]| ≤ d′E[X], and |Y −E[Y ]| ≤ d′E[Y ], where d′ = ε/2
1+ε/2 ,

E[X] = Hp is the expected value of X, and E[Y ] = Gq is the expected value of Y ; and let

Ō1 be the complement of O1.

For every (x, y) ∈ O1, we can show that

max

(
Pr[(X,Y ) = (x, y)]

Pr[(X,Y ) = (x+ 1, y + 1)]
,
Pr[(X,Y ) = (x+ 1, y + 1)]

Pr[(X,Y ) = (x, y)]

)
≤ eε. (2.2)

We can also show that the probability of the tail event Ō1 occurring is negligible in λ and

at most δ when αβ ≥ −36(1+ε/2)2 ln(δ/4)
(1−c)(1−κ)2ε2

. (See the full version of this paper.)

Any event E can be decomposed into two subsets E1 and E2, such that (1) E = E1 ∪ E2,

(2) E1 ⊆ O1, and (3) E2 ⊆ Ō1. It follows that, for every event E ,

Pr[(X,Y ) ∈ E ] ≤ eε · Pr[(X + 1, Y + 1) ∈ E ] + δ, and (2.3)

Pr[(X + 1, Y + 1) ∈ E ] ≤ eε · Pr[(X,Y ) ∈ E ] + δ. (2.4)

The views VΠa,A(σ0) and VΠa,A(σ1) are the same except that O exists in one of the

views but not in the other. Thus, (2.3) and (2.4) suffice to show that for any set V of views

and for any b ∈ {0, 1}, Pr
[
VΠa,A(σb) ∈ V

]
≤ eε · Pr

[
VΠa,A(σb̄) ∈ V]

]
+ δ, where b̄ = b + 1

mod 2.



27

2.7 Concluding remarks

We presented practical (i.e., efficient, fault-tolerant and scalable) OR protocols that prov-

ably secure under standard adversary models. Our main construction, Πa, is secure against

an active adversary in control of a constant fraction κ ∈ [0, 1) of the parties and with a

global view of all traffic on all links in the network. It relies on a new technique for detecting

when too many of the protocol’s onions have been dropped and possibly replaced.

Before this work, the only known (load-balanced) way of guaranteeing the mixing of

message packets was by routing them through a random permutation network (such as a

butterfly network) in which every node behaves honestly [TGL+17,KCDF17].

In this chapter, we proved that a simple onion routing protocol, Πp, can be anonymous

from the passive adversary when the average server load (per server per round) and the

round complexity are both polylogarithmic in the security parameter. Importantly, Πp

provides provable guarantees without requiring a rigid overlay network or honest behavior

from every node in the network. Moreover, recent new work has since proved it to be

asymptotically optimal in onion cost [Chr20].

However, Πp is not secure from the active adversary. With reasonable probability, the

active adversary can target Anna (a sender) by dropping her onion upfront. In such a case,

the adversary can learn the recipient of Anna’s message by observing who doesn’t receive

an onion at the last round. In the next chapter, we will construct an OR protocol Π./ that

achieves anonymity from the active adversary by building on the results from this chapter.



Chapter 3

Tight Bounds for OR Protocols

3.1 Overview and related work

In recent years, there has been progress towards provably secure onion routing protocols.

However, the protocols proposed so far in the literature guarantee only differential privacy

or k-anonymity rather than anonymity [vdHLZZ15, TGL+17, KCDF17, ALU18] or are not

fault-tolerant [vdHLZZ15,TGL+17,KCDF17].

3.1.1 Our contributions

We initiate a rigorous theoretical study of onion routing by providing new definitions and

both lower and upper bounds.

1. We focus on a natural game-based definition of anonymity (Definition 10), where an

adversary cannot distinguish the scenario in which Anna sends a message to Roberto

while Carol sends one to David from one in which Anna’s message goes to David

while Carol’s goes to Roberto. We relate it to two new concepts: equalizing (i.e.,

whether or not each participant received a message, and if so, how many messages,

is independent of the input to the protocol, Definition 11) and mixing (i.e., it is

impossible to tell where an onion a recipient got at the end of the protocol originated

from, Definition 12). First, we show that, in order to provide anonymity, an onion

routing protocol must equalize (Theorem 6). This insight allows us to show our lower

bound. Second, we show that an onion routing protocol that both equalizes and mixes

provides anonymity; this is a key insight that guides the design and analysis of our

protocol. Both the lower bound and the protocol we provide are for the simple input-

output (simple I/O) setting in which each participant desires to send a fixed-length

28
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message to a unique interlocutor.

2. We give a lower bound (Theorem 7): if an onion routing protocol Π over a point-to-

point communication network is both fault-tolerant and anonymous in the presence

of an active adversary controlling a constant κ fraction of parties, then every party

in Π must transmit more than a logarithmic (in the security parameter) number of

onions.

3. We also give a (near) matching upper bound (Theorem 8): we provide an onion routing

protocol that provides anonymity against any fraction κ < 1
2 of actively corrupted

parties, in which honest participants transmit γ1 logN log3+γ2 λ onions, where N is

the number of participants, λ is the security parameter, and increasing γ1 and γ2

increases the rate at which the maximum distance in the adversarial views for any

two inputs shrinks. This is the first protocol that is simultaneously anonymous and

practical (fault-tolerant, distributed and with low communication complexity). For

the construction, we introduce a new technique of merging onions.

Merging onions The chief stumbling block in achieving anonymity has been the fact

that an active adversary who controls a fraction of the participants can attempt to isolate

an honest party Anna by simply dropping all of the messages/onions received directly from

Anna. In a fault-tolerant network protocol, the remaining participants will still be able to

get their messages through to their destinations. An adversary observing who did and did

not receive a message will be able to infer who Anna’s intended recipient had been.

To resolve this issue, we introduce a new type of onions, called merging onions: a

set of merging onions regularizes the number of onions that remain in the system. If

released simultaneously, these onions initially move independently from one another and

then gradually come to coordinate their movements. When two onions become coordinated,

the onions are “merged”. This is accomplished by simply dropping one of the two onions.

(See Algorithm 2 for details on how to construct merging onions.)

Suppose that Anna embeds her message for Roberto into each onion in a set of merging

onions. If the adversary drops many of Anna’s onions upfront, then only a few pairs of

Anna’s onions will merge later on. In this way, Roberto can still receive the same number

of messages as he would in the alternative setting where Anna’s recipient is Carol instead.
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3.1.2 Related work

On definitions There is a diversity of definitions of anonymous channels that have been

considered in the literature [BKM+13,BFTS04,CPP08,DRS04,AAC+11]. We consider one

that is as strong and natural as possible: the adversary has a complete view of the network

and actively controls a constant fraction of the participants; anonymity means that the

adversary cannot distinguish two input configurations of its own choosing (but we limit the

possibilities to simple I/O, where each participant desires to send a fixed-length message to a

unique interlocutor). Backes et al. [BKM+13] assume an adversary with only a partial view

of the network. Their notion of anonymity also deviates from standard indistinguishability

in that most of the input is selected randomly. Older definitions based on probability and

information theory [BFTS04, CPP08, DRS04, AAC+11] assume that the input is random.

Encryption schemes that are appropriate for onion routing are known [CL05,BGKM12].

On lower bounds The only prior negative result for onion routing1 is the Trilemma

theorem due to Das et al. [DMMK18], which states that a protocol that realizes anonymous

channels has to include Ω(N ) transmissions total (i.e., ω (1) per party). In contrast, our

lower bound is much tighter; it states that ω (N log λ) communication is required, where

additionally λ is the security parameter. To be fair, the Trilemma theorem already applies

in the passive adversary setting, whereas our lower bound is for the active adversary setting

only.

On protocols Achieving anonymous channels that would satisfy our definition using

heavier cryptographic machinery has been considered. One of the earliest examples is

Chaum’s dining cryptographer’s protocol [Cha88a]. Rackoff and Simon [RS93] use multi-

party computation (MPC) [GMW87] for providing security from active adversaries. Other

cryptographic tools used in constructing anonymity protocols include oblivious RAM

(ORAM) and private information retrieval (PIR) [CB95,CBM15].

Other known onion routing protocols are either not anonymous or not fault-tolerant.

Vuvuzela [vdHLZZ15], Stadium [TGL+17], Atom2 (variant #2) [KCDF17] and Πa [ALU18]

were not shown to be anonymous. In fact, using Theorem 6, we can see that they cannot

be anonymous since these protocols do not equalize. In Vuvuzela, in Stadium and in Πa,

1The Trilemma theorem applies to a category of communications protocols that can be modeled by
pebbling in a petri-net [Jen13] and shares similar abstract traits with onion routing.

2Technically, Atom is not an onion routing protocol. However, each message packet in Atom is layered
encryption object like an onion.
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adding a random (polynomially-bounded) number of dummy onions can provide differential

privacy but not anonymity. In Atom #2, the adversary can drop an honest message packet

upfront and know that any message received in the end was not sent by the sender of the

dropped packet. Vuvuzela, Stadium and Atom (variant #1) [KCDF17] provide anonymity

from the active adversary by ensuring that when the adversary drops a single message

packet, all parties abort [vdHLZZ15, TGL+17, KCDF17]. Aborting the run from a single

lost message packet is highly impractical for use in a real system. Moreover, detecting a

single lost message packet can be labor-intensive, e.g., relying on a combination of local

broadcasts and verifiable shuffling [TGL+17,KCDF17]. Like the results in this paper, these

results (Vuvuzela [vdHLZZ15], Stadium [TGL+17], Atom [KCDF17] and Πa [ALU18]) are

also for the simple I/O setting in the synchronous communication model.

In contrast to all of these, our protocol Π./ is the first to be simultaneously anonymous

and practical (fault-tolerant, distributed and with low communication complexity). Impor-

tantly, it is also the first protocol to achieve anonymity from the corrupted recipient. See

Table 3.1.

Protocol Server load # of rounds Fault tolerant? Security

Vuvuzela [vdHLZZ15] N n no diff. privacy

Stadium [TGL+17] Θ
(
N
|G|

)
Θ(|G|) no diff. privacy

Atom [KCDF17] Θ
(
N |G|
n

)
Θ(|G|) #1: no anonymity

#2: yes k-anonymity
Πa [ALU18] polylog(λ) polylog(λ) yes diff. privacy
Π./ (this work) polylog(λ) logNpolylog(λ) yes anonymity

Table 3.1: A comparison of properties of provably secure onion routing (and similar) pro-
tocols. Stadium [TGL+17] and Atom [KCDF17] both rely on groups of servers functioning
as nodes in a random permutation network. In the table entries: N is the number of par-
ticipants; n is the number of servers; and |G| is the size of a group of servers. In general,
we want n and |G| to be at least polylog(λ) to ensure that at least one server in each group
is honest.

3.2 Preliminaries and modeling the problem

The notation, primitive (i.e., secure onion encryption scheme) and problem setting intro-

duced in Sections 2.2 and 2.3 also pertain to this chapter.



32

3.2.1 Martingales and the Azuma-Hoeffding bound

The definition of a martingale and the Azuma-Hoeffding inequality [MU05, Theorem 12.4]

are standard notions but provided below for convenience.

Definition 9 (Martingale [MU05, Definition 12.1]). A sequence of random variables

Z0, Z1, . . . is a martingale if for all i ≥ 0, the following conditions are satisfied:

1. E[|Zi| ] <∞, and

2. E[Zi+1|Z0, . . . , Zi ] = Zi.

Theorem 4 (Azuma-Hoeffding inequality [MU05, Theorem 12.4]). Let the sequence of

random variables X0, X1, . . . be a martingale, where for every i > 0, |Xi − Xi−1| ≤ ci.

Then for any j > 0 and λ > 0, we have that

Pr[|Xj −X0| ≥ λ ] ≤ e
− λ2

2
∑j
i=1

ci .

See Mitzenmacher and Upfal’s book [MU05, Theorem 12.4] for the proof.

3.3 Anonymity, equalizing and mixing

In this section, we provide game-based definitions. Our definition of anonymity is essen-

tially standard indistinguishability, but we also introduce two related definitions: equalizing

(Definition 11) and mixing (Definition 12).

3.3.1 Anonymity

The anonymity game AnonymityGame(1λ,Π,A,Σ) is parametrized by the security parameter

1λ, a protocol Π, an adversary A, and a set Σ of input vectors.

The adversary A chooses a subset Bad ⊆ [N ] of the parties to corrupt and also chooses

the keys for these parties. Let pk(Bad) be a shorthand for the corrupted parties’ pub-

lic keys. A chooses two input vectors σ0, σ1 ∈ Σ such that σ0 ≡Bad σ1 and sends

(Bad, pk(Bad), σ0, σ1) to the challenger C.
For each honest party in [N ] \Bad, C generates a key pair for the party; the public keys

pk([N ] \ Bad) of the honest parties are sent to A.

The challenger C chooses a random bit b←$ {0, 1} and interacts with A in an execution

of protocol Π on input σb with C acting as the honest parties adhering to the protocol and

A controlling the corrupted parties.
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At the end of the execution, A computes a guess b′ for b from its view VΠ,A,Bad(σb) and

wins the anonymity game if b′ = b. See Figure 3.1.

AnonymityGame(1λ,Π,A,Σ)

A C
pick Bad ⊆ [N ]

pick σ0, σ1 ∈ Σ s.t. σ0 ≡Bad σ
1

Bad, pk(Bad), σ0, σ1

pk([N ] \ Bad)

sample b←$ {0, 1}

. . . . . . . . . . . . . . . . interact in run of protocol Π on input σb . . . . . . . . . . . . . . . .

guess and output b′

Figure 3.1: Schematic of the anonymity game.

The standard notion of anonymity is

Definition 10 (Anonymity). A protocol Π(1λ, pp, states, $, σ) is anonymous from the ad-

versary class A w.r.t. the input set Σ if every adversary A ∈ A wins the anonymity game

AnonymityGame(1λ,Π,A,Σ) with only negligible advantage, i.e.,∣∣∣∣Pr
[
A wins AnonymityGame(1λ,Π,A,Σ)

]
− 1

2

∣∣∣∣ = negl(λ) .

The protocol is computationally (resp. statistically) anonymous if the adversaries in A
are computationally bounded (resp. unbounded).

3.3.2 Equalizing

We introduce a new definition, called equalizing, which is closely related to anonymity. This

is a useful definition to have because in many cases, as we shall see in Theorem 6, equalizing

and mixing (defined next) implies anonymity, and proving that a protocol satisfies equalizing

and mixing separately, is often easier than proving that the protocol is anonymous without

this breakdown.

Equalizing is defined with respect to the equalizing game (below), in which the distin-

guisher attempts to determine whether the setting is σ0 or σ1 from just the sizes of the

parties’ outputs (and the description of the adversary and σ0 and σ1). The equalizing game
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EqualizingGame(1λ,Π,A,D,Σ) is parametrized by the security parameter 1λ, protocol Π,

an adversary A, a distinguisher D and a set Σ of input vectors.

The game starts exactly like the anonymity game: The adversary A chooses a subset

Bad ⊆ [N ] of the parties to corrupt and also chooses the keys for these parties. Let pk(Bad)

be a shorthand for the corrupted parties’ public keys. A chooses two input vectors σ0, σ1 ∈ Σ

such that σ0 ≡Bad σ
1 and sends (Bad, pk(Bad), σ0, σ1) to the challenger C.

For each honest party in [N ] \Bad, C generates a key pair for the party; the public keys

pk([N ] \ Bad) of the honest parties are sent to A.

The challenger C chooses a random bit b←$ {0, 1} and interacts with A in an execution

of protocol Π on input σb with C acting as the honest parties adhering to the protocol and

A controlling the corrupted parties.

At the end of the execution, the challenger C determines the size vi of the output of

each party i ∈ [N ], and sends the statistics v = v1, v2, . . . , vN to the distinguisher D, along

with the description Desc(A) of the adversary and the adversary’s choices σ0 and σ1 for the

input to the protocol. (Desc(A) is the program encoding of the UTM A as understood by

a state function; it does not include the randomness of the run.)

The distinguisher D computes a guess b′ for b from Desc(A), σ0, σ1 and v and wins the

game if b′ = b. See Figure 3.2.

EqualizingGame(1λ,Π,A,D,Σ)

A C D

AnonymityGame

Desc(A), σ0, σ1, v

guess and output b′

Figure 3.2: Schematic of the equalizing game.

The definition for equalizing is as follows.

Definition 11 (Equalizing). A protocol Π(1λ, pp, states, $, σ) equalizes for the adversary

class A w.r.t. the input set Σ if for every adversary A ∈ A and for every distinguisher D,

D wins EqualizingGame(1λ,Π,A,D,Σ) with negligible advantage, i.e.,∣∣∣∣Pr
[
D wins EqualizingGame(1λ,Π,A,D,Σ)

]
− 1

2

∣∣∣∣ = negl(λ) .
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The protocol computationally (resp. statistically) equalizes if the distinguisher is compu-

tationally bounded (resp. unbounded).

3.3.3 Mixing

Our definition of mixing captures the idea that a protocol doesn’t mix if the adversary can

trace an honest message to its origin without being informed whether his challenge is valid

or not.

Let m̃ ∈ M be the special challenge message for the mixing game. Let an onion be a

“valid challenge onion” if peeling the outermost layer produces the challenge message m̃.

At a high level, the game goes like this: The adversary A picks a set Bad of corrupted

parties, the keys pk(Bad) for these parties and a set S of challenge senders and specifies the

inputs for all non-challenge parties. (The adversary aims to trace a valid challenge onion

back to a challenge sender.) After interacting in a run of protocol Π, A chooses two onions

o0 and o1. The challenger C samples a sender s←$ S from S. Let s0 be the sender of o0,

and let s1 be the sender of o1. If A chooses valid challenge onions, and {s} ⊆ {s0, s1} ⊆ S,

then C sets b to be the bit b̃ such that s = sb̃. Otherwise, C sets b←$ {0, 1} to be a random

bit. After setting b, C sends the identity s of the randomly selected sender to A. A wins

the game he can guess b.

Note that the adversary can lose even in the case where he knows the sender of a valid

challenge onion. This can happen if the challenger picks a sender who is not the sender of

either challenge onion o0 or o1. At first glance, this may seem odd. However, the point is

that if the adversary can trace a valid challenge onion to its origin, then the adversary still

wins with nonnegligible advantage.

We now define the game more formally. Let OE = (Gen,FormOnion,ProcOnion) be a

secure onion encryption scheme. For the statistical notion of mixing, OE is an ideal onion

encryption scheme.

Mixing game The mixing game MixingGame(1λ,Π,A,Σ,Type) is parametrized by the

security parameter 1λ, an onion routing protocol Π, an adversary A, a set Σ of input

vectors and a type Type. Type can be either “all” or “bad”. When Type is set to all, the

adversary aims to show that he knows the sender of a receiver. When Type is set to bad,

the adversary aims to show that he knows the sender of a corrupted receiver.

The adversary A chooses a subset Bad ⊆ [N ] of the parties to corrupt and also chooses

the keys for these parties. Let pk(Bad) be a shorthand for the corrupted parties’ public
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keys. A also identifies a set S ⊆ [N ] \Bad of honest challenge senders and a set R ⊆ [N ] of

challenge receivers s.t. |R| = |S|.
For any sequence τ̃ = (τ̃1, τ̃2, . . . , τ̃N ) of sets of message-receiver pairs and for any bijec-

tion f from a set A ⊆ [N ] of parties to a set B ⊆ [N ] of parties, let τ̃ t f = (τ1, τ2, . . . , τN )

where τi = τ̃i ∪ {(m̃, f(i))} for every i ∈ A and τi = τ̃i for every i 6∈ A.

Let a sequence σ̃ = (σ̃1, σ̃2, . . . , σ̃N ) of sets of message-receiver pairs be a “partial input

vector for senders S and receivers R” if for any bijection sendsto : S 7→ R mapping from S

to R, the sequence σ = σ̃ t sendsto is in the input set Σ.

Finally, for a partial input vector σ̃ for S and R, let ΣS,R
σ̃ be the set of all input vectors

σ = σ̃ t sendsto where sendsto is a bijection from S to R.

In addition to Bad, pk(Bad), S and R, A also picks the partial input vector σ̃ and sends

(Bad, pk(Bad),S,R, σ̃) to the challenger C.
For each honest party in [N ] \ Bad, C generates a key pair for the party by running the

onion encryption scheme’s key generating algorithm Gen; the public keys pk([N ] \ Bad) of

the honest parties are sent to the adversary A.

The challenger C chooses a random input vector σ←$ ΣS,R
σ̃ (i.e., picks destinations for

the challenge messages) and interacts with A in an execution of protocol Π on input σ with

C acting as the honest parties adhering to the protocol and A controlling the corrupted

parties. (Whenever the protocol Π specifies for an onion to be formed or processed, C
runs the onion encryption scheme’s onion-forming algorithm FormOnion or onion-processing

algorithm ProcOnion.)

If Type = all, the set R of receivers is set to all parties [N ]. Otherwise (if Type = bad),

R is set to all corrupted parties Bad.

Let OR be the set of honest onions received by the parties in R∩ R.

At the end of the execution, A chooses two challenge onions o0 and o1 from OR and

sends (o0, o1) to the challenger. Let s0 be the sender of o0, and let s1 be the sender of o1.

The challenger C samples a random bit b←$ {0, 1} and a random challenge sender s←$ S.

If A chose valid challenge onions, and {s} ⊆ {s0, s1} ⊆ S, then C sets b to be the bit b̃ such

that s = sb̃. Otherwise, C sets b←$ {0, 1} to be a random bit. After setting b, C sends the

identity s of the randomly selected sender to A.

The adversary A computes a guess b′ for b from its view VΠ,A,Bad(σb) and the identity

s of the random sender and wins if b′ = b. See Figure 3.3.

We now define mixing and mixing for corrupted receivers.

Definition 12 (Mixing). An onion routing protocol Π(1λ, pp, states, $, σ) mixes for
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MixingGame(1λ,Π,A,Σ,Type)

A C
pick Bad ⊆ [N ]

pick S ⊆ [N ] \ Bad

pick σ̃

Bad, pk(Bad),S,R, σ̃

pk([N ] \ Bad)

sample σ←$ ΣS,R
σ̃

. . . . . . . . . . . . . interact in run of protocol Π on input σ . . . . . . . . . . . . .

pick o0, o1 ∈ OR

o0, o1

sample s←$ S

if o0 and o1 are valid

if {s} ⊆ {s0, s1} ⊆ S

set b s.t. s = sb

else

sample b←$ {0, 1}

s

guess and output b′

Figure 3.3: Schematic of the mixing game.

the adversary class A w.r.t. the input set Σ if every adversary A ∈ A wins

MixingGame(1λ,Π,A,Σ, all) with negligible advantage, i.e.,∣∣∣∣Pr
[
A wins MixingGame(1λ,Π,A,Σ, all)

]
− 1

2

∣∣∣∣ = negl(λ) .

The protocol mixes for corrupted receivers if every adversary A wins the mixing game

with negligible advantage when Type is set to “bad” instead of “all”.

The protocol computationally (resp. statistically) mixes if the adversaries in A are com-

putationally bounded (resp. unbounded).

3.3.4 Relating equalizing and mixing to anonymity

Equalizing and mixing are related to anonymity in the following ways:
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Theorem 5. If the onion routing protocol Π is anonymous from the adversary class Aκ
w.r.t. the input set Σ (Definition 10) then Π equalizes for Aκ w.r.t. Σ (Definition 11).

This is clearly true since the numbers of messages received by the parties are included

in the adversarial view. In the next section, we will use Theorem 5 to prove our com-

plexity lower bound (Theorem 7): anonymity requires a superlogarithmic (in the security

parameter) onion transmissions per party.

Let an OR protocol be indifferent if the destination and nonce of every honest non-

message-delivering onion layer are independent of the input.

Theorem 6. If the indifferent OR protocol Π equalizes and mixes for the adversary class

Aκ w.r.t. the input set Σ (Definitions 11 and 12), then Π is anonymous for Aκ w.r.t. Σ

(Definition 10).

We omit the proof of Thereoms 6 for brevity, but it can be found in Supplementary

materials. In §3.6, we will use Theorem 6 to prove our complexity upper bound (Theo-

rem 8): anonymity is achievable using a polylogarithmic (in the security parameter) onion

transmissions per party.

3.3.5 Remarks

On the definition of anonymity While we implicitly define anonymity for the set [N ]

of participants, at times, it may be desirable to make the set of participants a parameter

of anonymity. After all, parties are sometimes offline or online but not sending anything!

Fortunately, extending the definition in this way is straightforward.

In the anonymity game, the adversary picks two inputs to the protocol that are equiva-

lent to each other for the adversary’s choice Bad of corrupted parties. This is different from

the standard “leakage-free” notion of indistinguishability in which the adversary can pick

any two inputs. The difference is due to the adversary’s ability to look into the corrupted

parties. In doing so, the adversary learns the inputs and outputs of the corrupted parties,

and so, part of the input to the protocol necessarily leaks. Additionally, the adversary

obtains the numbers of honest messages received by the honest parties as part of his view;

(see Outputs and views).

Suppose that the protocol guarantees the delivery of every honest message. In this

case, the adversary receives all honest messages that were instructed to be sent to cor-

rupted parties. This leakage is exactly captured by constraining the adversary’s choice for

the challenge inputs to an equivalence class defined by Bad. Anonymity means that no

information beyond the equivalence class is leaked to the adversary.
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Does anonymity imply mixing? In general it does not. Consider the simple protocol in

which everyone sends an onion to everyone; for all but the intended recipient the onion is a

dummy one. This protocol is anonymous for the network adversary (i.e., without corrupted

parties) even though it does not mix.

In a setting where the adversary can corrupt some parties and, therefore, serve as the

recipient of some of the messages from honest senders, we can go about creating a reduction.

Our reduction will use an adversary that breaks mixing in order to break anonymity. This

reduction needs to know the corrupted parties’ secret keys in order to play the challenger

in the mixing game. So it will go through in a PKI setting where each published public key

comes with a zero-knowledge proof of knowledge of the corresponding secret key.

3.4 A lower bound for anonymous OR protocols

Simple I/O setting Let us consider the simplified scenario where everyone sends exactly

one message of the same length, and everyone receives exactly one message. Let SimpleIO

be the set of all inputs of the form,

σ = ({(m1, π(1))}, {(m2, π(2))}, . . . , {(mN , π(N))}),

where m1,m2, . . . ,mN are messages from the message space M, and π : [N ] 7→ [N ] is a

permutation function over the domain [N ]. We refer to the setting where the input vector σ

is constrained to SimpleIO as the simple I/O setting.

For the remainder of the paper, we will be operating in the simple I/O setting. We will

generally leave Σ unspecified; by context, we mean Σ = SimpleIO.

3.4.1 Anonymity implies polylog onion cost

We prove that, in the simple I/O setting, an OR protocol can be anonymous from the active

adversary only if the average number of onions transmitted per party is superlogarithmic

in the security parameter.

To prove the lower bound, we make use of the following observation (Lemma 2, below):

If an OR protocol Π is too efficient, then there exist many settings in which there exist

parties i and k such that i is neither a sender nor an intermediary node for recipient k.

In a run of OR protocol Π interacting with adversary A on input σ:

• For an honest party i, let #onionsΠ,A
i→j→k(σ) denote the number of onions created by

party i and received by party j that will reach party k (if allowed to continue to k).
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• For honest parties i and j 6= i, “i cannot affect j’s recipient’ ’ if

E
[
#onionsΠ,A

j→i→R(j)(σ)
]
≤ 1

2
, (3.1)

where R(j) is the recipient for j.

Lemma 2. If the onion cost of the OR protocol Π interacting with the adversary A is

sublinear in the number N of parties, then there exists a set Inputs ⊆ SimpleIO, |Inputs| =

Θ(|SimpleIO|) s.t. for every σ ∈ Inputs, there exists a set Sendersσ ⊆ [N ], |Sendersσ| =

Θ(N ) s.t. for every party i ∈ Sendersσ,

i. E$

[
outΠ,A

i (σ)
]

= O(1) · OCΠ,A, and

ii. there exists a party jσ,i such that i cannot affect jσ,i’s recipient (as defined in (3.1)).

Proof. From Markov’s inequality,

Prσ

[
Ei,$

[
outΠ,A

i (σ)
]
≥ 2OCΠ,A

]
≤ 1

2
.

Thus, there exists a set Inputs, |Inputs| = Θ(|SimpleIO|) s.t. for every σ ∈ Inputs,

Ei,$
[
outΠ,A

i (σ)
]
< 2OCΠ,A. Using Markov’s inequality again, we have, for all σ ∈ Inputs,

Pri

[
E$

[
outΠ,A

i (σ)
]
≥ 2Ei,$

[
outΠ,A

i (σ)
]]
≤ 1

2
.

That is, there exists a set Sendersσ ⊆ [N ], |Sendersσ| = N
2 s.t. for sufficiently large N ,

E$

[
outΠ,A

i (σ)
]
< 4OCΠ,A <

N

2
, ∀i ∈ Sendersσ. (3.2)

This shows that (i) is satisfied.

For every i ∈ Sendersσ, there are at most N − 1 distinct party jσ,i 6= i, such that

E
[
#onionsΠ,A

jσ,i→i→R(jσ,i)
(σ)
]
≥ 1

2
,

where R(jσ,i) is the recipient of jσ,i in σ. If this weren’t the case, then the expected number

of onions that party i transmits would be at least N
2 , contradicting (3.2). Hence, we also

satisfy (ii).

A communications protocol can be both anonymous and arbitrarily efficient if it does

not have to be functional. For example, a protocol in which nothing is ever transmitted

achieves anonymity vacuously.

Our lower bound holds for protocols that are minimally functional for the active adver-

sary. We call this notion robustness. Definition: Let an OR protocol be weakly robust
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w.r.t. an input set Σ if for every input σ ∈ Σ, for every active adversary A and for every

honest party i, A doesn’t drop any onion formed by i implies that all of i’s messages are

delivered to their respective recipients.

Theorem 7. For any constant κ > 0, if the OR protocol Π(1λ, pp, states, $, σ) is weakly

robust and (computationally) anonymous from Aκ then the onion cost of Π interacting with

Aκ is superlogarithmic in the security parameter λ.

For the proof, we show that if the protocol is too efficient, then the adversary can

“isolate” an honest party by blocking all network traffic originating from or passing through

the party.

Proof. For a party ` ∈ [N ], let A` ∈ Aκ be the adversary who corrupts a uniformly random

set of bκNc parties and, additionally, drops every onion that ` transmits directly to a

corrupted party. Otherwise, A` follows the protocol.

Let A be the adversary that chooses a random party `←$ [N ] to target and then follows

A`’s code.

Assume for the sake of reaching a contradiction that Π is an OR protocol that is weakly

robust and anonymous from Aκ, and the onion cost of Π interacting with any A is O(log λ).

W.l.o.g., assume O(log λ) = o(N ). We assume this to be the case, since otherwise, there

are known solutions with Θ
(
N2
)

communication complexity, e.g., using general purpose

MPC.

From Lemma 2, there exists an input σ0 ∈ SimpleIO, such that there exists a set

Sendersσ0 ⊆ [N ], |Sendersσ0 | = Θ(N ) s.t. for every party i ∈ Sendersσ0 ,

i. E$

[
outΠ,A

i (σ0)
]

= O(log λ), and

ii. there exists a party jσ0,i such that i cannot affect jσ0,i’s recipient.

We will now prove the following: In the event (with nonnegligible probability) that A
picks a party i ∈ Sendersσ0 to target, A can distinguish the setting on input σ0 from the

setting on input σ1 = swap(σ0, i, jσ0,i) which is the same as σ0 except that the inputs for

parties i and jσ0,i are swapped.

Let R be the recipient of jσ,i in σ0 (and also the recipient of i in σ1), and let vbR denote

the number of messages that R receives in a protocol run of Π interacting with adversary

A on input σb.

Let isolated denote the event that A manages to drop every onion that i transmits.
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On input σ1: Conditioned on isolated, R never receives his message, i.e.,

Pr
[
v1
R|isolated = 0

]
= 1. (3.3)

On input σ0: Let unaffectable denote the event that #onionsΠ,A
jσ0,i→i→R(σ0) = 0. From

(ii), Pr[unaffectable ] ≤ 1
2 . Combined with weak robustness, it follows that R receives his

message with nonnegligible probability, i.e.,

Pr
[
v0
R|isolated > 0

]
= nonnegl(λ). (3.4)

If isolated occurs with nonnegligible probability on input σ0: Then, from combining

(3.3) and (3.4), Π doesn’t equalize; and from Theorem 5, Π is not anonymous.

To complete our proof, it suffices to prove that the probability of isolated is nonnegligible:

From (i), [outΠ,A
i (σ0)] = O(log λ). From Markov’s inequality, there exists a constant α > 0,

such that outΠ,A
i (σ0) ≤ α log λ with nonnegligible probability.

Let droppable denote the event that outΠ,A
i (σ0) ≤ α log λ, and let isolated|droppable denote

isolated conditioned on droppable.

The probability of isolated|droppable is smallest when the location of each of the (at most)

α log λ onions that i transmits goes to a different location. This probability is bounded by

the probability p that a random (α log λ)-size sample from a set of N balls, κN of them

which are green, are all green. When α log λ ≤
√
N ,

p =

(
κN

α log λ

)(
N

α log λ

) = (1 + o(1))
(κN)α log λ

(α log λ)!
· (1 + o(1))

(α log λ)!

Nα log λ
= Θ

(
κα log λ

)
,

which is nonnegligible in λ. Thus, Pr [isolated ∧ droppable] = Pr [droppable] ·
Pr[isolated|droppable ] is nonnegligible in λ. It follows that isolated occurs with nonnegligible

probability.

3.4.2 Remarks

On the lower bound Definition: Let an OR protocol be robust w.r.t. an input set Σ if

for every input σ ∈ Σ and for every active adversaryA, A drops at most a logarithmic (in the

security parameter) number of onions implies that w.o.p., all honest messages are delivered.

We can also prove the weaker result that if an OR protocol is robust and anonymous,

then its onion cost is superlogarithmic (in the security parameter). The proof is a simpler

contradiction showing that an OR protocol with logarithmic (in the security parameter)

onion cost cannot be robust (rather than anonymous).
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To prove the lower bound, we used the fact that the adversary knows the number of

messages received by each honest party in the protocol run. However, the bound holds

even when we exclude these statistics from the adversarial view. We can prove the stronger

result by using in place of Theorem 5: If an OR protocol is anonymous from adversaries

who corrupt up to κN + 1 parties, then it essentially equalizes for adversaries who corrupt

up to κN parties.

3.5 An optimally efficient, anonymous OR protocol

Recall that an OR protocol is robust w.r.t. an input set Σ if for every input σ ∈ Σ and for

every active adversary A, A drops at most a logarithmic (in the security parameter) number

of onions implies that w.o.p., all honest messages are delivered. Previously (in Theorem 7),

we showed that for an OR protocol to be robust and anonymous, the onion cost must be

superlogarithmic in the security parameter. We now claim the matching upper bound:

Theorem 8. For any constants κ < 1
2 and γ1, γ2 > 0, there exists an OR protocol that is

robust and (computationally) anonymous from Aκ with onion cost at most γ1 logN log3+γ2 λ

where N is the number of parties and λ, the security parameter.

We prove this by constructing an OR protocol Π./ (pronounced pi-butterfly) and showing

that it has the relevant properties.

We first present a stepping stone construction Π4 (pronounced pi-tree) that showcases

a new technique for equalizing; this protocol is robust and anonymous, but it is not efficient.

In §3.5.2, we extend Π4 to an (almost) optimally efficient construction Π./.

3.5.1 The stepping stone construction, Π4

We use a secure onion encryption scheme OE = (Gen,FormOnion,ProcOnion) as a primitive

building block (see §2.2 for a description of OE schemes). For every party i, let (pki, ski)←
Gen(1λ) be i’s key pair generated from running the key generating algorithm Gen. For every

pair (i, j) of parties, let ski,j be the shared key known by only i and j.3

Onion-forming phase.

During the onion-forming phase, each honest party i creates two types of onions: (1) check-

point onions and (2) merging onions. Each checkpoint onion is formed from a piece of data

3These shared keys do not need to be set up in advance; it is known that they can be generated as needed
from an existing PKI, e.g., using Diffie-Hellman.
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called a checkpoint datum. (See Checkpoint data, Checkpoint onions and Merging onions

for descriptions of these objects and how they are created.)

Every honest party generates an expected χ checkpoint data from which the party forms

the checkpoint onions. Additionally, for every message-recipient pair (m, j) in the party’s

input, the party forms a set of χ merging onions using the message m and the recipient j.

All onions are created during the onion-forming phase and released simultaneously in the

first round of the execution phase.

Checkpoint data Protocol Π./ runs in h epochs, and each epoch lasts d rounds. The

last round of each epoch is called a diagnostic round. Let the rounds of the protocols be

1, 2, . . . , hd, and so the diagnostic rounds are d, 2d, . . . , hd. Each checkpoint onion has a

checkpoint (i.e., a pseudorandom nonce) embedded in one of its diagnostic-round layers

(i.e., the layers that are meant to be processed after rounds d, 2d, . . . , hd).

A checkpoint datum (`, k, c) is a triple consisting of an index ` of a diagnostic-layer

round `d, a party k and a checkpoint c. To generate an expected χ checkpoint data, each

party i runs GenCkptData (Algorithm 1) below.

Algorithm 1: GenCkptData

1 Initiate Ckpts = ∅ to the empty set.
2 for every (`, k) ∈ [h]× [N ] do
3 Compute z = b(F (ski,k, `||0)), where F (ski,k, ·) is a PRF keyed with shared

key ski,k, and b(·) is a binary function such that the output of b(F (·, ·)) is one
with frequency χ/Nh.

4 if z = 1 then
5 Set c = F (ski,k, `||1).
6 Add the checkpoint datum (`, k, c) to the set Ckpts.

7 Return Ckpts.

Checkpoint onions Checkpoint onions are dummies carrying the empty message “⊥”

for a random recipient [ALU18] and are used for inferring how many honest onions remain

in the system.

For every checkpoint datum (`, k, c) ∈ Ckpts, party i first picks hd nodes

p1, . . . , p`d−1, p`d+1, . . . , phd, j←$ [N ] for the routing path and hd − 1 nonces

s1, . . . , s`d−1, s`d+1, . . . , shd←$S, all independently and uniformly at random, and

forms an onion o ← FormOnion(⊥, p, pk(p), s) from the empty message “⊥”, the routing

path p = (p1, . . . , p`d−1, k, p`d+1, . . . , phd, j), the public keys associated with p and the
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sequence s = (s1, . . . , s`d−1, c, s`d+1, . . . , shd) of nonces.

Merging onions Merging onions are message-bearing; a set of merging onions carry a

message m for a recipient j. The routing paths for a set of merging onions are structured

so that pairs of merging onions are designed to meet at the same location and round and

merge; in actuality, this is accomplished by simply dropping one of the two onions before

the next round.

A set of χ = 2h−1 merging onions is formed using a binary tree graph G4 with χ leaves.

To form a set of merging onions, party i assigns a random sequence of d parties and a

random sequence of d nonces to each node of G4. Each merging onion oL corresponds to

a leaf node xL; the sequence of relay nodes for oL is the concatenation of the sequences of

parties along the direct path from xL to the root of G4, and the sequence of nonces for oL

is the concatenation of the sequences of nonces along the direct path from xL to the root

of G4. See FormMergingOnions (Algorithm 2).

Algorithm 2: FormMergingOnions

1 Construct a binary tree G4 with χ = 2h−1 leaves.
2 Label the root of G4: x0.
3 for every labeled node xB with unlabeled children do

4 Label the left-child of xB: x0||B and the right-child of xB: x1||B.
5 for every node xB do
6 Assign d randomly selected parties qB = qB1 , q

B
2 . . . , qBd ←$ [N ] and d randomly

selected nonces tB = tB1 , t
B
2 , . . . , t

B
d ←$S.

7 Let xL1 , xL2 , . . . , xL2h−1 be the leaf nodes in G4; each leaf node xL corresponds to
an onion oL.

8 for each leaf node xL=b1,b2,...,bh−1 do
9 Set the sequence p of intermediary parties for oL to be the concatenation of the

sequences of parties of the nodes along the direct path from xL to the root x0,
i.e., ρ = qb1,b2,...,bh−1 ||qb2,b3,...,bh−1 || . . . ||qbh−1 .

10 Set the routing path p of the onion oL to be the concatenation of the
intermediaries ρ and the recipient j, i.e., p = ρ||j.

11 Set the sequence s of nonces for oL to be the concatenation of the sequences of
nonces of the nodes along the direct path from xL to x0, i.e.,
s = tb1,b2,...,bh−1 ||tb2,b3,...,bh−1 || . . . ||tbh−1 .

12 Form onion oL ← FormOnion(m, p, pk(p), s) by running FormOnion on the
message m, the routing path p, the public keys pk(p) corresponding to p and
the nonces s.

13 Return o1, o2, . . . , oχ.
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Execution phase After each round, each honest party merges onions with the same

nonce value. After each diagnostic round, each honest party runs a diagnostic test; (see

Diagnostic test below). Depending on the outcome of the diagnostic test, the party either

aborts (stop routing onions from other parties) or sends the (remaining) processed onions

to their next destinations in random order in the next round.

Diagnostic test By properties of secure encryption [Can01,CL05], the adversary cannot

meaningfully alter honest onions; so her choices for what to do with an honest onion are

limited to just two options: forward the onion to its next destination or drop it. Any

alteration to the onion is equivalent to dropping it altogether.

The diagnostic test ensures that the adversary cannot drop too many onions without

the honest parties noticing. After every diagnostic round `d, party i occasionally retrieves

a checkpoint from processing an onion. Party i can verify that the checkpoint is genuine

by checking it against a list of nonces that i expects to see at this point. This list contains

precisely the checkpoints that i embedded into the `d-th layers of checkpoint onions for

other parties to verify at at round `d. If i counts a sufficiently large number of genuine

checkpoints, this indicates that the adversary hasn’t dropped too many onions, and so it is

safe to proceed with the execution.

Let N be the number of parties, and let λ be the security parameter. For any

small constant ε > 0, Π4 is anonymous when χ = Ω
(
2dlog(A(logA+1))e), where A =

max(
√
N log2+ε λ, log2(1+ε) λ). See Appendix 3.6.4 in Supplementary materials for a full

analysis.

3.5.2 The main construction, Π./

We now present an extension of Π4, called Π./, that decreases the onion cost in exchange

for more rounds.

Like Π4, Π./ consists of an onion-forming phase and an execution phase. All onions

are formed during the onion-forming phase (each honest party forms χ merging onions

per message-recipient pair in her input and expected χ checkpoint onions) and released

simultaneously at the start of the execution phase. The execution phase progresses in

epochs, each epoch lasting d rounds. Π./ is essentially the same as Π4 with a mixing phase,

lasting L epochs, replacing the first epoch of Π4. We refer to the rest of the execution

phase as the merging phase.

In Π4, each party must send many (more than
√
N ·polylog(λ) where N is the number

of parties, and λ is the security parameter) onions to ensure that the party’s onions spread
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out rapidly (in a couple of rounds) across the network. In this way, the adversary cannot

drop all of an honest party’s onions without also dropping many other dummy onions and

enabling the honest parties to detect that an attack is underway.

By mixing the onions in smaller batches, it becomes easier to detect that the adversary is

dropping onions. This translates into requiring fewer onions. In Π./, we do this by restricting

the communication at each epoch of the mixing phase to butterfly network connections; see

Onion-forming phase below.

Onion-forming phase W.l.o.g., assume that the number N = 2n−1 of parties is a power

of two; and let n
def
= logN + 1.

Let G be the butterfly network such that the switching nodes at every stage are the N

parties. Let bi denote the binary representation of i − 1. For every stage τ ∈ [n] of G, we

say that the set {i, j} of parties is a “subnet at stage τ” if bi is bj with the τ -th bit flipped,

i.e., if bi = bj1 . . . b
j
τ−1b

j
τ b
j
τ+1 . . . b

j
n−1. We denote by P iτ , the subnet at τ that contains i.

Let GD be the iterated butterfly network that is D iterations of G.

To convert the algorithm in Π4 for choosing an onion’s routing path to the corresponding

algorithm in Π./, the sender first picks a random route w1, w2, . . . , wL through GD, where

L = nD is the number of epochs in the mixing phase. Next, for each wτ , the sender picks

d − 1 parties qτ1 , q
τ
2 , . . . , q

τ
d−1 such that each party is chosen independently and uniformly

at random from the subnet Pwττ ′ , where τ ′ = τ%n denotes the remainder of τ divided

by n. Then the routing path P of O is set to the concatenation of (q1||q2|| . . . ||qL) and

(pd+1, pd+2, . . . , phd+1), where for each τ , qτ = (qτ1 , q
τ
2 , . . . , q

τ
d−1, wτ ), and (p1, p2, . . . , phd+1)

is the routing path of o. See ConvertOnion (Algorithm 3).

Execution phase During the execution phase, each (unaborted) honest party processes

onions, tallies checkpoints and merges onions as needed, and either aborts the protocol or

sends the remaining processed onions to their next destinations.

Let κ < 1
2 be the upper bound on the fraction of parties that can be corrupted. For

each diagnostic round `d ∈ {d, 2d, . . . , (L+ h)d}, the party aborts the protocol run if there

are more than W
3 missing checkpoints, where W = (1− κ) χ

nD+h is the expected number of

checkpoints.

Let an “abort message” be an onion formed using the special abort message, the routing

path consisting of just the recipient, the public key of the recipient and the empty nonce.

If an honest party aborts, then for every round after, the party sends out χ abort messages

to a random sample of parties. An unaborted honest party aborts if he receives an abort
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Algorithm 3: ConvertOnion

1 Let L = nD.
2 Pick a random walk w1, w2, . . . , wL through GD. (To embed a checkpoint info

(`, k, c) into the onion, set w` to k and randomly walk backwards from w` to w1

and forwards from w` to wL.)
3 for each epoch τ ∈ [L] do
4 Pick d− 1 parties qτ1 , q

τ
2 , . . . , q

τ
d−1←$Pwττ ′ independently and uniformly at

random from Pwττ . Set qτ = qτ1 , q
τ
2 , . . . , q

τ
d−1, wτ , where τ ′ = τ%n.

5 Set q = q1||q2|| . . . ||qL.
6 Set the routing path P = q||(pd+1, pd+2, . . . , phd+1) of O to be the concatenation of
q and (pd+1, pd+2, . . . , phd+1) where p = (p1, p2, . . . , phd+1) is the routing path for o.

7 Set the subsequence t = t1, t2, . . . tLd of nonces (for the mixing phase) to be the
length-Ld all-empty-nonce vector. (To embed the checkpoint info (`, k, c), set t`d to
c and the remaining Ld− 1 nonces to the empty nonce.)

8 Set the sequence S = t||(sd+1, sd+2, . . . , shd) of nonces for O to be the
concatenation of t and (sd+1, sd+2, . . . , shd) where s = (s1, s2, . . . , shd) is the
sequence of nonces for o.

9 Form onion O using the message for o, the routing path P , the public keys pk(P )
corresponding to P , and the sequence S of nonces.

10 Return O.

message.

3.6 Proof that Π./ is anonymous

For our analysis, effectively working in Canetti’s FEnc-hybrid model [Can01], we assume

that each party has associated with it a public key generated using an ideal onion routing

scheme, and that F in Algorithm 1 is truly random; it is well understood how to relate this

to security in the standard model.

3.6.1 Proof idea

Suppose that the following claim holds:

Theorem 9. For any constants κ < 1
2 and ε1, ε2 > 0, Π./ equalizes for Aκ when χ = d =

D = ε1 log1+ε2 λ.

Then, we can prove Theorem 8 as follows.

Proof of Theorem 8. Π./ is clearly robust; i.e., A drops at most a logarithmic (in the security

parameter) number of onions implies that w.o.p., all honest messages are delivered.
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Recall that an OR protocol is indifferent if the destination and nonce of every honest

non-message-delivering onion layer are independent of the input. From Theorem 6, Π./ is

anonymous since it is indifferent, and it mixes [ALU18, Theorem 11 and Lemma 12] and

equalizes (Theorem 9).

The onion cost is bounded by the product of the maximum number X of onions formed

per honest party and the number of rounds in a full (unaborted) execution of the protocol.

With overwhelming probability,

X · (# of rounds per epoch) · (# of epochs)

= X · d · ((# of epochs for mixing) + (# of epochs for merging))

≤ 3χ(ε1 log1+ε2 λ)((logN + 1)(ε1 log1+ε2 λ) + logχ) (3.5)

≤ 6ε31 logN log3(1+ε) λ, (3.6)

where (3.5) follows since X ≤ 3χ from Chernoff bounds, and (3.6) follows from the assump-

tion that N = ω (log λ). (We assume this to be the case, since otherwise, there are known

solutions with Θ
(
N2
)

communication complexity.) We obtain the desired result by setting

γ1 = 6ε31 and γ2 = 3ε2.

To complete our proof of Theorem 8, we now prove Theorem 9 (above).

A checkpoint onion reveals its origin (the party who formed the onion) to the inter-

mediary node who verifies its checkpoint. If the intermediary node is corrupted, then the

adversary learns the origin. So, rather than analyzing what happens to all honest onions,

we will analyze what happens to indistinguishable onions, where an indistinguishable onion

is either (1) a merging onion formed by an honest party or (2) a checkpoint onion formed

by an honest party for verification by an honest party. (We don’t need to analyze onions

that are not indistinguishable since they don’t reveal anything about the input and don’t

affect indistinguishable onions.)

Attack 1: targeting a sender At the start of the execution phase, the adversary knows

the origin of every onion. As the execution progresses, the adversary loses this information.

But before this occurs, the adversary can attempt to eliminate all of a target sender’s

indistinguishable onions. If the adversary can successfully do this, then Π./ does not equalize

(and is, therefore, not anonymous).

In Lemma 3, we show that if an honest party is unaborted at any round of the merging

phase, then w.o.p., a constant fraction of every honest party’s onions remained in the

system at the start of the merging phase. The implication of this is that the adversary
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cannot successfully “isolate” an honest sender from the rest of the network by dropping all

her onions upfront.

Attack 2: dropping indistinguishable onions Let a pair of indistinguishable onions

be mergeable if the onions arrive at the same place and time and produce the same nonce

when processed (once). Let an indistinguishable onion be a singleton if it does not belong

in any mergeable pair.

At every round, the adversary observes some statistics on singletons and pairs of merge-

able onions. With overwhelming probability, these are the only categories of indistinguish-

able onions in the system; e.g., w.o.p., there cannot be three onions that produce the same

nonce when peeled (once). This is because a pair of mergeable onions at the start of an

epoch cannot remain unmerged for too long. Either the adversary drops or merges the pair;

or w.o.p., within the epoch (lasting a polylogarithmic number of rounds), an honest party

merges the pair. This last fact follows from Chernoff bounds.

By the start of the merging phase, the adversary no longer knows the origin of any

indistinguishable onion. However, the adversary may know that fewer merging onions from

one honest party, Anna, remain in the system compared with those from another honest

party, Allison; in which case, the adversary might bet that more singletons are Anna’s

merging onions than Allison’s. Thus, during the merging phase, the adversary may drop

singletons in an attempt to prevent the protocol from equalizing.

In Lemma 6, we prove that the adversary cannot prevent the protocol from equalizing

by dropping only singletons.

Of course, the adversary can also drop mergeable pairs. Thus, to conclude our proof of

Theorem 9, we show the protocol equalizes when the adversary also drops mergeable pairs.

3.6.2 Subverting attack 1

We now state and prove Lemma 3.

Let L
def
= nD be the number of epochs in the mixing phase, and let “the start of the

merging phase” be the L-th diagnostic round.

Lemma 3. In a protocol run of Π./ interacting with an adversary who corrupts up to κ < 1
2

parties, for every party i, let V i denote the number of i’s merging onions at the start of

the merging phase. If there exists an unaborted honest party after the L-th diagnostic, then

w.o.p., for all honest i, V i ≥ (1−κ)χ
3 .
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Proof. Let A be the adversary who corrupts the maximum number bκNc of parties and

“targets” an honest party i. After round 1, A drops every onion that i sends to a corrupted

party at round 1. After round 2, A drops every onion that could have been formed by i

(from A’s perspective) that goes to a corrupted party at round 2. Otherwise, A follows the

protocol.

For any arbitrarily small positive constant δ > 0, at least (1− δ)(1− κ)χ of i’s merging

onions go to an honest party at round 1 (Chernoff bounds), and at least 1−δ
2 fraction of

these go to an honest party in round 2 (Chernoff bounds). For any δ ≤ 1 −
√

2
3 , if the

protocol run were to continue, w.o.p., at least (1−κ)χ
3 of i’s merging onions would remain at

the start of the merging phase.

Let a subnet be so-so if it consists of an honest party and a corrupted party.

W.l.o.g., at least one of i’s onion is received by an honest party in a so-so subset at round

1. (Otherwise, i’s onions would mix at good subnets, each consisting of two honest parties.)

Thus, using a concentration bound for the hypergeometric distribution [HS05], w.o.p., A
causes at least one honest party to abort at the first diagnostic. This causes all honest

parties to eventually abort via abort messages. (Until half of the honest parties abort,

the number of aborted honest parties grows faster than exponentially w.r.t. the number of

rounds. This follows from recasting the problem as a martingale problem and applying the

Azuma-Hoeffding inequality; see Lemma 10 in Supplementary materials.)

Any adversary that drops at least as many onions as A causes the honest parties to

abort.

Otherwise, if the adversary deviates from A either by dropping fewer onions or waiting

to drop onions, then (in an unaborted execution) at least (1−κ)χ
3 of i’s merging onions would

remain at the start of the merging phase.

3.6.3 Subverting attack 2

Let I` be the set of indistinguishable singletons in the first round of the `-th epoch, and let

Y be the (total) number of indistinguishable checkpoint onions that are formed.

Suppose that for every epoch `, the adversary drops α` fraction of the onions in I`.
We expect that the adversary drops α1 of the Y indistinguishable checkpoint onions during

epoch 1, and another α2 of the remaining (1 − α1)Y indistinguishable checkpoint onions

during epoch 2, and so on. Following this logic, by the `-th epoch, we expect that E [ζ` ]

fraction of the Y indistinguishable checkpoint onions have been dropped, where E [ζ` ] is
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defined recursively as follows:

E[ζ1 ] = 0 (3.7)

E[ζ` ] =
`−1∑
τ=1

(1− E[ζτ ])ατ , ` ≥ 2. (3.8)

From repeated applications of probability concentration bounds (see Supplementary ma-

terials), we can show that (1) the adversary essentially drops a random sample from the

remaining singletons (Lemma 7), (2) w.o.p., the actual fraction ζ of dropped indistinguish-

able checkpoint onions is close to E [ζ ] (Lemma 9), and (3) w.o.p., the number of missing

checkpoint onions at a party and round is strongly correlated with ζ (Lemma 8). It follows

that

Lemma 4. In Π./: For every epoch `, let α` be the fraction of remaining indistinguishable

singletons that the adversary drops during the `-th epoch, and let E[ζ` ] be as defined by (3.7)

and (3.8).

For every epoch L < ` ≤ R (in the merging phase),

i If E[ζ` ] ≥ 1
2 , then w.o.p., every honest party aborts by the `-th diagnostic.

ii (Conversely, if there is an unaborted honest party after the `-th diagnostic, then w.o.p.,

at least half of the indistinguishable checkpoint onions remain in the system at the `-th

diagnostic round.)

From Lemma 3, a constant fraction V i/χ > 0 of each honest party i’s merging onions

remains in the system at the start of the merging phase. However, the numbers (the V ’s)

of merging onions may be different.

If the adversary were passive, onions would merge for the first time at the start of the

(L + 1)-st epoch, in which case, at the end of the (L + 1)-st epoch, UL+1
def
= 1

2χ of every

party’s merging onions would remain in the system. Following this trend, at the end of the

`-th epoch, U`
def
= 1

2`−L
χ of every party’s merging onions would remain in the system.

For our setting (when the adversary is active): Let V i
` denote the number of i’s merging

onions at the `-th diagnostic round. To prove equalizing, we want that there exists an epoch

` such that for every pair of honest parties i and j, the quantities V i
` and V j

` are statistically

close. In Lemma 6, we will first show this to be the case when the adversary drops only

singletons.

To prove Lemma 6, we make use of Lemma 5, below; (the proof of which follows from

casting the problem as a martingale problem and applying the Azuma-Hoeffding inequality;

see Supplementary materials).
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Lemma 5. Let U be a set of 2u balls paired into u = polylog(λ) distinct pairs of balls, and

let V be a random subset of U , such that ν = |V|/|U| is a constant factor. For any constant
2v−ν
2v−1 − 1 < δ ≤ 1, w.o.p. in λ, the number W of paired balls in V is at least (1− δ)ν|V| and

at most (1 + δ)ν|V|.

A consequence of Lemma 5 is that w.o.p., the number of an honest party’s mergeable

pairs at the start of any epoch is close to what is expected given the number of the party’s

merging onions at the start of the epoch.

Let ε > 0 be any small constant such that (1 + ε)/(1 − ε) ≤ 1 + ε2. Let the “partway

point” be the R-th diagnostic round, where R
def
= L+ dh/εe. (Before the partway point, the

expected number of indistinguishable merging onions per party and round is polylogarithmic

in the security parameter.) We now state and prove Lemma 6.

Lemma 6. In Π./: If between the start of the merging phase and the partway point, the

adversary drops only singletons, then w.o.p., for any two honest parties i and j, the number

V i
L+h of i’s merging onions at the end of the execution is equal to the number V j

L+h of j’s

merging onions at the end of the execution, i.e., V i
L+h = V j

L+h.

Proof. Let ` be any epoch between the start of the merging phase and the partway point,

and let ν` = V`
U`

be the ratio between the actual number V` of party i’s onions at the `-th

diagnostic round and its upper bound, U` = χ
2`−L

= polylog(λ).

Fix 0 ≤ E[ζ ] ≤ 1
2 , and let 0 ≤ α ≤ E[ζ ] be any fraction between zero and E[ζ ]. We will

first analyze what happens when the adversary A drops α fraction of the remaining single-

tons during the (`+ 1)-st epoch (between the `-th diagnostic and the (`+ 1)-st diagnostic)

and another E[ζ ]−α
1−α fraction of the remaining singletons during the (`+ 2)-nd epoch.

At the `-th diagnostic round, there are an expected (approx.) ν2
`U` paired onions and an

expected (approx.) ν`(1− ν`)U` singletons (Lemma 5). If the adversary A drops α fraction

of the singletons, then for any small constant δ ≥ VR
VR−1 − 1, w.o.p.,

ν`+1 ≥
U`
U`+1

(
(1− δ)

ν2
`

2
+ (1− δ)(1− α)ν`(1− ν`)

)
= 2(1− δ)

(
ν2
`

2
+ (1− α)ν`(1− ν`)

)
= (1− δ)ν2

` + 2(1− δ)ν` − 2(1− δ)ν2
` − 2(1− δ)αν` + 2(1− δ)αν2

` (3.9)

def
= ξ`+1.

At the (` + 1)-st diagnostic round, there are an expected (approx.) ν2
`+1U`+1 paired

onions and an expected (approx.) ν`+1(1 − ν`+1)U`+1 singletons (Lemma 5). So if the
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adversary A drops β
def
= E[ζ ]−α

1−α fraction of the singletons, then w.o.p.,

ν`+2 ≥
U`+1

U`+2

(
(1− δ)

ξ2
`+1

2
+ (1− δ) (1− β) ξ`+1(1− ξ`+1)

)

= 2(1− δ)

(
ξ2
`+1

2
+ (1− β) ξ`+1(1− ξ`+1)

)

= 2(1− δ) (1− β) ξ`+1 + 2(1− δ)
(
β − 1

2

)
ξ2
`+1

def
= ξ`+2.

Taking a derivative of ξ`+2 with respect to α, we get

∂ξ`+2

∂α
=

(
∂ξ`+2

∂ξ`+1

)(
∂ξ`+1

∂α

)
= (2(1− δ) (1− β + (2β − 1)ξ`+1))

(
2(1− δ)

(
ν2
` − ν`

))
= 4(1− δ)2

(
ν2
` − ν`

)
(1− β + (2β − 1)ξ`+1)

≤ 0, (3.10)

since
∂ξ`+1

∂α = 2(1−δ) (1− β + (2β − 1)ξ`+1) from (3.9). This last inequality follows because

(1 − δ)2 ≥ 0,
(
ν2
` − ν`

)
≤ 0 since ν` ≤ 1 and ξ`+1 ≤ 1−β

1−2β since β = E[ζ ]−α
1−α ≤ 1

2 . We now

prove the lemma.

Case 1: The honest parties abort by the beginning of the merging phase. In this case,

w.o.p., no honest onion will remain at the partway point. Thus, V i
R = 0 for every honest

party i.

Case 2: There is an unaborted honest party at the start of the merging phase. For every

L < ` ≤ R, let α` be the fraction of singletons that the adversary drops in the `-th epoch.

Let E[ζ0 ] = 0, and for every L ≤ ` ≤ R, let E[ζ` ] =
∑`

τ=1(1− E[ζτ−1 ])ατ .

If E[ζR ] ≥ 1
2 : From Lemma 4, w.o.p., every honest party aborts the protocol run by the

partway point. In this case, V i
L+h = 0 for every honest party i.

If E [ζR ] < 1
2 : From (3.10), the best that the adversary can do is to drop as many

singletons (at most half) in the (L + 1)-st epoch (all upfront) without causing the honest

parties to abort the run. In this case, the adversary cannot afford to drop any more

singletons past the (L+ 1)-st epoch.

From Lemma 3, if there is an unaborted honest party at the beginning of the merging

phase, then w.o.p., a constant fraction of every honest party’s merging onions remain at the

beginning of the merging phase. Thus, w.o.p., V i
R = UR for every honest party i. This last

follows from a known concentration bound [HS05] for the hypergeometric distribution.
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We now prove Theorem 9.

of Theorem 9. From Lemma 6, if during the merging phase, the adversary drops only single-

tons, then w.o.p., every recipient receives one merging onion in the end. Thus, to conclude

the proof of Theorem 9, it suffices to show that the protocol equalizes when the adversary

also drops mergeable pairs.

Fix an epoch L < ` ≤ R. Let U
def
= 1

2`−L
. For all honest i, let V i def

= νiU be the number

of i’s merging onions remaining at the first round of the `-th epoch.

Each mergeable pair that goes to an honest party in the first round of the epoch is

merged into a single onion by round 2. Since the quantities of (indistinguishable) mergeable

pairs and singletons at every party are close to their respective expected values (Chernoff

bounds), the adversary can only drop these merged onions (necessarily after round 1) in

proportion to singletons. The adversary can disproportionally drop more mergeable pairs

only by dropping those that arrive at a corrupted party in the first round.

In the first round of the epoch, at most one-half of the mergeable pairs go to a corrupted

party (Chernoff bounds). If the adversary drops all of these pairs, then the expected number

Vj of j’s mergeable onions at round 2 is given by Vj = V j − νj

2 V
j = νjU − (νj)2

2 U, and the

expected number Vk of k’s mergeable onions at round 2 is given by Vk = νkU − (νk)2

2 U.

W.l.o.g., assume that V j ≥ V k. It follows that V j − V k ≥ Vj − Vk, and Vj − Vk ≥ 0

since U > 0 by construction, and νk ≤ νj ≤ 1. Since the actual quantities are close to

the expected values (Chernoff bound and Lemma 5), this shows that the protocol equalizes

faster when the adversary also drops mergeable pairs compared to the scenario in which the

adversary drops only singletons.

3.6.4 Supplementary proofs

Proof of Lemma 4

Recall that κ is the upper bound on the corruption rate, and an indistinguishable onion

is either an honest merging onion or an honest checkpoint onion with a checkpoint for

verification by an honest party. A distinguishable onion is one that is not indistinguishable.

We first prove:

Lemma 7. In Π./: For any epoch L < ` ≤ R, no matter how the adversary drops single-

tons during an epoch, essentially, the adversary drops a random sample of the remaining

singletons at the start of the epoch.
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Proof. We say that the Π./ “shuffles indistinguishable onions at round rA by round rB” if

for any two indistinguishable onions at rB, given the adversarial view from rA to rB and

the location at rA of one of the onions chosen at random (plus the description of A and the

input), no distinguisher can guess which onion was chosen with nonnegligible advantage.

The proof of Lemma 7 follows from combining Facts 1 and 2, below.

Fact 1: Π./ shuffles indistinguishable onions at the first round by the start of the merging

phase. Let a subnet in the butterfly network G be good if it consists of two honest parties

and so-so if it consists of one honest party and one corrupted party. (In an unaborted

execution) for every stage τ of G, every indistinguishable onion passes through a good or

so-so subnet at stage τ a polylogarithmic number of times (Chernoff bound); thus, every

bit of the onion’s location at the start of the merging phase is independent of the other bits

and equally likely to be a zero or a one.

Fact 2: For every epoch L < ` ≤ R, Π./ shuffles the indistinguishable onions at the

start of the epoch by the end of the epoch. By construction, the number of rounds and the

expected number of honest onions per round and location are at least polylogarithmic in

the security parameter; so shuffling follows from an earlier result from Ando, Lysyanskaya

and Upfal [ALU18].

If the adversary drops ζ` fraction of the indistinguishable checkpoint onions by the `-

th diagnostic round, then every party would observe, on average, (1 − κ)ζ`
χ

L+h missing

checkpoints at the `-th diagnostic.

We now prove that, with overwhelming probability, the actual number of missing check-

point onions is close to this expected quantity.

Lemma 8 (Two-color onions lemma). In Π./: Suppose that the adversary drops at least

a constant 0 ≤ ζ` ≤ 1 fraction of all indistinguishable checkpoint onions before the `-th

diagnostic round (i.e., round `d).

If F is a truly random function, then for all 0 < δ ≤ 1, with overwhelming probability,

each party k will notice at least between (1−δ)(1−κ)ζ`
χ

L+h and (1+δ)(1−κ)ζ`
χ

L+h missing

checkpoints at the `-th diagnostic round.

Proof. We recast this problem as a two-colored-balls problem. The different categories of

balls correspond to different categories of onions (explained below).

Fix a party k and a diagnostic round `d.

The green balls/onions, Z, are all the indistinguishable checkpoint onions for verification

by party k at the `-th diagnostic; let Z = |Z|.
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Let Y ⊇ Z be all the indistinguishable checkpoint onions, including those in Z; and let

Y = |Y|. The white onions/balls are the onions in Y \ X ; these are the indistinguishable

checkpoint onions not for verification by k at the `-th diagnostic.

Since the onions in Y are indistinguishable, if the adversary drops ζ fraction of them,

the adversary eliminates (or drops) a random sample E ⊆ Y of size ζY .

Using a known concentration bound [HS05] for the hypergeometric distribution, when

the expected number E [W ] = ζZ of green balls in E is at least polylogarithmic in the

security parameter, with overwhelming probability, the actual number W of green balls in

E is close to E[W ], i.e., W = (1± δ′)E[W ].

Let X be the number of distinguishable checkpoint onions. If

Claim 1. X, Y and Z are close to their respective expected values, i.e., for any 0 < δ′ ≤ 1,

with overwhelming probability, X = (1±δ′)E[X ], Y = (1±δ′)E[Y ], and Z = (1±δ′)E[Z ];

then with overwhelming probability, at least (1− δ)(1−κ)ζ`
χ

L+h checkpoints onions will

be missing for party k at the `-th diagnostic.

To complete the proof, we now prove the claim above:

Let Y1 be the set of all (for all i’s) indistinguishable checkpoint onions formed by party i

for verification by party i, excluding the (possible) onion formed by party k for verification

by party k at the `-th diagnostic. Let Y ′1 = |Y1|.
Let Y2 be the set of all (for all i’s and all j’s) indistinguishable checkpoint onions formed

by party i for verification by party j > i, excluding any onion for verification by party k

at the `-th diagnostic as well as any onion formed by party k for verification at the `-th

diagnostic. Let Y ′2 = |Y2|.
For every triple (i, j, τ) consisting of the index τ of a diagnostic round τd and honest

parties i and j, let Y τ
i→j be one if party i forms a checkpoint onion to be verified by party j

at the τ -th diagnostic (and zero, otherwise).

Since Y τ
i→j = 1 ⇐⇒ Y τ

j→i = 1 (i.e., party i creates an onion to be verified by party j

at the τ -th epoch iff party j creates a symmetric onion to be verified by party i at the τ -th

epoch), it follows that the total (over all i’s, all j’s, and all τ ’s) number of checkpoint onions

formed by party i for party j 6= i is 2
(
Y ′2 +

∑
i 6=k Y

`
i→k

)
.

Let Y1 = Y ′1 + Y `
k→k, and let Y2 = Y ′2 +

∑
i 6=k Y

`
i→k. The total number Y of indistin-

guishable checkpoint onions is given by

Y = (Y ′1 + Y `
k→k) + 2

Y ′2 +
∑
i 6=k

Y `
i→k

 = Y1 + 2Y2. (3.11)
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If F is a truly random function, the onions in Z ∪ Y1 ∪ Y2, are i.i.d. Bernoulli random

variables, each having probability q = 2χ
N(L+h) of success. It follows that

Z ∼ Binomial ((1− κ)N, q) ,

Y1 ∼ Binomial ((1− κ)N(L+ h), q) ,

Y2 ∼ Binomial

((
(1− κ)N

2

)
(L+ h), q

)
.

Using Chernoff bound for Poisson trials, for any 0 < δ′′ ≤ 1:

Pr
[
|Z − E[Z ] | > δ′′ E[Z ]

]
≤ 2 exp (−polylog(λ)) = negl(λ) (3.12)

Pr
[
|Y1 − E[Y1 ] | > δ′′ E[Y1 ]

]
≤ 2 exp (−polylog(λ)) = negl(λ) (3.13)

Pr
[
|Y2 − E[Y2 ] | > δ′′ E[Y1 ]

]
≤ 2 exp (−polylog(λ)) = negl(λ). (3.14)

Thus, with overwhelming probability, (i) Z = (1 ± δ′′)E [Z ] = (1 − δ′′)(1 − κ) 2χ
L+h , (ii)

Y1 = (1± δ′′)E[Y1 ] and (iii) Y2 = (1± δ′′)E[Y2 ].

Facts (ii) and (iii) imply

Y = (1± δ′′)(E[Y1 ] + 2E[Y2 ]) (3.15)

= (1± δ′′)
(

(1− κ)N(L+ h) + 2

(
(1− κ)N((1− κ)N − 1)

2
(L+ h)

))
q (3.16)

= (1± δ′′)(1− κ)2N2(L+ h)

(
2χ

N(L+ h)

)
= (1± δ′′) · 2(1− κ)2χN,

where (3.15) follows (3.11) and (3.12)-(3.14), and (3.16) holds because

E[Y1 ] = (1− κ)N(L+ h)q

and

E[Y2 ] =

(
(1− κ)N((1− κ)N − 1)

2
(L+ h)

)
q.

Following a similar argument as above, we have X = (1 + δ′)E [X ]. This concludes are

proof.

Combining Lemmas 7 and 8 proves Lemma 4(ii). To prove Lemma 4(i), we require

another lemma (below).

Recall that a “singleton” is an onion that does not belong in any mergeable pair; it is

either a checkpoint onion, or a merging onion without a “mate” at the `-th epoch.
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Let I` be the set of indistinguishable singletons (onion evolutions) at the `-th epoch,

and let Y be the number of indistinguishable checkpoint onions (onion evolutions) that are

formed.

Suppose that, for every epoch `, the adversary drops α` fraction of the onions in I`.
Then, we expect that the adversary drops α1 of the Y indistinguishable checkpoint onions

during epoch 1, and another α2 of the remaining (1 − α1)Y indistinguishable checkpoint

onions during epoch 2, and so on. Following this logic, by the `-th epoch, we expect that

E[ζ` ] fraction of the Y indistinguishable checkpoint onions have been dropped, where E[ζ` ]

is defined recursively as follows:

E[ζ1 ] = 0 (3.17)

E[ζ` ] =

`−1∑
τ=1

(1− E[ζτ ])ατ , ` ≥ 2. (3.18)

This next lemma states that the actual fraction ζ` is close to the expected, E[ζ` ].

Lemma 9. In Π./: For every epoch `, let α` be the fraction of remaining indistinguishable

singletons that the adversary drops during the `-th epoch, and let E [ζ` ] be as defined by

(3.17) and (3.18).

The fraction ζ` of all indistinguishable checkpoint onions that the adversary drops by the

`-th epoch is close to E[ζ` ], i.e., for all 0 < δ ≤ 1, with overwhelming probability,

(1− δ)E[ζ` ] ≤ ζ` ≤ (1 + δ)E[ζ` ] .

Proof. The proof is by induction.

Base case (` = 2) This follows from a known concentration bound [HS05] for the hyper-

geometric distribution.

Inductive step (` > 2) Assume that (1− δ)E[ζ`−1 ] ≤ ζ`−1 ≤ (1 + δ)E[ζ`−1 ].

Let α′` be the fraction of the (remaining) indistinguishable checkpoint onions that the

adversary drops during the `-th epoch.

ζ` = ζ`−1 + (1− ζ`−1)α′`

≥ (1− δ)E[ζ`−1 ] + (1− (1 + δ)E[ζ`−1 ])α′` (3.19)

≥ (1− δ)E[ζ`−1 ] + (1− δ)(1− (1 + δ)E[ζ`−1 ])α` (3.20)

≥ (1− δ)E[ζ`−1 ] + (1− δ)α` − (1− δ)E[ζ`−1 ]α` (3.21)

= (1− δ)E[ζ` ] ,
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where (3.19) follows from the inductive hypothesis, (3.20) follows from a known con-

centration bound [HS05] for the hypergeometric distribution, and (3.21) follows because

1− δ2 ≥ 1− δ.
We obtain the upper bound in a similar fashion.

If ζ` ≥ 1
2 , then with overwhelming probability, every honest party aborts the protocol

before the (`+ 1)-st epoch:

From Lemma 7, the adversary essentially drops a random sample of the remaining

singletons. From Lemma 9, the actual fraction ζ` of indistinguishable checkpoint onions

that have been dropped by the `-th epoch is close to the expected faction, E[ζ` ] ≥ (1− δ)ζ.

From Lemma 8, each party will notice close to the expected number of missing checkpoints:

(1− δ)E[ζ` ]
χ

L+h (for an arbitrarily small δ).

Proof of Lemma 5

Proof. Let v = |V|
2 . For every i ∈ [u], let wi be one if both onions that comprise the u-th

pair in U are in V, and zero otherwise.

E[wi ] = Pr[wi = 1] =

(
2u−2
2v−2

)(
2u
2v

) =
(2u− 2)!

(2v − 2)!(2u− 2v)!
· (2v)!(2u− 2v)!

(2u)!

=
2v(2v − 1)

2u(2u− 1)
,

since there are
(

2u−2
2v−2

)
ways to choose 2v− 2 balls from 2u− 2 balls; and likewise, there are(

2u
2v

)
ways of choosing 2v balls from 2u balls.

Let w denote the number of pairs in V From the linearity of expectation,

E[w ] =
u∑
i=1

E[wi ] = u · 2v(2v − 1)

2u(2u− 1)
=

2v − 1

2u− 1
· v.

Recall that ν = v
u = |V|

|U| . It follows that

E[W ] =

(
2v − 1

2u− 1

)
|V| =

(
2v − 1

2v − ν

)(
ν(2u− 1)

2u− 1

)
|V| =

(
2v − 1

2v − ν

)
ν|V|.

For each i ∈ [2v], let Yi be the i-th chosen ball in V, and let

Zi = E[W |Y1, Y2, . . . , Yi ] .
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Then, Z0, Z1, . . . , Z2v is a Doob martingale by construction satisfying the Lipschitz condition

with bound 1. Thus, from the Azuma-Hoeffding inequality, for any 0 < δ ≤ 1,

Pr[|W − E[W ] | ≥ δ E[W ]] ≤ 2 exp

(
−δ

2 E[W ]2∑2v
i=1 1

)
= 2 exp

(
−δ

2(2v − 1)2

(2u− 1)2
· 2v
)

= 2 exp (−Θ(1) · 2v)

= negl(λ).

This completes our proof.

Proof that Π4 is anonymous

We will show that if the adversary does not drop too many honest onions before the first

diagnostic round, then for each honest party, a constant fraction of her merging onions will

survive (not be dropped in) the first epoch.

Our proof essentially boils down to proving that the following undesirable events rarely

happens:

(i) For any honest party, the onions formed by the party do not travel together.

(ii) The first diagnostic fails to detect that the adversary dropped too many honest onions.

Below, we show that events (i) and (ii) can occur with only negligible probability.

Recall that an indistinguishable onion is either an honest merging onion or an honest

checkpoint onion with a checkpoint for verification by an honest party.

Lemma 10. Let λ be the security parameter, and let N ′ = (1 − κ)N ≤ poly(λ) be the

number of honest parties (or locations). Let O be the set of indistinguishable onions at any

round r of the protocol execution. If |O| = Ω
(
log2 λ

)
and |O| ≤ (N ′ + 2)/2, then, with

overwhelming probability in λ, at least |O|/ log λ parties receive at least one onion from O.

Proof. Let X = |O| be the size of O.

We recast this problem as a balls-and-bins problems, where the onions in O are the

balls, and the parties (or locations) are the bins. To prove the lemma, we show that when

X = |O| balls are thrown independently and uniformly at random into the N ′ bins, with

overwhelming probability in λ, the number of non-empty bins is at least X
log λ .

Let L1, . . . , LN ′ be the N ′ bins. For each i ∈ [N ′], let Xi be the indicator random

variable that is one if the i-th bin Li is empty (and zero, otherwise). The probability

that Li remains empty is given as Pr[Xi = 1] = E [Xi ] =
(
1− 1

N ′

)X
. The total number
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X =
∑N ′

i=1Xi of empty bins is the summation of all the Xi’s. By the linearity of expectation,

E[X ] =
∑N ′

i=1 E[Xi ] = N ′
(
1− 1

N ′

)X
.

Let W be the total number of non-empty bins; i.e., W = N ′ −X. Again by linearity of

expectation,

E[W ] = N ′ − E[X ]

= N ′ −N ′
(

1− 1

N ′

)X
> N ′ −N ′

(
1− X

N ′
+
X(X − 1)

N ′2

)
(3.22)

= X

(
1− X − 1

N ′

)
≥ X

2
, (3.23)

where (3.22) holds since
(
1− 1

N ′

)X
is strictly less than the first three terms of its Laurent

series, and (3.23) holds since X ≤ N ′+2
2 by the hypothesis.

For every i ∈ [X], let Yi be the location of the i-th ball, and let

Zi = E[X|Y1, . . . , Yi ] .

The sequence Z1, . . . , ZX is a Doob martingale by construction, satisfying the Lipschitz

condition with constant bound one, i.e., |Zi−1 − Zi| ≤ 1. Thus, we may apply the Azuma-

Hoeffding inequality as follows: For δ ≥ log λ−2
log λ ,

Pr[X − E[X ] ≥ δ E[W ]] ≤ exp

(
−δ

2 E[W ]2

2
∑X

i=1 1

)

≤ exp

(
−δ

2(X/2)2

2X

)
(3.24)

= exp

(
−δ

2X

8

)
≤ exp

(
−(log λ− 2)2α log2 λ

8 log2 λ

)
(3.25)

= exp

(
−α(log λ− 2)2

8

)
= negl(λ) ,

where (3.24) follows directly from (3.23), and (3.25) holds since δ ≥ log λ−2
log λ and X ≥ α log2 λ

from the hypothesis.
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In other words, with overwhelming probability in λ,

X − E[X ] ≤ δ E[W ] .

Thus, it follows that, with overwhelming probability in λ,

W ≥ (1− δ)E[W ]

=

(
1− log λ− 2

log λ

)
E[W ]

=
2

log λ
E[W ]

≥ X

log λ
, (3.26)

where (3.26) follows directly from (3.23).

Recall that χ is the number of merging onions formed by each honest party, and h =

logχ+ 1 is the number of diagnostic rounds (or the number of epochs)4 in a full unaborted

execution of Π4.

Lemma 11 (Italian onions). In Π4: Suppose that the adversary drops ζ fraction of all

indistinguishable onions before the first diagnostic such that ζ χh = polylog(λ).

If F is a truly random function, then for all 0 < δ ≤ 1, with overwhelming probability

in λ, each honest party k will notice at least (1 − δ)(1 − κ)ζ χh missing checkpoints at the

first diagnostic.

Proof. We recast this problem as a three-colored-balls problem with green balls, white balls

and red balls. The different categories of balls correspond to different categories of onions

(explained below).

Fix an honest party k.

Let Z be the set of all indistinguishable checkpoint onions for verification by party k at

the first diagnostic. (These correspond to the green onions/balls. All other indistinguishable

checkpoint onions belong to the set Y and are the white onions/balls.) Let Z = |Z|.
If F is a truly random function,

Z ∼ Binomial ((1− κ)N, q) .

Using Chernoff bound for Poisson trials, for any 0 < δ′ ≤ 1:

Pr
[
|Z − E[Z ] | > δ′ E[Z ]

]
≤ 2 exp (−polylog(λ)) = negl(λ) . (3.27)

4e.g., when χ = 2, there are two epochs, one corresponding to the leaf node and another to the root node
of G4.
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Thus, with overwhelming probability, Z falls between (1− δ′)E[Z ] = (1− δ′)(1− κ)χh and

(1 + δ′)E[Z ] = (1 + δ′)(1− κ)χh .

Let X be the set of all honest merging onions. (These correspond to the red

onions/balls.)

Let I be the set of all indistinguishable onions, i.e., the set of all green, white and red

onions/balls.

Since the adversary cannot distinguish between any two onions in I, the cumulative set

E ⊆ I of indistinguishable onions that are eliminated (or dropped) by the adversary by the

first diagnostic is a random subset of the set I of all honest onions.

Let ζ = |E|
|I| be the fraction of onions in I dropped by the adversary by the first diagnostic.

Using a known concentration bound for the hypergeometric distribution [HS05], when

the expected number ζZ of green balls in E is at least polylogarithmic in λ, i.e., ζZ =

polylog(λ), the actual number W of green balls in E is close to the expected value ζZ, i.e.,

for any 0 < δ′ ≤ 1, (1− δ′)ζZ ≤ W ≤ (1 + δ′)ζZ. Combining this with (3.27) above, with

overwhelming probability, the number of green balls in the random sample E falls between

(1− δ′)2(1− κ)ζ χh and (1− δ′)2(1− κ)ζ χh .

By choosing an appropriate δ such that 1− δ ≤ (1− δ′)2 and 1+ δ ≥ (1+ δ′)2, we obtain

our desired bound.

We will now prove the main theorem.

Theorem 10. In Π4: Let λ denote the security parameter, and let ε, δ be small positive

constants.

Let every honest party form χ = 2dlogA(logA+1)e merging onions (and an expected χ

checkpoint onions), where A = max((N log1+ε λ)1/2, log2+ε λ). Let T = 2(1 − δ)(1 −
κ)3κ log1+ε λ be the threshold for the first diagnostic; if at least T checkpoints are miss-

ing for an honest party k, then k aborts.

For every party i, let V A,i denote the number of i’s merging onions at the first diagnostic

round in an interaction with the adversary A who drops up to κ < 1 fraction of the parties. If

there exists an unaborted honest party at the second epoch, then for any constant 0 < δ ≤ 1,

w.o.p.,

V A,i ≥ (1− δ)(1− κ)2χ, ∀A, ∀ honest i.

Proof. Fix an input σ and an honest party i.

Let N be the number of parties, and let A be the adversary who corrupts a random

bκNc parties and at rounds 1 and 2, drops every droppable (delivered to a corrupted node)
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onion that could have been formed by party i (from the adversary’s perspective).

Let X(r) be the number of indistinguishable onions at round r that that could have

been formed by party i. In the first round, i transmits X(1) onions. For any arbitrarily

small 0 < δ′ ≤ 1, with overwhelming probability, X(1) ≥ 2(1 − δ′)(1 − κ)χ because,

with overwhelming probability, i forms at least (1 − δ′)(1 − κ)χ checkpoint onions with a

checkpoint for an honest party (Chernoff bound) and χ merging onions.

Let the span at round r, denoted S(r), be the number of honest parties that receive an

indistinguishable onion that could have been formed by party i at round r. From Chernoff

bound, at least (1−δ′)(1−κ) of these X(1) onions go to honest parties. So, from Lemma 10,

S(1) ≥ 2(1− δ′)2(1− κ)2 χ

log λ
. (3.28)

Each of these S(1) parties receives at least 2(1 − δ′)(1 − κ)χ indistinguishable onions

at round 1 (Chernoff bound). Combining this with (3.28), there are at least 4(1− δ′)3(1−
κ)3 χ2

log λ indistinguishable onions that could have originated from party i at round 2; that

is,

X(2) ≥ 4(1− δ′)3(1− κ)3 χ2

log λ
.

At least (1 − δ′)κ of these onions are routed to corrupted parties at round 2 (Chernoff

bound); that is, the number of indistinguishable onions from X(2) that go to corrupted

parties is at least

4(1− δ′)4(1− κ)3κ
χ2

log λ
≥ 4(1− δ′)4(1− κ)3κ

A2

log λ
(logA+ 1)2

≥ 4(1− δ′)4(1− κ)3κ(N log1+ε λ)(logA+ 1)2

≥ 4(1− δ′)4(1− κ)3κ(N log1+ε λ)h,

where A ≥
√
N log1+ε λ, and h = logχ + 1. If all of them are dropped, the fraction ζ of

the indistinguishable onions that A drops is at least

ζ ≥ 4(1− δ′)4(1− κ)3κ(N log1+ε λ)h

2(1 + δ′)χN

=

(
4(1− δ′)4(1− κ)3κ

2(1 + δ′)

)
log1+ε λ · h

χ
,

because there are fewer than 2(1 + δ′)χ indistinguishable onions in total (Chernoff bound).

Let 1− δ = (1−δ′)5
1+δ′ . From Lemma 11, each honest party k will notice at least

(1− δ′)ζ χ
h
≥
(

2(1− δ′)5(1− κ)3κ

1 + δ′

)
log1+ε λ · h

χ
· χ
h

= 2(1− δ)(1− κ)3κ log1+ε λ
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missing checkpoints and will, therefore, abort the protocol.

Any adversary that drops at least as many onions as A will cause the honest parties to

abort the protocol.

An adversary A′ that drops at most as many onions as A can only do worse than A; if

A′ deviates from A either by dropping fewer onions or waiting to drop onions, then

V A
′,i ≥ V A,i. (3.29)

For any 0 < δ ≤ 1, at least (1 − δ)(1 − κ)2 of party i’s merging onions are randomly

routed through only honest parties in rounds 1 and 2 (Chernoff bound); it follows that

V A,i ≥ (1− δ)(1− κ)2χ. (3.30)

Combining (3.29) and (3.30), we obtain our desired result.

Since merging onions equalize (see §3.6), it follows that Π4 is anonymous in this setting.

3.7 Concluding remarks

We initiated a rigorous theoretical study of onion routing by providing new definitions and

both lower and upper bounds.

Here, we point out a few extensions to our results: We proved that the required onion

cost for an OR protocol to provide robustness and (computational) anonymity from the

active adversary is polylogarithmic in the security parameter. Our proof for the lower

bound can be used to prove the stronger result that polylogarithmic onion cost is required

even when (1) the adversary observes the traffic on only Θ(1) fraction of the links and or

when (2) the security definition is weakened to (computational) differential privacy. (3)

Also, while we explicitly showed this to be the case for the simple I/O setting, the result

holds more generally whenever any party can send a message to any other party.

We also proved the existence of a robust and anonymous OR protocol with polylog-

arithmic (in the security parameter) onion cost. (4) This result also extends beyond the

simple I/O setting; our OR protocol is anonymous w.r.t. any input set where the size of

each party’s input is fixed.

There is a small gap between our lower and upper bounds. A natural direction for future

work is to close this gap.



Chapter 4

Repliable OE Schemes

.

4.1 Contribution overview and related work

In this chapter, we present the first formal treatment of provably secure “repliable” onion

encryption schemes. Our work resolves the problem of formalizing onion encryption for

two-way channels.

4.1.1 Related work

In 1981, David Chaum introduced onion routing and mixes [Cha81]. As part of this work,

Chaum provided a reply option, that is, a mechanism for the recipient of an onion to reply

to the anonymous sender. However, Chaum’s scheme, as well as that of the subsequent im-

plementation, Cyberpunk anonymous remailer (a.k.a. Type I anonymous remailer) [Par96],

are not cryptographically secure as defined by the later work of Camenisch and Lysyan-

skaya [CL05]. An anonymous remailer is a server that processes message packages that

are essentially onions. There are many examples of anonymous remailers in practice,

notably Cyberpunk (Type I), Mixmaster (Type II) [Cot95, MC00] and Mixminion (Type

III) [DDM03], each defined by the algorithms they run.

In their 2005 paper [CL05], Camenisch and Lysyanskaya (CL) provided the first for-

mal treatment of onion encryption; they presented the input/output (I/O) syntax of onion

encryption schemes for one-way anonymous channels and an ideal functionality Fonion of

an onion encryption schemes in Canetti’s universal composability (UC) framework [Can01].

Additionally, they gave a set of cryptographic definitions – onion-correctness, onion-integrity
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and onion-security – that they claimed imply the realizability of the ideal functionality

Fonion. Finally, they also provided a construction that they showed satisfied these crypto-

graphic properties. However, their construction, as well as the subsequent implementation,

Mixmaster anonymous remailer (a.k.a. Type II anonymous remailer) [Cot95,MC00], do not

provide a reply option.

In a recent paper, Kuhn et al. showed that CL’s set of cryptographic definitions was

incomplete [KBS19]. Whereas CL’s onion-security prevents the adversary from learning

whether the honest party receiving the challenge onion is an intermediary of the onion or

its recipient, it doesn’t symmetrically protect the honest sender. As an example, Kuhn et

al. pointed out this security flaw in the data packet format, Sphinx [DG09], which replaced

the Mixminion anonymous remailer (a.k.a. Type III anonymous remailer) [DDM03]. Addi-

tionally, Kuhn et al. proposed a different set of cryptographic definitions that includes two

new definitions – tail-indistinguishability (i.e., the adversary cannot tell whether the honest

party is the sender or an intermediary of the challenge onion) and layer-unlinkability (i.e.,

onion layers are computationally unrelated to each other) – that together imply realizability

of CL’s ideal functionality Fonion. However, Kuhn et al. didn’t provide any construction

of their own and also left open the problem of formalizing onion encryption for two-way

anonymous channels.

4.1.2 Our contributions

Our contributions are as follows:

1. In Section 4.2, we provide the I/O syntax for repliable onion encryption schemes and

define what it means for a repliable onion encryption scheme to be correct.

2. At a high level, honestly formed onions in an onion routing protocol should mix at

honest nodes. This property is what enables anonymity from the standard adversary

who can observe the network traffic on all communication links. Ideally, onions should

mix (i) even if the distances from their respective origins or the distances to their

respective destinations differ, and (ii) regardless of whether they are forward or return

onions. In Section 4.3, we give a detailed description of an ideal functionality, FROES,

for repliable onion encryption schemes in the simplified UC model [CCL15]. We define

the ideal functionality so that a scheme that realizes the ideal functionality necessarily

satisfies properties (i) and (ii) above.
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3. In Section 4.4, we present our construction, Shallot Encryption Scheme, and, in Sec-

tion 4.5, prove that it UC-realizes FROES.

4. We prove that our construction is secure by first providing a cryptographic definition

of security, repliable-onion security (Definition 16), that implies realizability of FROES

and proving that our construction is repliable onion-secure. Our scheme builds on

a CCA2-secure cryptosystem with tags, a block cipher and a collision-resistant hash

function.

Intuitively, an ideal functionality of repliable onion encryption should, firstly, inherit the

security properties of onion encryption for one-way channels and, additionally, require the

indistinguishability of return onions (from recipients to senders) from forward onions (from

senders to recipients). Thus, to get an ideal functionality of onion encryption for two-way

channels, a natural thing to try might be to build upon CL’s ideal functionality Fonion of

onion encryption for one-way channels. Unfortunately, this approach does not work: The

header (the encrypted routing information) of a return onion must be formed by the sender,

whereas the return onion’s content (the encrypted payload) must come from the possibly

corrupt recipient. However, Fonion does not handle “hybrid” onions with onion layers formed

by both honest and corrupt parties. For this reason, it was necessary to redefine ideal onion

encryption from the ground up, this time for two-way channels.

Our ideal functionality describes how onions with honestly formed headers should be-

have. The environment sends instructions (to form or process onions) to only honest parties,

and, in the ideal setting, the ideal functionality keeps track of only onions with honestly

formed headers. The environment directly handles all other onions (e.g., onions formed

by corrupt parties or onions with mauled headers). With this new setting, we also avoid

having to assume onion-integrity to prove that a cryptographic security definition implies

UC-realizability of an ideal functionality. Even though Kuhn et al. claimed that onion-

integrity is superfluous, the reduction that they provided should have used this property,

and so they didn’t explicitly show how to avoid requiring this property.

4.2 Repliable onion encryption: syntax and correctness

In this chapter, an onion O is a pair, consisting of the (encrypted) content C and the

header H, i.e., O = (H,C).

We assume that the upper bound N on the length of the forward or return path is one

of the public parameters pp.
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Here, we give the formal input/output (I/O) specification for a repliable onion encryp-

tion scheme. In contrast to the I/O specification for an (unrepliable) onion encryption

scheme given by Camenisch and Lysyanskaya [CL05], a repliable onion encryption scheme

contains an additional algorithm, FormReply, for forming return onions. This algorithm al-

lows the recipient of a message contained in a repliable onion to respond to the anonymous

sender of the message without needing to know who the sender is.

The algorithm for forming onions, FormOnion, also takes as one of its parameters, the

label `. This is so that when the sender receives a reply message m′ along with the label `,

the sender can identify to which message m′ is responding.

Definition 13 (Repliable onion encryption scheme I/O). The set Σ =

(G,FormOnion,ProcOnion,FormReply) of algorithms satisfies the I/O specification of

a repliable onion encryption scheme for the label space L(1λ), the message space M(1λ)

and a set P of router names if:

• G is a probabilistic polynomial-time (p.p.t.) key generation algorithm. On input the

security parameter 1λ (written in unary), the public parameters pp and the party name

P , the algorithm G returns a key pair, i.e.,

(pk(P ), sk(P ))← G(1λ, pp, P ).

• FormOnion is a p.p.t. algorithm for forming onions. On input

i. a label ` ∈ L(1λ) from the label space,

ii. a message m ∈M(1λ) from the message space,

iii. a forward path P→ = (P1, . . . , Pd) (d stands for destination),

iv. the public keys pk(P→) associated with the parties in P→,

v. a return path P← = (Pd+1, . . . , Ps) (s stands for sender) and

vi. the public keys pk(P←) associated with the parties in P←,

the algorithm FormOnion returns a sequence O→ = (O1, . . . , Od) of onions for the

forward path, a sequence H← = (Hd+1, . . . ,Hs) of headers for the return path and a

key κ, i.e.,

(O→, H←, κ)← FormOnion(`,m, P→, pk(P→), P←, pk(P←))
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• ProcOnion is a deterministic polynomial-time (d.p.t.) algorithm for processing onions.

On input an onion O, a router name P and the secret key sk(P ) belonging to P , the

algorithm ProcOnion returns (role, output), i.e.,

(role, output)← ProcOnion(O,P, sk(P )).

When role = I (for “intermediary”), output is the pair (O′, P ′) consisting of the peeled

onion O′ and the next destination P ′ of O′. When role = R (for “recipient”), output

is the message m for recipient P . When role = S (for “sender”), output is the pair

(`,m) consisting of the label ` and the reply message m for sender P .

• FormReply is a d.p.t. algorithm for forming return onions. On input a reply message

m ∈ M(1λ), an onion O, a router name P and the secret key sk(P ) belonging to P ,

the algorithm FormReply returns the peeled onion O′ and the next destination P ′ of

O′, i.e.,

(O′, P ′)← FormReply(m,O,P, sk(P )).

FormReply outputs (⊥,⊥) if O is “not repliable”.

4.2.1 Onion evolutions, forward paths, return paths and layerings

Now that we have defined the I/O specification for a repliable onion encryption scheme,

we can define what it means for a repliable onion encryption scheme to be correct. Before

we do this, we first define what onion evolutions, paths and layerings are; the analogous

notions for the unrepliable onion encryption scheme were introduced by Camenisch and

Lysyanskaya [CL05].

Let Σ = (G,FormOnion,ProcOnion,FormReply) be a repliable onion encryption scheme

for the label space L(1λ), the message space M(1λ) and the set P of router names.

Let there be honest parties with honestly formed keys.

Let O1 = (H1, C1) be an onion received by party P1, not necessarily formed using

FormOnion.

We define a sequence of onion-location pairs recursively as follows: Let d be the first

onion layer of (H1, C1) that when peeled, produces either “R” or “S” (if it exists, otherwise

d =∞). For all i ∈ [d− 1], let

(rolei+1, ((Hi+1, Ci+1), Pi+1)) = ProcOnion((Hi, Ci), Pi, sk(Pi)).
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Let s = d if peeling (Hd, Cd) produces “S”. Otherwise, let m ∈ M(1λ) be a reply message

from the message space, and let

((Hd+1, Cd+1), Pi+1) = FormReply(m, (Hd, Cd), Pd, sk(Pd)).

Let s = d if (Hd, Cd) is “not repliable”, i.e., ((Hd+1, Cd+1), Pi+1) = (⊥,⊥). Otherwise, let

s be the first onion layer of (Hd+1, Cd+1) that when peeled, produces either “R” or “S” (if

it exists, otherwise s =∞). For all i ∈ {d+ 1, . . . , s− 1}, let

(rolei+1, ((Hi+1, Ci+1), Pi+1)) = ProcOnion((Hi, Ci), Pi, sk(Pi)).

We call the sequence E(H1, C1, P1,m) = ((H1, C1, P1), . . . , (Hs, Cs, Ps)) of onion-

location pairs the “evolution of the onion (H1, C1) starting at party P1 given m as the

reply message”. The sequence P→(H1, C1, P1,m) = (P1, . . . , Pd) is its forward path;

the sequence P←(H1, C1, P1,m) = (Pd+1, . . . , Ps) is its return path; and the sequence

L(H1, C1, P1,m) = (H1, C1, . . . ,Hd, Cd, Hd+1, . . . ,Hs) is its layering.

We define correctness as follows:

Definition 14 (Correctness). Let G, FormOnion, ProcOnion and FormReply form a repliable

onion encryption scheme for the label space L(1λ), the message space M(1λ) and the set P
of router names.

Let N be the upper bound on the path length (in pp). Let P = (P1, . . . , Ps), |P | = s ≤ 2N

be any list (not containing ⊥) of router names in P. Let d ∈ [s] be any index in [s] such

that d ≤ N and s− d+ 1 ≤ N . Let ` ∈ L(1λ) be any label in L(1λ). Let m,m′ ∈M(1λ) be

any two messages in M(1λ).

For every party Pi in P , let (pk(Pi), sk(Pi))← G(1λ, pp, Pi).

Let P→ = (P1, . . . , Pd), and let pk(P→) be a shorthand for the public keys associated

with the parties in P→. Let P← = (Pd+1, . . . , Ps), and let pk(P←) be a shorthand for the

public keys associated with the parties in P←.

Let ((H1, C1), . . . , (Hd, Cd), Hd+1, . . . ,Hs, κ) be the output of FormOnion on input the

label `, the message m, the forward path P→ = (P1, . . . , Pd), the public keys pk(P→) as-

sociated with the parties in P→, the return path P← = (Pd+1, . . . , Ps) and the public keys

pk(P←) associated with the parties in P←.

The scheme Σ is correct if with overwhelming probability in the security parameter λ,

i. Correct forward path.

• P→(H1, C1, P1,m
′) = (P1, . . . , Pd).
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• For every i ∈ [d] and content C such that |C| = |Ci|, P→(Hi, C, Pi,m
′) =

(Pi, . . . , Pd).

ii. Correct return path.

• P←(H1, C1, P1,m
′) = (Pd+1, . . . , Ps).

• For every i ∈ {d+1, . . . , s}, reply message m′′ and content C such that |C| = |Ci|,
P→(Hi, C, Pi,m

′′) = (Pd+1, . . . , Ps).

iii. Correct layering. L(H1, C1, P1,m
′) = (H1, C1, . . . ,Hd, Cd, Hd+1, . . . ,Hs),

iv. Correct message. ProcOnion((Hd, Cd), Pd, sk(Pd)) = (R,m),

v. Correct reply message. ProcOnion((Hs, Cs), Ps, sk(Ps)) = (S, (`,m′)) where

(Hs, Cs) are the header and content of the last onion in the evolution E(H1, C1, P1,m
′).

Remark We define onion evolution, (forward and return) paths and layering so that we

can articulate what it means for an onion encryption scheme to be correct. We define

correctness to mean that how an onion peels (the evolution, paths and layerings) exactly

reflects the reverse process of how the onion was built up. Thus, for our definition to make

sense, both ProcOnion and FormReply must be deterministic processes given the secret keys.

4.3 FROES: onion routing in the SUC Framework

In this section, we provide a formal definition of security for repliable onion encryption

schemes. We chose to define security in the simplified universal composability (SUC)

model [CCL15] as opposed to the universal composability (UC) model [Can01] as this

choice greatly simplifies how communication is modeled, in turn, allowing for a more easily

digestible description of the ideal functionality. Additionally, since SUC-realizability im-

plies UC-realizability [CCL15], we do not lose generality by simplifying the model in this

manner.

Communication model In the SUC model, the environment Z can communicate di-

rectly with each party P by writing inputs into P ’s input tape and by reading P ’s output

tape. The parties communicate with each other and also with the ideal functionality through

an additional party, the router R.

We first describe the ideal functionality FROES (ROES, for “repliable onion encryption

scheme”) for the repliable onion encryption scheme. See Figure 4.1 for a summary of FROES.
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IdealSetup

1: Get from ideal adversary A:
P, Bad, G, ProcOnion,
FormReply, SampleOnion,
CompleteOnion, RecoverReply

2: Initialize dictionaries
OnionDict and PathDict

IdealFormOnion(`,m, P→, P←)

1: Break forward path into
segments

2: Run SampleOnion on segments
to generate onion layers

3: Store onion layers in
OnionDict

4: Store label and (rest of)
return path in PathDict

IdealProcOnion((H,C), P )

1: If (P,H) is “familiar”

- If (P,H,C) in OnionDict, return stored

- Else if exists (P,H, (X 6= C)) in OnionDict,
return output of CompleteOnion and stored
party, or “⊥”

- Else if (P,H, ?) in PathDict, return output
of IdealFormOnion on message recovered
using RecoverReply and label and path
stored in PathDict

2: Else if (P,H) is not familiar, return output of
ProcOnion

IdealFormReply(m, (H,C), P )

1: If (P,H,C) in PathDict, return output of
IdealFormOnion on m and label and path stored
in PathDict

2: Else, return output of FormReply

Figure 4.1: Summary of ideal functionality FROES.

4.3.1 Ideal functionality FROES

Notation In this section, honest parties are capitalized, e.g., P , Pi; and corrupt parties are

generally written in lowercase, e.g., p, pi. An onion formed by an honest party is honestly

formed and is capitalized, e.g., O, Oi; whereas, an onion formed by a corrupt party is

generally written in lowercase, e.g., o, oi. Recall that an onion O is a pair, consisting of the

(encrypted) content C and the header H, i.e., O = (H,C).

The ideal functionality FROES handles requests from the environment (to form an onion,

process an onion or form a return onion) on behalf of the ideal honest parties.

Setting up.

Each static setting for a fixed set of participants and a fixed public key infrastructure requires

a separate setup. During setup, FROES gets the following from the ideal adversary A. (For

each algorithm in items (iv)-(vi), we first describe the input of the algorithm in normal font

and then, in italics, provide a brief preview of how the algorithm will be used. FROES only
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runs for a polynomial number of steps which is specified in the public parameters pp and

can time out on running these algorithms from the ideal adversary.)

i. the set P of participants

ii. the set Bad of corrupt parties in P

iii. the repliable onion encryption scheme’s G, ProcOnion and FormReply algorithms:

• G is used for generating the honest parties’ keys.

• ProcOnion is used for processing onions formed by corrupt parties.

• FormReply is used for replying to onions formed by corrupt parties.

iv. the p.p.t. algorithm SampleOnion(1λ, pp, p→, p←,m) that takes as input the secu-

rity parameter 1λ, the public parameters pp, the forward path p→, the (possibly

empty) return path p← and the (possibly empty) message m. The routing path

(p→, p←) = (p1, . . . , pi, Pi+1) is always a sequence (p1, . . . , pi) of adversarial parties,

possibly ending in an honest party Pi+1. F sid
ROES fails if SampleOnion ever samples a

repeating header or key.

SampleOnion is used to compute an onion to send to p1 which will be “peelable” all

the way to an onion for Pi+1. If the return path p← is non-empty and ends in an

honest party Pi+1, SampleOnion produces an onion o for the first party p1 in p→ and

a header H for the last party Pi+1 in p←. Else if the return path p← is empty, and

the forward path p→ ends in an honest party Pi+1, SampleOnion produces an onion o

for the first party p1 in p→ and an onion O for the last party Pi+1 in p→. Else if

the return path p← is empty, and the forward path p→ ends in a corrupt party pi,

SampleOnion produces an onion o for the first party p1 in p→.

v. the p.p.t. algorithm CompleteOnion(1λ, pp, H ′, C) that takes as input the security pa-

rameter 1λ, the public parameters pp, the identity of the party P , the header H ′ and

the content C, and outputs an onion O = (H ′, C ′). F sid
ROES fails if CompleteOnion ever

produces a repeating onion.

CompleteOnion produces an onion (H ′, C ′) that resembles the result of peeling an onion

with content C.

vi. the d.p.t. algorithm RecoverReply(1λ, pp, O, P ) that takes as input the security param-

eter 1λ, the public parameters pp, the onion O and the party P , and outputs a label `

and a reply message m.
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This algorithm is used for recovering the label ` and reply message m from the return

onion O that carries the response from a corrupt recipient to an honest sender.

F creates a copy F sid
ROES of itself for handling instructions pertaining to session-id sid and

sends items (i)-(vi) to F sid
ROES; these items pertain to the same static public key infrastructure

setting.

F sid
ROES generates a public key pair (pk(P ), sk(P )) for each honest party P ∈ P \ Bad

using the key generation algorithm G and sends the public keys to their respective party.

(If working within the global PKI framework, each party then relays his/her key to the

global bulletin board functionality [CSV16].)

F sid
ROES also creates the following (initially empty) dictionaries:

• The onion dictionary OnionDict supports:

– a method put((P,H,C), (role, output)) that stores under the label (P,H,C): the

role “role” and the output “output”

– a method lookup(P,H,C) that looks up the entry (role, output) corresponding to

the label (P,H,C)

• The return path dictionary PathDict supports:

– a method put((P,H,C), (P←, `)) that stores under the label (P,H,C): the return

path P← and the label `

– a method lookup(P,H,C) that looks up the entry (P←, `) corresponding to the

label (P,H,C)

These data structures are stored internally at and are accessible only by F sid
ROES.

Forming an onion.

After setup, the environment Z can instruct an honest party P to form an onion using the

session-id sid, the label `, the message m, the forward path P→ and the return path P←.

To form the onion, P forwards the instruction from Z to F sid
ROES (via the router R).

The goal of the ideal functionality F sid
ROES is to create and maintain state information for

handling an onion O (the response to the “form onion” request). O should be “peelable”

by the parties in the forward path P→, internally associated with the return path P←, and

for the purpose of realizing this functionality by an onion encryption scheme, each layer of
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the onion should look “believable” as onions produced from running FormOnion, ProcOnion

or FormReply.

Importantly, O and its onion layers should reveal no information to A, by which we

mean the following:

• Each onion routed to an honest party Pi is formed initially with just (Pi) as the

routing path and, therefore, reveals only that it is for Pi. When forming the onion, no

message is part of the input; this ensures that the onion is information-theoretically

independent of any message m.

• For every party pi or Pi in the forward path, let next(i) denote the index of

the next honest party Pnext(i) following pi. For example, if the forward path is

(P1, p2, p3, P4, P5, p6, p7), then next(2) = 4.

Conceptually, each onion routed to an adversarial party pi is formed by “wrapping”

an onion layer for each corrupt party in (pi, . . . , pnext(i)−1) (or (pi+1, . . . , p|P→|) if no

honest party after pi exists) around an onion formed for an honest party Pnext(i) (or

a message if no honest party after pi exists). This reveals at most the sequence

(pi, . . . , pnext(i)−1, Pnext(i)) (or the sequence (pi, . . . , p|P→|) and the message m if no

honest party after pi exists). How this wrapping occurs depends on the internals of

the SampleOnion algorithm provided by the ideal adversary.

To ensure these properties, the ideal functionality partitions the forward path P→ into

segments, where each segment starts with a sequence of corrupt parties and ends with a

single honest party:

Let Pf (f , for first) be the first honest party in the forward path. The first couple of

segments are (p1, . . . , pf−1, Pf ), (pf+1, . . . , pnext(f)−1, Pnext(f)), etc.

For each segment (pi, . . . , pj−1, Pj), the ideal functionality F sid
ROES samples onions

(hi, ci) and (Hj , Cj) using the algorithm SampleOnion, i.e., ((hi, ci), (Hj , Cj)) ←
SampleOnion(1λ, pp, (pi, . . . , pj−1, Pj), (),⊥).

Let Pe (e, for end) be the last honest party in the forward path P→, and let Pnext(d) de-

note the first honest party in the return path P←. If the recipient pd is corrupt, then F sid
ROES

also runs SampleOnion(1λ, pp, (pe+1, . . . , pd), (pd+1, . . . , pnext(d)−1, Pnext(d)),m); this produces

an onion oe+1 and a header Hnext(d).

For every honest intermediary party Pi in the forward path, F sid
ROES stores under the

label (Pi, Hi, Ci) in the onion dictionary OnionDict the role “I”, the (i + 1)-st onion layer

(Hi+1, Ci+1) and destination Pi+1. The (d+1)-st onion layer doesn’t exist for the innermost
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layer (Hd, Cd) for an honest recipient Pd. In this case, F sid
ROES stores just the role “R” and

the message m.

If the recipient Pd is honest, F sid
ROES stores the entry ((Pd, Hd, Cd), (P

←, `)) in the

dictionary PathDict. Otherwise if the recipient pd is corrupt, F sid
ROES stores the entry

((Pnext(d), Hnext(d), ∗), (p←, `)) in PathDict where p← = (pnext(d)+1, . . . , Ps). (“∗” is the unique

symbol that means “any content”.)

IdealFormOnion(`,m, (P1, . . . , Pd), (Pd+1, . . . , Ps))

1 : cur = 1

2 : next = next(cur)

3 : while next ≤ d
4 : p→ = (pcur+1, . . . , pnext−1, Pnext)

5 : (ocur+1, Onext, κnext)← SampleOnion(1λ, pp, p→, (),⊥)

6 : cur = next

7 : next = next(cur)

8 : if the recipient pd is corrupt

9 : p→ = (pcur+1, . . . , pd)

10 : p← = (pd+1, . . . , pnext(d)−1, Pnext(d))

11 : (ocur+1, Hnext(d), κnext(d))← SampleOnion(1λ, pp, p→, p←,m)

12 : cur = next(1)

13 : while cur < d

14 : OnionDict.put((Pcur, Hcur, Ccur), (I, ((Hcur+1, Ccur+1), Pcur+1), κcur+1)

15 : if the recipient Pd is honest

16 : OnionDict.put((Pd, Hd, Cd), (R,m),⊥)

17 : PathDict.put((Pd, Hd, Cd), (P
←, `))

18 : else if next(d) ≤ s
19 : ((Pnext(d), Hnext(d), ∗), ((pnext(d)+1, . . . , Ps, `))

20 : return (H1, C1)

Figure 4.2: Pseudocode for FROES’s “onion forming” algorithm IdealFormOnion. On input
the label `, the message m, the forward path (P1, . . . , Pd) and the return path (Pd+1, . . . , Ps),
IdealFormOnion outputs an onion (H1, C1). When IdealFormOnion forms onions for the
return path, it outputs string “S” in place of “R” (in line 19).

See Figure 4.2 for the pseudocode for F sid
ROES ’s “onion forming” algorithm.

Example 1. The recipient P7 is honest. The forward path is P→ =

(P1, p2, p3, P4, P5, p6, P7 ), and the return path is P← = (p8, p9, P10, p11, P12). In this case,
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the first segment is (P1), and the second segment is (p2, p3, P4) and so on; and

(⊥, (H1, C1))←SampleOnion(1λ, pp, (P1), (),⊥)

((h2, c2), (H4, C4))←SampleOnion(1λ, pp, (p2, p3, P4), (),⊥)

(⊥, (H5, C5))←SampleOnion(1λ, pp, (P5), (),⊥)

((h6, c6), (H7, C7))←SampleOnion(1λ, pp, (p6, P7), (),⊥).

F sid
ROES stores in OnionDict:

OnionDict.put((P1, H1, C1), (I, ((h2, c2), p2)))

OnionDict.put((P4, H4, C4), (I, ((H5, C5), P5)))

OnionDict.put((P5, H5, C5), (I, ((h6, c6), p6)))

OnionDict.put((P7, H7, C7), (R,m)),

and stores in PathDict:

PathDict.put((P7, H7, C7), ((p8, p9, P10, p11, P12), `)).

Example 2. The recipient p7 is corrupt. The forward path is P→ =

(P1, p2, p3, P4, P5, p6, p7 ), and the return path is P← = (p8, p9, P10, p11, P12). In this case,

(⊥, (H1, C1))←SampleOnion(1λ, pp, (P1), (),⊥)

((h2, c2), (H4, C4))←SampleOnion(1λ, pp, (p2, p3, P4), (),⊥)

(⊥, (H5, C5))←SampleOnion(1λ, pp, (P5), (),⊥)

(o6, H10)←SampleOnion(1λ, pp, (p5, p6, p7), (p8, p9, P10),m).

F sid
ROES stores in OnionDict:

OnionDict.put((P1, H1, C1), (I, ((h2, c2), p2)))

OnionDict.put((P4, H4, C4), (I, ((H5, C5), P5)))

OnionDict.put((P5, H5, C5), (I, ((h6, c6), p6))),

and stores in PathDict:

PathDict.put((P10, H10, ∗), ((p11, P12), `)).

After updating OnionDict and PathDict, F sid
ROES returns the first onion O1 = (H1, C1) to

party P (via the router R). Upon receiving O1 from F , P outputs the session id sid and

O1.
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Processing an onion.

After setup, the environment Z can instruct an honest party P to process an onion O =

(H,C) for the session-id sid. To process the onion, party P forwards the instruction to the

ideal functionality F sid
ROES (via the router R).

The ideal functionality first checks if there is an entry under (P,H,C) in the dictionary

OnionDict.

Case 1 There is an entry (role, output) under the label (P,H,C) in OnionDict. In this

case, F sid
ROES responds to P (via the router R) with (role, output).

Case 2 There is no entry under the label (P,H,C) in OnionDict, but there exists X 6= C

such that there is an entry (I, ((H ′, X ′), P ′), k) under the label (P,H,X) in OnionDict.

In this case, F sid
ROES samples an onion (H ′, C ′) ← CompleteOnion(1λ, pp, H ′, C), stores the

new entry (I, ((H ′, C ′), P ′)) under the label (P,H,C) in OnionDict and responds to P with

(I, ((H ′, X ′), P ′)).

Case 3 There is no entry under the label (P,H,C) in OnionDict, but there exists X 6= C

such that there is an entry (R,m) under the label (P,H,X) in OnionDict. In this case,

F sid
ROES responds to P with (R,⊥).

Case 4 There is no entry under the label (P,H,C) in OnionDict, but there exists X 6= C

such that there is an entry (S, (`,m)) under the label (P,H,X) in OnionDict. In this case,

F sid
ROES responds to P with (S,⊥).

Case 5 There is no entry starting with (P,H) in OnionDict, but there is an entry (P←, `)

under the label (P,H, ∗) in PathDict. Let m′ be the message obtained from running

RecoverReply(1λ, pp, O, P ).

If P← is not empty, F sid
ROES runs its “form onion” code (IdealFormOnion in Figure 4.2)

with (`,m′) as the “message”, P← as the forward path and the empty list “()” as the return

path. (IdealFormOnion is run with auxiliary information for correctly labeling the last party

in P← as the sender.) In this case, F sid
ROES responds to P with (I, ((H ′, C ′), P ′)), where

(H ′, C ′) is the returned onion, and P ′ is the first party in P←.

Otherwise if P← is empty, then P is the recipient of the return onion, so F sid
ROES responds

to P with (S, (`,m′)).
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Case 6 F sid
ROES doesn’t know how to peel O (i.e., there is no entry starting with

(P,H) in OnionDict and no entry under (P,H, ∗) in PathDict). In this case, O does

not have an honestly formed header; so, F sid
ROES responds to P with (role, output) =

ProcOnion(1λ, pp, O, P, sk(P )).

Upon receiving the response (role, output) from F sid
ROES, P outputs the session id sid and

(role, output).

Forming a reply.

After setup, the environment Z can instruct an honest party P to form a reply using the

session-id sid, the reply message m and an onion O = (H,C). To form the return onion, P

forwards the instruction to the ideal functionality F sid
ROES (via the router R).

Upon receiving the forwarded request, F sid
ROES looks up (P,H,C) in PathDict.

Case 1 There is an entry (P←, `) under the label (P,H,C) in PathDict. Then F sid
ROES

runs its “form onion” code (IdealFormOnion in Figure 4.2) with (`,m) as the “message”,

P← as the forward path and the empty list “()” as the return path. (IdealFormOnion is run

with auxiliary information for correctly labeling the last party in P← as the sender.) F sid
ROES

responds to P (via the router R) with the returned onion O′ and the first party P ′ in P←.

Case 2 No entry exists for (P,H,C) in PathDict. Then P is replying to an onion formed by

an adversarial party, so F sid
ROES replies to P with (O′, P ′) = FormReply(1λ, pp,m,O, P, sk(P )).

Upon receiving the response (O′, P ′) from F sid
ROES, P outputs the session id sid and (O′, P ′).

4.3.2 SUC-realizability of FROES

Ideal protocol In the ideal onion routing protocol, the environment Z interacts with

the participants by writing instructions into the participants’ input tapes and reading the

participants’ output tapes. Each input is an instruction to form an onion, process an

onion or form a return onion. When an honest party P receives an instruction from Z, it

forwards the instruction to the ideal functionality FROES via the router R. Upon receiving

a response from FROES (via R), P outputs the response. Corrupt parties are controlled

by the adversary A and behave according to A. F sid
ROES does not interact with A after the

setup phase.

At the end of the protocol execution, Z outputs a bit b. Let IDEALFROES,A,Z(1λ, pp)

denote Z’s output after executing the ideal protocol for security parameter 1λ and public

parameters pp.



82

Real protocol Let Σ be a repliable onion encryption scheme. The real onion routing

protocol for Σ is the same as the ideal routing protocol (described above), except that the

honest parties simply run Σ’s algorithms to form and process onions.

Let REALΣ,A,Z(1λ, pp) denote Z’s output after executing the real protocol.

Definition 15 (SUC-realizability of FROES). The repliable onion encryption scheme Σ

SUC-realizes the ideal functionality FROES if for every p.p.t. real-model adversary A, there

exists a p.p.t. ideal-model adversary S such that for every polynomial-time balanced envi-

ronment Z, there exists a negligible function ν(λ) such that∣∣∣Pr
[

IDEALFROES,S,Z(1λ, pp) = 1
]
−Pr

[
REALΣ,A,Z(1λ, pp) = 1

]∣∣∣ ≤ ν(λ).

4.3.3 Remarks

On the assumption that keys are consistent with PKI In describing the ideal func-

tionality, we made an implicit assumption that for every instruction to form an onion, the

keys match the parties on the routing path. However, generally speaking, the environ-

ment Z can instruct an honest party to form an onion using the wrong keys for some of the

parties on the routing path. Using the dictionary OnionDict, it is easy to extend our ideal

functionality to cover this case: the ideal functionality would store in OnionDict, every onion

layer for an honest party, starting from the outermost layer, until it reaches a layer with a

mismatched key. To keep the exposition clean, we will continue to assume that inputs are

well-behaved, i.e., router names are valid, and keys are as published.

On replayed onions As originally noted by Camenisch and Lysyanskaya [CL05], the

environment is allowed to repeat the same input (e.g., a “process onion” request) in the

UC framework (likewise, in the SUC framework). Thus, replay attacks are not only allowed

in our model but inherent in the SUC framework. The reason that replay attacks are a

concern is that they allow the adversary to observe what happens in the network as a result

of repeatedly sending an onion over and over again — which intermediaries are involved, etc

— and that potentially allows the adversary to trace this onion. Our functionality does not

protect from this attack (and neither did the CL functionality), but a higher-level protocol

can address this by directing parties to ignore repeat “process onion” and “form reply”

requests. Other avenues to address this (which can be added to our functionality, but we

chose not to so as not to complicate it further) may include letting onions time out, so the

time frame for repeating them could be limited.
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4.4 Shallot Encryption: our repliable onion encryption

scheme

In this section, we provide our construction of a repliable onion encryption scheme dubbed

“Shallot Encryption Scheme”. Like in Camenisch and Lysyanskaya’s construction [CL05],

each onion layer for a party P is encrypted under a key k which, in turn, is encrypted under

the public key of P and a tag t. Our construction differs from the original construction

in that the tag t is not a function of the layer’s content. Instead, authentication of the

message happens separately, using a message authentication code (MAC). The resulting

object is more like a shallot than an onion; it consists of two layered encryption objects:

the header and the content (which may contain a “bud”, i.e., another layered encryption

object, namely the header for the return onion). We still call these objects “onions” to be

consistent with prior work, but the scheme overall merits the name “shallot encryption”.

Notation Let λ denote the security parameter. Let {Fseed(·,·)}seed∈{0,1}∗ be a pseudo-

random function (PRF) of two inputs. Let {fk(·)}k∈{0,1}∗ and {gk(·)}k∈{0,1}∗ be block

ciphers, i.e., pseudorandom permutations (PRPs). We use the same key to key both block

ciphers: one ({fk(·)}k∈{0,1}∗) with a “short” blocklength L1(λ) is used for forming headers,

the other ({gk(·)}k∈{0,1}∗) with a “long” blocklength L2(λ) is used for forming contents. This

is standard and can be constructed from regular block ciphers. Following the notational

convention introduced by Camenisch and Lysyanskaya [CL05], let {X}k denote fk(X) (or

gk(X)) , and let }X{k denote f−1
k (X) (or g−1

k (X)).

Let E = (GenE ,Enc,Dec) be a CCA2-secure encryption scheme with tags [CS98], let

MAC = (GenMAC,Tag,Ver) be a MAC, and let h be a collision-resistant hash function.

4.4.1 Setting up

Each party Pi forms a public key pair (pk(Pi), sk(Pi)) using the public key encryption

scheme’s key generation algorithm GenE , i.e., (pk(Pi), sk(Pi))← GenE(1
λ, pp, Pi).

4.4.2 Forming a repliable onion

Each onion consists of (1) the header (i.e., the encrypted routing path and associated keys)

and (2) the content (i.e., the encrypted message).

Forming the header In our example, let Anna (denoted Ps) be the sender, and let

Roberto (denoted Pd, d for destination) be the recipient. To form a repliable onion, Anna
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receives as input a label `, a message m, a forward path to Roberto

P→ = P1, . . . , Pd−1, Pd, |P→| = d ≤ N,

and a return path to herself:

P← = Pd+1, . . . , Ps−1, Ps, |P←| = s− d+ 1 ≤ N.

In other words, Roberto is Pd, and Anna is Ps. All other participants Pi are intermediaries.

Let “seed” be a seed stored in sk(Ps). Anna computes (i) an encryption key ki =

Fseed(`, i) for every party Pi on the routing path (P→, P←), (ii) an authentication key Kd

for Roberto using GenMAC(1λ) with Fseed(d, `) sourcing the randomness for running the key

generation algorithm and (iii) an authentication key Ks for herself using GenMAC(1λ) with

Fseed(s, `) sourcing the randomness for running the key generation algorithm.

Remark: We can avoid using a PRF in exchange for requiring state; an alternative to

using a PRF is to store keys computed from true randomness locally, e.g., in a dictionary.

The goal of FormOnion is to produce an onion O1 for the first party P1 on the routing

path such that P1 processing O1 produces the onion O2 for the next destination P2 on the

routing path, and so on.

Suppose for the time being that d = s− d+ 1 = N .

Let O be an onion peelable by party P . The header of O is a sequence H =

(E,B1, . . . , BN−1). E is an encryption under the tag t = h(B1, . . . , BN−1) of (i) P ’s role,

(ii) P ’s encryption key k (or label `) and (iii) authentication key K (if it exists). The decryp-

tion }B1{k reveals the destination P ′ and the ciphertext E′ of the peeled onion. For each

1 < j < N , the decryption }Bj{k is block (B′)j−1 of the peeled onion, so the header of the

peeled onion will begin with (E′, (B′)1, . . . , (B′)N−2). The final block (B′)N−1 of the header

is formed by “decrypting” the all-zero string of length L1(λ), i.e., (B′)N−1 =}0 . . . 0{k.
Anna first forms the header Hd = (Ed, B

1
d , . . . , B

N−1
d ) for the last onion Od on the

forward path (the one to be processed by Roberto): For every i ∈ {1, . . . , N − 1}, let

Bi
d = } . . . }0 . . . 0{ki . . . {kd−1

.

The tag td for integrity protection is the hash of these blocks concatenated together, i.e.,

td = h(B1
d , . . . , B

N−1
d ).

The ciphertext Ed is the encryption of (R, kd,Kd) under the public key pk(Pd) and the tag

td, i.e.,

Ed ← Enc(pk(Pd), td, (R, kd,Kd)).
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The headers of the remaining onions in the evolution are formed recursively. Let

B1
d−1 = {Pd, Ed}kd−1

,

Bi
d−1 = {Bi−1

d }kd−1
, ∀i ∈ {2, . . . , N − 1},

td−1 = h(B1
d−1, . . . , B

N−1
d−1 ),

Ed−1 ← Enc(pk(Pd−1), td−1, (I, kd−1));

and so on. (WLOG, we assume that (Pd, Ed) “fits” into a block; i.e., |Pd, Ed| ≤ L1(λ). A

block cipher with the correct blocklength can be built from a standard one [KL14,BS15].)

See FormHeader in Figure 4.3.

Forming the encrypted content Anna then forms the encrypted content for Roberto.

First, if the return path P← is non-empty, Anna forms the header Hd+1 for the return

onion using the same procedure that she used to form the header H1 for the forward onion,

but using the return path P← instead of the forward path P→ and encrypting (S, `) instead

of (R, ks,Ks). That is, the ciphertext Es of the “innermost” header Hs is the encryption

Enc(pk(Ps), ts, (S, `)) rather than Enc(pk(Ps), ts, (R, ks,Ks)). If the return path is empty,

then Hd+1, ks and Ks are the empty string.

When Roberto processes the onion, Anna wants him to receive (i) the message m,

(ii) the header Hd+1 for the return onion, (iii) the keys ks and Ks for forming a reply

to the anonymous sender (Anna) and (iv) the first party Pd+1 on the return path. So,

Anna sets the “meta-message” M to be the concatenation of m, Hd+1, ks, Ks and Pd+1:

M = (m,Hd+1, ks,Ks, Pd+1).

Anna wants Roberto to be able to verify that M is the meta-message, so she also

computes the tag σd = Tag(Kd,M). (WLOG, (M,σd) “fits” exactly into a block; i.e.,

|M | ≤ L2(λ).)

The encrypted content Ci for each onion Oi on the forward path is given by:

Ci = {. . . {M,σd}kd . . . }ki ;

see FormContent in Figure 4.3.

We now explain what happens when d 6= N , or s− d+ 1 6= N :

If either d or s − d + 1 exceed the upper bound N , then FormOnion returns an error.

If d is strictly less than N , the header is still “padded” to N − 1 blocks by sampling N

encryption keys as before. Likewise if s− d+ 1 < N , the header is padded to N − 1 blocks

in similar fashion.
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4.4.3 Processing a repliable onion (in the forward direction)

Let Carol be an intermediary node on the forward path from Anna to Roberto. When Carol

receives the onion Oi = (Hi, Ci) consisting of the header Hi = (Ei, B
1
i , . . . B

N−1
i ) and the

content Ci, she processes it as follows:

Carol first computes the tag ti = h(B1
i , . . . B

N−1
i ) for integrity protection and then

attempts to decrypt the ciphertext Ei of the header using her secret key sk(Pi) and the tag

ti to obtain her role and key(s), i.e.,

(I, ki) = Dec(sk(Pi), ti, Ei).

Carol succeeds in decrypting Ei only if the header has not been tampered with. In this case,

she gets her role “I” and the key ki and proceeds with processing the header and content:

Carol first decrypts the first block B1
i of the current header to retrieve the next desti-

nation Pi+1 and ciphertext Ei+1 of the processed header (header of the next onion), i.e.,

(Pi+1, Ei+1) = }B1
i {ki .

To obtain the first N − 2 blocks of the processed header, Carol decrypts the last N − 2

blocks of H:

Bj
i+1 = }Bj+1

i {ki ∀j ∈ [N − 2].

To obtain the last block of the processed header, Carol “decrypts” the all-zero string

“(0 . . . 0)”:

BN−1
i+1 = }0 . . . 0{ki .

To process the content, Carol simply decrypts the current content Ci:

Ci+1 = }Ci{ki .

See ProcOnion in Figure 4.4.

4.4.4 Replying to the anonymous sender

When Roberto receives the onion Od = (Hd, Cd), he processes it in the same way that the

intermediary party Carol does, by running ProcOnion:

Roberto first decrypts the ciphertext Ed of the header to retrieve his role “R” and the

keys kd and Kd. If Od hasn’t been tampered with, Roberto retrieves the meta-message M =
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(m,Hd+1, ks,Ks, Pd+1) and the tag σd that Anna embedded into the onion by decrypting

the content Cd using the key kd:

((m,Hd+1, ks,Ks, Pd+1), σd) = }Cd{kd .

Roberto can verify that the message is untampered by running the MAC’s verification

algorithm Ver(Kd,M, σd).

To respond to the anonymous sender (Anna) with the message m′, Roberto creates a

new encrypted content using the keys ks and Ks:

Cd+1 = {m′,Tag(Ks,m
′)}ks .

Roberto sends the reply onion Od+1 = (Hd+1, Cd+1) to the next destination Pd+1. See

ProcOnion and FormReply in Figures 4.4 and 4.5.

4.4.5 Processing a repliable onion (in the return direction)

Let David be an intermediary party on the return path. When David receives the onion Oj ,

he processes it exactly in the same way that Carol processed the onion Oi in the forward

direction; he also runs ProcOnion in Figure 4.4.

4.4.6 Reading the reply

When Anna receives the onion Os, she retrieves the reply from Roberto by first processing

the onion, by running ProcOnion:

Anna first decrypts the ciphertext Es of the header to retrieve her role “S” and the

label `. She reconstructs the each encryption key ki = Fseed(`, i) and the authentication key

Ks using the pseudo-randomness Fseed(s, `). (Alternatively, if she stored the keys locally,

she looks up the keys associated with label ` in a local data structure). If Os hasn’t been

tampered with, Anna retrieves the reply m′ that Roberto embedded into the onion by

decrypting the content Cs using the keys (kd+1, . . . , ks):

(m′, σs) =}{. . . {Cs}ks−1 . . . }kd+1
{ks .

Anna can verify that the message is untampered by running Ver(Ks,m
′, σs). See ProcOnion

in Figure 4.4.
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SES.FormOnion(`,m, (P1, . . . , Pd), P
←)

1 : (H1, . . . ,Hd, k1, . . . , kd,Kd)← FormHeader(→, `, (P1, . . . , Pd))

2 : (C1, . . . , Cd), H
←, k←)← FormContent(`,m, P←, k1, . . . , kd,Kd)

3 : return (((H1, C1), . . . , (Hd, Cd)), H
←, ((k1, . . . , kd,Kd), k

←))

SES.FormHeader(direction, `, (P1, . . . , PN ))

1 : kj = Fseed(`, j) , ∀j ∈ [N ]

2 : KN = GenMAC(1λ, Fseed(N, `))

3 : BiN = } . . . }0 . . . 0{ki . . . {kN−1
, ∀i ∈ {1, . . . , N − 1}

4 : if direction =→
5 : EN ← Enc(pk(PN ), h(B1

N , . . . , B
N−1
N ), (R, kN ,KN ))

6 : else (if direction =←)

7 : EN ← Enc(pk(PN ), h(B1
N , . . . , B

N−1
N ), (S, `))

8 : HN = (EN , B
1
N , . . . , B

N−1
N )

9 : for all j from N − 1 to 1

10 : B1
j = {PN , EN}kj

11 : Bij = {Bi−1j+1}kj , ∀i ∈ {2, . . . , N − 1}

12 : Ej ← Enc(pk(Pj), h(B1
j , . . . , B

N−1
j ), (I, kj))

13 : Hj = (Ej , B
1
j , . . . , B

N−1
j )

14 : return (H1, . . . ,HN , k1, . . . , kN ,KN )

SES.FormContent(`,m, (Pd+1, . . . , Ps), k1, . . . , kd,Kd)

1 : (Hd+1, . . . ,Hs, kd+1, . . . , ks,Ks)← FormHeader(←, `, (Pd+1, . . . , Ps))

2 : M = (Hd+1,m, ks,Ks, Pd+1)

3 : σd = Tag(Kd,M)

4 : Cd = {M,σd}kd
5 : for all j from d− 1 to 1

6 : Cj = {Cj+1}kj
7 : return ((C1, . . . , Cd), (Hd+1, . . . ,Hs), (k1, . . . , kd,Kd))

Figure 4.3: Pseudocode for Shallot Encryption Scheme’s FormOnion. On input the label `,
the message m, the forward path P→ and the return path P← (and the public keys asso-
ciated with the routing path), FormOnion outputs onions O→, headers H← and associated
keys κ.

4.5 Proof that Shallot Encryption SUC-realizes FROES

In this section, we prove that our construction (in Section 4.4) SUC-realizes the ideal func-

tionality FROES.
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SES.ProcOnion(((E,B1, . . . , BN−1), C), P )

1 : (role, key, H ′, P ′)← ProcHeader((E,B1, . . . , BN−1), P )

2 : C ′ = ProcContent(role, key, C)

3 : if role = I, return (I, ((H ′, C ′), P ′))

4 : else, return (role, C ′)

SES.ProcHeader((E,B1, . . . , BN−1), P )

1 : t = h(B1, . . . , BN−1)

2 : (role, key) = Dec(sk(P ), t, E)

3 : if role = I

4 : (P ′, E′) = }B1{key
5 : (B′)j = }Bj+1{key , ∀j ∈ [N − 2]

6 : (B′)N−1 = }0 . . . 0{key
7 : return (I, key, (E′, (B′)1, . . . , (B′)N−1), P ′)

8 : else

9 : return (role, key,⊥,⊥)

SES.ProcContent(role, key, C)

1 : if role = I

2 : return }C{key
3 : if role = R

4 : parse key = (kd,Kd)

5 : ((Hd+1,m, ks,Ks, Pd+1), σd) = }C{kd
6 : if Ver(Kd, (Hd+1,m, ks,Ks, Pd+1), σd) = 1, return m

7 : else, return ⊥
8 : else

9 : reconstruct keys kd+1, . . . , ks,Ks from key

10 : (m,σs) = }{. . . {C}ks−1 . . . }kd+1
{ks

11 : if Ver(Ks,m, σs) = 1, return (`,m)

12 : else, return ⊥
Figure 4.4: Pseudocode for Shallot Encryption Scheme’s ProcOnion. On input the onion
((E,B1, . . . , BN−1), C) and the party P (and the secret key of P ), ProcOnion returns a role
(either I, R or S) and an output (either an onion and next destination ((H ′, C ′), P ′) or a
decrypted content C ′).

To do this, we must show that for any static setting (fixed adversary A, set Bad of

corrupted parties and public key infrastructure), there exists a simulator S such that for all
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SES.FormReply(m′, (H,C), P )

1 : (role, key, H ′, P ′)← ProcHeader(H,P )

2 : if role = R

3 : parse key = (kd,Kd)

4 : ((Hd+1,m, ks,Ks, Pd+1), σd) = }C{kd
5 : if Ver(Kd, (Hd+1,m, ks,Ks, Pd+1), σd) = 1

6 : σs = Tag(Ks,m
′)

7 : return ((Hd+1, {m′, σs}ks), Pd+1)

8 : else, return (⊥,⊥)

9 : else, return (⊥,⊥)

Figure 4.5: Pseudocode for Shallot Encryption Scheme’s FormReply. On input the reply
message m′, the onion (H,C) and the party P (and the secret key of P ), FormReply returns
a return onion (Hd+1, {m′, σs}ks) and next destination Pd+1.

Z, there exists a negligible function ν : N 7→ R such that∣∣∣Pr
[

IDEALFROES,S,Z(1λ, pp) = 1
]
−Pr

[
REALSES,A,Z(1λ, pp) = 1

]∣∣∣ ≤ ν(λ),

where REALSES is the environment’s output in the real process.

We first provide a description of the simulator S.

Recall that during setup, the ideal adversary (i.e., S) sends to the ideal functionality,

(i) the set P of participants, (ii) the set Bad ⊆ P of corrupted parties, (iii) the onion encryp-

tion scheme’s algorithms: G, ProcOnion and FormReply, (iv) the algorithm SampleOnion,

(v) the algorithm CompleteOnion and (vi) the algorithm RecoverReply. (See Section 4.3.1

for the syntax of these algorithms.)

In order for our construction to be secure, the simulator S must provide items (i)-(vi) to

FROES such that when the ideal honest parties respond to the environment, one input at a

time, the running history of outputs looks like one produced from running the real protocol

using the onion encryption scheme.

To complete the description of S, we must provide internal descriptions of how the last

three items above—SampleOnion, CompleteOnion and RecoverReply—work. Since we are in

the static setting, we will assume, WLOG, that these algorithms “know” who is honest,

who is corrupt and all relevant keys. See Figure 4.6 for a summary of the simulator.
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Send to FROES:

P, Bad, G, ProcOnion, FormReply,
SampleOnion, CompleteOnion,
RecoverReply

CompleteOnion(H ′, C)

Return the header H ′ along with
a randomly chosen string C ′

SampleOnion(p→, p←,m)

SampleOnion just runs FormOnion on the segments p→

and p← using the all-zero label and, depending on
whether the first segment contains the corrupt
recipient, either the correct message m (if it does) or
a random one (if it doesn’t).

RecoverReply(O,P )

Return output of ProcOnion

Figure 4.6: Summary of simulator S

4.5.1 Description of simulator S

Sampling an onion.

Let F sid
ROES denote the ideal functionality corresponding to the static setting. When the

ideal functionality F sid
ROES receives a request from the honest party P to form an onion

using the label `, the message m, the forward path P→ and the return path P←, F sid
ROES

partitions the routing path (P→, P←) into “segments” where each segment is a sequence of

adversarial parties that may end in a single honest party. (See Section 4.3.1 for a more formal

description of these segments.) F sid
ROES runs the algorithm SampleOnion independently on

each segment of the routing path. Additionally, if the forward path ends in a corrupt party,

F sid
ROES runs SampleOnion on the last segment of the forward path and the first segment of

the return path. Using SampleOnion in this way produces onions with the property that

onions belonging to different segments are information-theoretically unrelated to each other.

The algorithm SampleOnion takes as input the security parameter 1λ, the public param-

eters pp, the forward path p→ and the return path p←.

Case 0 The routing path (p→, p←) is not a sequence of adversarial parties, possibly ending

in an honest party. In this case, the input is invalid, and SampleOnion returns an error.

Case 1 The return path p← is non-empty and ends in an honest party Pj . In this case,

SampleOnion first samples a random label x←$L(1λ) and then runs FormOnion on the label

x, the message m (from the “form onion” request), the forward path p→ = (p1, . . . , pi), the

public keys pk(p→) associated with the parties in p→, the return path p← = (pi+1, . . . , Pj)

and the public keys pk(p←) associated with the parties in p←. Finally, SampleOnion outputs

the first onion o1 and the last header Hj in the output ((o1, . . . , oi), (hi+1, . . . ,Hj), κ) ←
FormOnion(1λ, pp, x,m, p→, pk(p→), p←, pk(p←)).
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Case 2 The return path p← is empty, and the forward path p→ ends in an honest

party Pi. In this case, SampleOnion first samples a random label x←$L(1λ) and a

random message y←$M(1λ) and then runs FormOnion on the label x, the message y,

the forward path p→ = (p1, . . . , Pi), the public keys pk(p→) associated with the par-

ties in p→, the empty return path “()” and the empty sequence “()” of public keys.

Finally, SampleOnion outputs the first onion o1 and the last onion Oi in the output

((o1, . . . , Oi), (), κ)← FormOnion(1λ, pp, x, y, p→, pk(p→), (), ()).

Case 3 The return path p← is empty, and the forward path p→ ends in a corrupt party pi.

In this case, SampleOnion first samples a random label x←$L(1λ) and then runs FormOnion

on the label x, the message m (from the “form onion” request), the forward path p→ =

(p1, . . . , pi), the public keys pk(p→) associated with the parties in p→, the empty return path

“()” and the empty sequence “()” of public keys. Finally, SampleOnion outputs the first

onion o1 in the output ((o1, . . . , oi), h
←, κ)← FormOnion(1λ, pp, x,m, p→, pk(p→), (), ()).

Completing an onion.

The environment Z can modify just the content of an honestly formed onion O = (H,X),

leaving the header H intact. When Z instructs an honest party P to process this kind

of onion O = (H,C), the ideal functionality F sid
ROES runs the algorithm CompleteOnion to

produce an onion (H ′, C ′) that (i) looks like the output of ProcOnion on (H,C) and (ii) has

the same header H ′ that F sid
ROES assigned to the peeled onion (H ′, X ′) of (H,X).

To do this, the algorithm CompleteOnion(1λ, pp, H ′, C) samples a random string

C ′←$ {0, 1}L2(λ), where {0, 1}L2(λ) corresponds to the blocklength for the PRP (in the

construction), and outputs (H ′, C ′).

Recovering a reply message.

The environment Z can instruct an honest party P to process a return onion O formed

by a corrupt recipient pd in response to an onion from an honest sender; P can be an

intermediary party on the return path or the original sender. In such a situation, the ideal

functionality F sid
ROES runs the algorithm RecoverReply to recover the reply message from O.

The algorithm RecoverReply(1λ, pp, O, P ) simply runs ProcOnion(O,P, sk(P )) and re-

turns the message in the output.
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4.5.2 A cryptographic definition of security

To prove that our onion encryption scheme SUC-realizes the ideal functionality FROES, it

will be useful to first show that the scheme satisfies repliable-onion security. Informally, an

onion encryption scheme is repliable-onion secure if the adversary cannot tell (i) whether

an honest receiver of an honestly formed onion is an intermediary for the onion or the

recipient, (ii) whether an honest transmitter of an honestly formed onion is an intermediary

for the onion or the sender and (iii) how far an honestly formed onion is from its origin and

destination.

Formally, we define repliable-onion security using the game, ROSecurityGame. See Fig-

ure 4.7 for a summary of the game.

1: A picks honest parties’ router names QI and QS

2: C sets keys for honest parties

3: A gets oracle access to oracles—O.POI, O.FRI, O.POS and O.FRS— for processing
onions and replying to them on behalf of QI and QS

4: A provides input for challenge onion

5: C flips a coin b←$ {0, 1}

6: If b = 0, C forms onion specified by A

7: If b = 1, C forms onion with “switch” at QI and modifies oracles accordingly.

(a) If QI is on the forward path, to peel the onion on behalf of QI, O.POI forms a
new onion using the remainder of the routing path

(b) If QI is the recipient, to form a reply on behalf of QI, O.FRI forms a new onion
using the return path as the forward path (and the empty return path)

(c) If QI is on the return path, to peel the onion of behalf of QI, O.POI forms a
new onion using the remainder of the return path as the forward path (and the
empty return path)

8: A gets oracle access to O.POI, O.FRI, O.POS and O.FRS

9: A guesses b′ and wins if b′ = b

Figure 4.7: Summary of the repliable onion security game, ROSecurityGame.

ROSecurityGame(1λ,Σ,CompleteOnion,A) is parametrized by the security parameter 1λ,

the repliable onion encryption scheme Σ = (G,FormOnion,ProcOnion,FormReply), the p.p.t.

algorithm CompleteOnion and the adversary A.

1. The adversary A picks two router names QI, QS ∈ P (“I”, for intermediary and “S,
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for sender) and sends them to the challenger C.

2. The challenger C generates key pairs (pk(QI), sk(QI)) and (pk(QS), sk(QS)) for QI and

QS using the key generation algorithm G and sends the public keys (pk(QI), pk(QS))

to A.

3. A is given oracle access to (i) O.POI(·), (ii) O.FRI(·, ·), (iii) O.POS(·) and

(iv) O.FRS(·, ·) where

i-ii. O.POI(·) and O.FRI(·, ·) are, respectively, the oracle for answering “process

onion” requests made to honest party QI and the oracle for answering “form

reply” requests made to QI.

iii-iv. O.POS(·) and O.FRS(·, ·) are, respectively, the oracle for answering “process

onion” requests made to honest party QS and the oracle for answering “form

reply” requests made to QS, i.e.,

O.POI(O) = ProcOnion(O,QI, sk(QI))

O.FRI(m
′, O) = FormReply(m′, O,QI, sk(QI))

O.POS(O) = ProcOnion(O,QS, sk(QS))

O.FRS(m′, O) = FormReply(m′, O,QS, sk(QS))

Since ProcOnion and FormReply are deterministic algorithms, WLOG, the oracles don’t

respond to repeating queries.

4. A chooses a label ` ∈ L(1λ) and a message m ∈ M(1λ). A also chooses a forward

path P→ = (P1, . . . , Pd) and a return path P← = (Pd+1, . . . , Ps) such that exactly

one party Pj in the routing path (P→, P←) is equal to QI, and only the last party

Ps is equal to QS. A sends to C the parameters for the challenge onion: `, m, P→,

the public keys pk(P→) of the parties in P→, P← and the public keys pk(P←) of the

parties in P←.

5. C samples a bit b←$ {0, 1}.

If b = 0, C runs FormOnion on the parameters specified by A, i.e.,

((O0
1, . . . , O

0
d), H

←, κ)← FormOnion(`,m, P→, pk(P→), P←, pk(P←)).

The oracles—O.POI(·), O.FRI(·, ·), O.POS(·) and O.FRS(·, ·)—remain unmodified.

Otherwise, if b = 1,
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(a) If j < d, C performs the “switch” at honest party Pj = QI on the forward path

P→. C runs FormOnion twice. First, C runs it on input a random label x←$L(1λ),

a random message y←$M(1λ), the “truncated” forward path p→ = (P1, . . . , Pj)

and the empty return path “()”, i.e.,

((O1
1, . . . , O

1
j ), (), κ)← FormOnion(x, y, p→, pk(p→), (), ()).

C then runs FormOnion on a random label x′←$L(1λ), the message m (that had

been chosen by A in step 4), the remainder q→ = (Pj+1, . . . , Pd) of the forward

path and the return path P←, i.e.,

((O1
j+1, . . . , O

1
d), H

←, κ′)← FormOnion(x′,m, q→, pk(q→), P←, pk(P←)),

We modify the oracles as follows. Let O1
j = (H1

j , C
1
j ) and O1

j+1 = (H1
j+1, C

1
j+1),

and let H1
s be the last header in H←. O.POI does the following to “process” an

onion O = (H,C):

i. If O = O1
j and ProcOnion(O,Pj , sk(Pj)) = (R, y), then return

(I, (O1
j+1, Pj+1)).

ii. If O = O1
j and ProcOnion(O,Pj , sk(Pj)) 6= (R, y), then fail.

iii. If O 6= O1
j but H = H1

j and ProcOnion(O,Pj , sk(Pj)) = (R,⊥), then return

(I, ((H1
j+1,CompleteOnion(H1

j+1, C)), Pj+1)).

iv. If O 6= O1
j but H = H1

j and ProcOnion(O,Pj , sk(Pj)) 6= (R,⊥), then fail.

O.POS does the following to “process” an onion O:

v. If the header of O is H1
s and ProcOnion(O,Ps, sk(Ps)) = (R,m′) for some

message m′ 6= ⊥, then return (S, (`,m′)).

vi. If the header of O is H1
s and ProcOnion(O,Ps, sk(Ps)) = (R,⊥), then return

(S,⊥).

vii. If the header of O is H1
s and ProcOnion(O,Ps, sk(Ps)) 6= (R,m′) for any

message m′, then fail.

All other queries are processed as before.

(b) If j = d, C performs the “switch” at honest recipient Pj . C runs FormOnion on

input a random label x←$L(1λ), a random message y←$M(1λ), the forward

path P→ and the empty return path “()”, i.e.,

((O1
1, . . . , O

1
j ), (), κ)← FormOnion(x, y, P→, pk(P→), (), ()).
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We modify the oracles as follows. O.FRI does the following to “form a reply”

using message m′ and onion O = O1
j : O.FRI runs FormOnion on a random label

x′, the reply message m′, the return path P← as the forward path and the empty

return path “()”, i.e.,

((Om
′

j+1, . . . , O
m′
s ), (), κm

′
)← FormOnion(x′,m′, P←, pk(P←), (), ()),

stores the pair (Om
′

s ,m′) (such that the pair is accessible by O.POS) and returns

(Om
′

j+1, Pj+1).

O.POS does the following to “process” an onion O:

i. If O = O′ for some stored pair (O′,m′) and ProcOnion(O,Ps, sk(Ps)) =

(R,m′), then return (S, (`,m′)).

ii. If O = O′ for some stored pair (O′,m′) and ProcOnion(O,Ps, sk(Ps)) 6=
(R,m′), then fail.

iii. If O 6= O′ for any stored pair (O′,m′) but O = (H ′, C) for some stored pair

((H ′, C ′),m′) and ProcOnion(O,Ps, sk(Ps)) = (R,⊥), then return (S,⊥).

iv. If O 6= O′ for any stored pair (O′,m′) but O = (H ′, C) for some stored pair

((H ′, C ′),m′) and ProcOnion(O,Ps, sk(Ps)) 6= (R,⊥), then fail.

All other queries are processed as before.

(c) If j > d, C performs the “switch” at honest party Pj on the return path P←. C
runs FormOnion on input a random label x←$L(1λ), the message m (that had

been chosen by A in step 4), the forward path P→ and the “truncated” return

path p← = (Pd+1, . . . , Pj), i.e.,

(O→, (H1
d+1, . . . ,H

1
j ), κ)← FormOnion(x,m, P→, pk(P→), p←, pk(p←)).

We modify the oracles as follows. O.POI does the following to “process” an onion

O:

i. If O = (H1
j , C) for some content C and ProcOnion(O,Pj , sk(Pj)) = (R,m′)

for some message m′ (possibly equal to “⊥”), then runs FormOnion on a

random label x′, the reply message m′, the remainder the return path q← =

(Pj+1, . . . , Ps) as the forward path and the empty return path “()”, i.e.,

((Om
′

j+1, . . . , O
m′
s ), (), κm

′
)← FormOnion(x′,m′, q←, pk(q←), (), ()),

stores the pair (Om
′

s ,m′) (such that the pair is accessible by O.POS) and

returns (Om
′

j+1, Pj+1).
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ii. If O = (H1
j , C) for some content C and ProcOnion(O,Pj , sk(Pj)) 6= (R,m′)

for some message m′, then fails.

O.POS does the following to “process” an onion O:

iii. If O = O′ for some stored pair (O′,m′) and ProcOnion(O,Ps, sk(Ps)) =

(R,m′), then return (S, (`,m′)).

iv. If O = O′ for some stored pair (O′,m′) and ProcOnion(O,Ps, sk(Ps)) 6=
(R,m′), then fail.

v. If O 6= O′ for any stored pair (O′,m′) but O = (H ′, C) for some stored pair

((H ′, C ′),m′) and ProcOnion(O,Ps, sk(Ps)) = (R,⊥), then return (S,⊥).

vi. If O 6= O′ for any stored pair (O′,m′) but O = (H ′, C) for some stored pair

((H ′, C ′),m′) and ProcOnion(O,Ps, sk(Ps)) 6= (R,⊥), then fail.

All other queries are processed as before.

C sends to A, the first onion Ob1 in the output of FormOnion.

6. A submits a polynomially-bounded number of (adaptively chosen) queries to oracles

O.POI(·), O.FRI(·, ·), O.POS(·) and O.FRS(·, ·).

7. Finally, A guesses a bit b′ and wins if b′ = b.

We define repliable-onion security as follows.

Definition 16 (Repliable-onion security). A repliable onion encryption scheme Σ

is repliable-onion secure if there exist a p.p.t. algorithm CompleteOnion and a

negligible function ν such that every p.p.t. adversary A wins the security game

ROSecurityGame(1λ,Σ,CompleteOnion,A) with negligible advantage, i.e.,∣∣∣∣Pr
[
A wins ROSecurityGame(1λ,Σ,CompleteOnion,A)

]
− 1

2

∣∣∣∣ ≤ ν(λ).

Remarks on Defintion 16 An onion formed by running a secure onion encryption

scheme and received (resp. transmitted) by an honest party P does not reveal how many

layers are remaining (resp. came before) since the adversary cannot distinguish between the

onion and another onion formed using the same parameters except with the path truncating

at recipient (resp. sender) P .

In the security game, the adversary chooses a routing path with only one honest party

(besides the necessarily honest sender). Restricting the adversary’s choice for a routing
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path in this way simplifies the definition of security without restricting the usefulness of the

definition since each segment of an onion formed using a secure scheme (the way we defined

it) must be computationally unrelated to any other segment.

4.5.3 Security results

We first argue that our construction satisfies repliable-onion security.

Lemma 12. Shallot Encryption Scheme (in Section 4.4) is correct (Definition 1) and

repliable-onion secure (Definition 16) under the assumption that (i) {fk}k∈{0,1}∗ is a PRP,

(ii) E is a CCA2-secure encryption scheme with tags, (iii) MAC is a message authentication

code, and (iv) h is a collision-resistant hash function.

Proof idea: We sketch the proof of security for cases (a) when Pj = Q1 is an intermediary

on the forward path and (c) when Pj is an intermediary on the return path. The proof for

case (b) (when Pj is the recipient) is similar.

In cases (a) and (c), we can prove that A’s view when b = 0 is indistinguishable from

A’s view when b = 1 using a hybrid argument. The gist of the argument is as follows: First,

Pj ’s encryption key kj is protected by CCA-secure encryption, so it can be swapped out

for the all-zero key “0 . . . 0”. Next, blocks (N − j − 1) to (N − 1) of the onion for Pj+1

look random as they are all “decryptions” under kj , so they can be swapped out for truly

random blocks. Next, blocks 1 to (N − j − 1) and the content of the onion for Pj look

random as they are encryptions under kj , so they can be swapped out for truly random

blocks. At this point, the keys for forming Oj+1 can be independent of the keys for forming

Oj , and these onions may be formed via separate FormOnion calls. For case (b), we can use

a simpler hybrid argument since only the content of a forward onion can be computationally

related to the keys for the return path. Thus, we can swap out just the content for a truly

random string.

For the full proof, see below.

Proof. The onion encryption scheme is correct by inspection.

We present the proof of security for case (a) when the switch occurs at intermediary

Pj = QI on the forward path. The proofs for cases (b) and (c) are similar.

For the analysis of the scheme’s repliable-onion security, we will make the simplifying

assumption that labels are truly random as opposed to generated using a PRF. We can

make this assumption “without loss in rigor” since a proof that relies on this assumption

implies one without making the assumption.
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To prove the lemma, we need to prove that A cannot distinguish between running

Experiment0 (game with b = 0) and Experiment1 (game with b = 1). To do this, we define

hybrids Hybrid1 through Hybrid9 and prove that (i) running Hybrid1 produces the same

result that running Experiment0 produces, (ii) A cannot distinguish between running any

two consecutive hybrids, and (iii) running Hybrid9 produces the same result that running

Experiment1 produces. See Figure 4.8 for the road map of the proof.

Experiment0—game with b = 0, same as Hybrid1

Hybrid1—make Hd+1, then Oj+1, then O1

Hybrid2—same as Hybrid1 except swap ` for random label

Hybrid3—same as Hybrid2 except swap kj for fake key “0 . . . 0”

Hybrid4—same as Hybrid3 except swap (BN−j−1
j+1 , . . . , BN−1

j+1 ) for truly random blocks

Hybrid5—same as Hybrid4 except swap (B1
j , . . . , B

N−j−1
j ) and content Cj for truly

random strings

Hybrid6—same as Hybrid5 except swap onion for intermediary Pj for onion for recipient Pj

Hybrid7—same as Hybrid6 except swap truly random blocks and content in Oj for

pseudo-random blocks (B1
j , . . . , B

N−j−1
j , Cj)

Hybrid8—same as Hybrid7 except swap truly random blocks in Hj+1 for pseudo-random

blocks (BN−j−1
j+1 , . . . , BN−1

j+1 )

Hybrid9—same as Hybrid8 except swap key “0 . . . 0” for for real key kj

Experiment1—game with b = 1, same as Hybrid9

Figure 4.8: Road map of proof of Lemma 12

Security game with b = 1 Let Experiment1 be the challenger’s algorithm in the security

game when b = 1. In Experiment1, the challenger does the following:

1: get from A router names QI and QS and sends (QI, QS)

2: generate keys for QI and QS and sends public keys (pk(QI), pk(QS)) to A

3: give A oracle access to O.POI, O.FRI, O.POS and O.FRS

4: get from A parameters for challenge onion: label `, message m, forward path P→ =

(P1, . . . , Pd) and return path P← = (Pj+1, . . . , Ps) such that Pj = QI and Ps = QS,

and the public keys of the adversarial parties in the routing path
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5: pick a random message y←$M(1λ);

let p→ = (P1, . . . , Pj) and q→ = (Pj+1, . . . , Pd);

run FormOnion((0 . . . 0), y, p←, pk(p←), (), ())→ ((O1, . . . , Oj), (), κ);

run FormOnion((0 . . . 0),m, q←, pk(q←), P←, pk(P←))→ ((Oj+1, . . . , Od), H
←, κ′)

6: modify O.POI: to “process” an onion O = (Hj , C) with the same header Hj as Oj ,

O.POI returns (I, (CompleteOnion(1λ, pp, Hj+1, C), Pj+1);

modify O.POS: to “process” an onion O with the header Hs (i.e., last header in

H←), O.POS extracts the message m′ = RecoverReply(λ, pp, O, Pj , sk(Pj)) and returns

(S, (`,m′))

7: send to A the first onion O1

8: give A oracle access to O.POI, O.FRI, O.POS and O.FRS

Security game with b = 0 Let Experiment0 be the challenger’s algorithm in the security

game when b = 0. In Experiment0, the challenger does the following:

1: get from A router names QI and QS and sends (QI, QS)

2: generate keys for QI and QS and sends public keys (pk(QI), pk(QS)) to A

3: give A oracle access to O.POI, O.FRI, O.POS and O.FRS

4: get from A parameters for challenge onion: label `, message m, forward path P→ =

(P1, . . . , Pd) and return path P← = (Pj+1, . . . , Ps) such that Pj = QI and Ps = QS,

and the public keys of the adversarial parties in the routing path

5: run FormOnion(`,m, P→, pk(P→), P←, pk(P←))→ ((O1, . . . , Od), H
←, κ)

6: keep the oracles unmodified

7: send to A the first onion O1

8: give A oracle access to O.POI, O.FRI, O.POS and O.FRS

Hybrid1—make Hd+1, then Oj+1, then O1 Let Hybrid1 be the same procedure as

Experiment0 except for step 5.

In step 5, rather than using FormOnion as a black box to obtain O1, the challenger

forms onion Oj+1 by running FormHeader(→, `, (Pj+1, . . . , Pd)) (to get the header Hj+1)

and FormContent(`,m, P←, kj+1, . . . , kd,Kd) (to get the content Cj+1); and finally produces

onion O1 by wrapping onion layers around Oj+1 = (Hj+1, Cj+1):
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5: form onion Oj+1:

(Hj+1, . . . ,Hd, κ)← FormHeader(→, `, (Pj+1, . . . , Pd))

((Cj+1, . . . , Cd), H
←, κ′)← FormContent(`,m, P←, κ);

form onion O1 by wrapping layers around Oj+1 = ((Ej+1, B
1
j+1, . . . , B

N−1
j+1 ), Cj+1)

using the keys in κ; for all u from j to one, recursively obtain Ou from Ou+1 as

follows:

B1
u = {Pu+1, Eu+1}ku

∀i ∈ {2, . . . , N − 1}, Bi
u = {Bi−1

u+1}ku
Eu ← Enc(pk(Pu), h(B1

u, . . . , B
N−1
u ), ku)

Cu = {Cu+1}ku

6: keep the oracles unmodified

Hybrid1 is the same procedure as Experiment0 “under the hood”.

Hybrid2—swap ` for random label Let Hybrid2 be the same procedure as Hybrid1 except

in steps 5-6, the challenger swaps out the label ` (from A) for a random label x and modifies

oracle O.POS accordingly:

5: form onion Oj+1:

x← L(1λ)

(Hj+1, . . . ,Hd, κ)← FormHeader(→, x, (Pj+1, . . . , Pd))

((Cj+1, . . . , Cd), H
←, κ′)← FormContent(x,m, P←, κ);

form onion O1 by wrapping layers around Oj+1 (using keys produced from forming

Oj+1)

6: modify O.POS: to “process” an onion O with the header Hs (i.e., last header in

H←), O.POS extracts the message m′ = RecoverReply(λ, pp, O, Pj , sk(Pj)) and returns

(S, (`,m′))

Here, we prove that A cannot distinguish between running Hybrid1 and running Hybrid2.

For the sake of reaching a contradiction, suppose that A can distinguish between running

Hybrid1 (i.e., b = 0) and running Hybrid2 (i.e., b = 1), then we can construct a reduction B
that can break the CCA2-security of the underlying encryption scheme as follows:
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1: B receives the router names QI, QS from A.

2: B generates keys (pk(QI), sk(QI)) for QI using the key generation algorithm G but

gets the public key pk(QS) of QS from its challenger. B sends the public keys

(pk(QI), pk(QS)) to A.

3: B gives oracle access to A; whenever B needs to process an onion O =

((E,B1, . . . , BN−1), C) for QS, B uses the decryption oracle O.Dec to decrypt the

ciphertext portion E of O. For all other “process onion” requests, B simply runs

ProcOnion.

4: B gets from A the challenge onion parameters: label `, message m, forward path P→

and return path P← and the public keys of the adversarial parties in the routing path.

B sends the challenge messages m0 = ` and m1←$L(1λ) to the challenger, and the

challenger responds with the encryption Ebs of one of the messages.

5: Let |k|(λ) be the length of the encryption keys. B uses Ebs to form header H ′s:

k1, . . . , kN ←$ {0, 1}|k|(λ)

B1
s = {⊥,⊥}kN

∀i{2, . . . , N − 1}, Bi
s = } . . . }0 . . . 0{ki . . . {kN−1

H ′s = (Ebs, B
1
s , . . . , B

N−1
s )

and forms header H ′d+1 by “wrapping” H ′s (using the return path P← and the keys

k1, . . . , kN−1). B then forms onion Oj+1 by running FormHeader(→, x, (Pj+1, . . . , Pd))

and FormContent(x,m, P←, kj+1, . . . , kd,Kd) but replacing the internally created

Hd+1 with H ′d+1. Finally, B forms onion O1 by wrapping onion layers around Oj+1.

6: B (possibly) modifies O.POS so that if running ProcOnion on an onion with header

Hs outputs (S, (x,m′)) for some label x and message m, O.POS outputs (S, (`,m′))

instead (all other “process onion” requests are handled by running ProcOnion).

7: B sends O1 to A.

8: B gives oracle access to A (again using O.Dec to decrypt ciphertexts for QS).

Finally, B guesses the bit b′ that A outputs.

The reduction works since B wins if A wins; otherwise, A would be able to break the

collision-resistance of the hash function. Clearly, the reduction runs in polynomial-time.
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Hybrid3—swap kj for fake key “0 . . . 0” Let Hybrid3 be the same procedure as Hybrid2

except in step 5, the challenger obtains ciphertext Ej by encrypting the all-zero key “0 . . . 0”

instead of key kj :

5: form onion Oj+1 (like in Hybrid2);

form onion Oj by wrapping a layer around Oj+1 (using key kj produced from forming

Oj+1 but don’t encrypt the key under sk(Pj)):

B1
j = {Pj+1, Ej+1}kj

∀i ∈ {2, . . . , N − 1}, Bi
j = {Bi−1

j+1}kj
Ej ← Enc(pk(Pj), h(B1

j , . . . , B
N−1
j ), (0 . . . 0))

Cj = {Cj+1}kj ;

form onion O1 by wrapping layers around Oj (using keys produced from forming Oj+1)

Here, we prove that A cannot distinguish between running Hybrid2 and running Hybrid3.

For the sake of reaching a contradiction, suppose that A can distinguish between running

Hybrid2 (i.e., b = 0) and running Hybrid3 (i.e., b = 1), then we can construct a reduction B
that can break the CCA2-security of the underlying encryption scheme as follows:

1: B receives the router names QI, QS from A.

2: B generates keys (pk(QS), sk(QS)) for QS using the key generation algorithm G

but gets the public key pk(QI) of QI from its challenger. B sends the public keys

(pk(QI), pk(QS)) to A.

3: B gives oracle access to A; whenever B needs to process an onion O =

((E,B1, . . . , BN−1), C) for QI, B uses the decryption oracle O.Dec to decrypt the

ciphertext portion E of O. For all other “process onion” requests, B simply runs

ProcOnion.

4: B gets from A the challenge onion parameters: label `, message m, forward path P→

and return path P← and the public keys of the adversarial parties in the routing path.

B sends the challenge messages m0 = kj and m1 = (0 . . . 0) to the challenger, and the

challenger responds with the encryption Ebj of one of the messages.

5: B forms onion Oj+1 (like in Hybrid1) and sets onion Oj to be ((Ebj , B
1
j , . . . , B

N−1
j ), Cj)
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where

B1
j = {Pj+1, Ej+1}kj

∀i ∈ {2, . . . , N − 1}, Bi
j = {Bi−1

j+1}kj
Cj = {Cj+1}kj .

Finally, B forms onion O1 by wrapping onion layers around Oj .

6: B modifies oracle O.POS so that if running ProcOnion on an onion with header Hs

outputs (S, (x,m′)) for some label x and messagem, O.POS outputs (S, (`,m′)) instead

(all other “process onion” requests are handled by running ProcOnion).

7: B sends O1 to A.

8: B gives oracle access to A (again using O.Dec to decrypt ciphertexts for QI).

Finally, B guesses the bit b′ that A outputs.

The reduction works since B wins if A wins; otherwise, A would be able to break the

collision-resistance of the hash function. Clearly, the reduction runs in polynomial-time.

Hybrid4—swap (BN−j−1
j+1 , . . . , BN−1

j+1 ) for truly random blocks Let Hybrid4 be the same

procedure as Hybrid3 except in step 5, blocks (N − j − 1) to (N − 1) in Oj+1 are formed

using a truly random permutation function F rather than the PRP keyed with kj :

5: form Ôj = (Ĥj , Ĉj):

x← L(1λ)

(Ĥj , . . . , Ĥd, kj , . . . , kd,Kd)← FormHeader(→, x, (Pj , . . . , Pd))

((Ĉj , . . . , Ĉd), kj , . . . , kd)← FormContent(x,m, P←, kj , . . . , kd,Kd);

form Oj+1 = ((Ej+1, B
1
j+1, . . . , B

N−j−2
j+1 , RN−j−1

j+1 , . . . , RN−1
j+1 ), Cj+1) from Ôj =

((Êj , B̂
1
j , . . . , B̂

N−1
j ), Ĉj):

(Pj+1, Ej+1) = }B̂1
j {kj

∀i ∈ {1, . . . , N − j − 2}, Bi
j+1 = }B̂i+1

j {kj
∀i ∈ {N − j − 1, . . . , N − 2}, Rij+1 = F (B̂i+1

j )

Cj+1 = }Ĉj{kj ;

form O1 by wrapping layers around Oj+1
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Here, we prove that A cannot distinguish between running Hybrid3 and running Hybrid4.

For the sake of reaching a contradiction, suppose that A can distinguish between running

Hybrid3 (i.e., b = 0) and running Hybrid4 (i.e., b = 1), then we can construct a reduction B
that can break the underlying PRP-CCA security of the PRP as follows:

1: B receives the router names QI, QS from A.

2: B generates keys (pk(QI), sk(QI)) for QI and keys (pk(QS), sk(QS)) for QS using the

key generation algorithm G and sends the public keys (pk(QI, pk(QS)) to A.

3: B gives oracle access to A.

4: B gets from A the challenge onion parameters: label `, message m, forward path P→

and return path P← and the public keys of the adversarial parties in the routing path.

5: B forms onion Oj = ((Ej , B
1
j , . . . , B

N−1
j ), Cj) by running FormHeader(→

, x, (Pj , . . . , Pd)) and FormContent(x,m, kj , . . . , kd,Kd). B queries the chal-

lenger for the pseudo-random permutations of (B2
j , . . . , B

N−j−1
j , and

the challenger responds with (B1
j+1, . . . , B

N−j−2
j+1 ). B sets O′j+1 to be

((Ej+1, B
1
j+1, . . . , B

N−j−2
j+1 , Bb,N−j−1

j+1 , . . . , Bb,N−1
j+1 ), Cj+1), where Bi

j+1 = }Bi+1
j {kj

for all i ∈ [N − j − 2], and Cj+1 = }Cj{kj . B forms onion O1 by wrapping onion

layers around Oj+1.

6: B modifies oracle O.POS so that if running ProcOnion on an onion with header Hs

outputs (S, (x,m′)) for some label x and messagem, O.POS outputs (S, (`,m′)) instead

(all other “process onion” requests are handled by running ProcOnion).

7: B sends O1 to A.

8: B gives oracle access to A.

Finally, B guesses the bit b′ that A outputs.

The reduction works since the distribution of the input to A in steps 5-6 is exactly what

is expected “in the wild”. Clearly, the reduction runs in polynomial-time.

Hybrid5—swap (B1
j , . . . , B

N−j−1
j ) and content Cj for truly random strings Let

Hybrid5 be the same procedure as Hybrid4 except in step 5, the first N − j blocks and

the content of onion Oj are outputs of a truly random permutation function F rather than

outputs of the PRP keyed with kj :
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5: form onion Oj+1 (with some truly random blocks);

form onion Oj = ((Ej , R
1
j , . . . , R

N−j−1
j , BN−j

j , . . . , BN−1
j ), Rj) by wrapping a layer

around Oj+1 (using key kj produced from forming Oj+1):

R1
j = F (Pj+1, Ej+1)

∀i ∈ {2, . . . , N − j − 1}, Rij = F (Bi−1
j+1)

∀i ∈ {N − j, . . . , N − 1}, Bi
j = {Bi−1

j+1}kj
Ej ← Enc(pk(Pj), h(B1

j , . . . , B
N−1
j ), (0 . . . 0))

Rj = F (Cj+1);

form onion O1 by wrapping layers around Oj (using keys produced from forming Oj+1)

Here, we prove that A cannot distinguish between running Hybrid4 and running Hybrid5.

For the sake of reaching a contradiction, suppose that A can distinguish between running

Hybrid4 (i.e., b = 0) and running Hybrid5 (i.e., b = 1), then we can construct a reduction B
that can break the underlying pseudo-randomness of the PRP as follows:

1: B receives the router names QI, QS from A.

2: B generates keys (pk(QI), sk(QI)) for QI and keys (pk(QS), sk(QS)) for QS using the

key generation algorithm G and sends the public keys (pk(QI, pk(QS)) to A.

3: B gives oracle access to A.

4: B gets from A the challenge onion parameters: label `, message m, forward path P→

and return path P← and the public keys of the adversarial parties in the routing path.

5: B forms onion Oj+1 like in Hybrid4 (with some truly random blocks). B sends to

the challenger the sequence ((Pj+1, Ej+1), B1
j+1, . . . , B

N−j−2
j+1 , Cj+1). The challenger

responds with (Ebj , B
b,1
j , . . . , Bb,N−j−1

j , Cbj ) which are either pseudo-random permu-

tations (if b = 0) or truly random permutations (if b = 1). B sets Oj to be

((Ej , B
b,1
j , . . . , Bb,N−j−1

j , BN−j
j , . . . , BN−1

j ), Cbj ) where

∀i ∈ {N − j, . . . , N − 1}, Bi
j = {Bi−1

j+1}kj
Ej ← Enc(pk(Pj), tj , (0 . . . 0)),

and where tj = h(Bb,1
j , . . . , Bb,N−j−1

j , BN−j
j , . . . , BN−1

j ). Finally, B forms onion O1 by

wrapping onion layers around Oj .
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6: B modifies oracle O.POS so that if running ProcOnion on an onion with header Hs

outputs (S, (x,m′)) for some label x and messagem, O.POS outputs (S, (`,m′)) instead

(all other “process onion” requests are handled by running ProcOnion).

7: B sends O1 to A.

8: B gives oracle access to A.

Finally, B guesses the bit b′ that A outputs.

The reduction works since the distribution of the input to A in steps 5-6 is exactly what

is expected “in the wild”. Clearly, the reduction runs in polynomial-time.

Hybrid6—swap onion for intermediary Pj for onion for recipient Pj Let Hybrid6

be the same procedure as Hybrid5 except in steps 5-6, the challenger wraps layers around

a bogus onion Oj for recipient Pj to obtain the output O1 and modifies oracle O.POI

accordingly:

5: form onion Oj+1 (with some truly random blocks);

form bogus onion Oj = ((Ej , R
1
j , . . . , R

N−j−1
j , BN−j

j , . . . , BN−1
j ), Rj) for recipient Pj :

∀i ∈ [N − j − 1], Rij←$ {0, 1}L1(λ)

k1, . . . , kN ←$ {0, 1}|k|(λ)

∀i ∈ {N − j, . . . , N − 1}, Bi
j = } . . . }0 . . . 0{kN−i−1

{kN−j
Ej ← Enc(pk(Pj), h(B1

j , . . . , B
N−1
j ), (0 . . . 0))

Rj←$ {0, 1}L1(λ);

form onion O1 by wrapping layers around O′j (using keys k1, . . . , kN−1)

6: modify O.POI: to “process” an onion O = (Hj , C) with the same header Hj as Oj ,

O.POI returns (I, (CompleteOnion(1λ, pp, Hj+1, C), Pj+1);

modify O.POS: to “process” an onion O with the header Hs (i.e., last header in

H←), O.POS extracts the message m′ = RecoverReply(λ, pp, O, Pj , sk(Pj)) and returns

(S, (`,m′))

The adversary can query the oracle O.POI to process an onion with the correct challenge

header but with “mangled” content. In this case, the peeled onion in Hybrid5 looks like the

peeled onion in Hybrid6 because the former has a truly random header and content whereas

the latter has a truly random header and pseudo-random content. For all other queries, the
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responses in the hybrids are statistically the same. Thus, using a straightforward hybrid

argument, we can show that the adversary cannot distinguish between running Hybrid5 and

running Hybrid6.

Hybrid7—swap truly random blocks and content in Oj for pseudo-random blocks

(B1
j , . . . , B

N−j−1
j , Cj) Let Hybrid7 be the same procedure as Hybrid6 except in step 5, the

challenger wraps layers around the onion Oj with real blocks and real content to obtain the

output O1:

5: form onion Oj+1 (with some truly random blocks);

form onion Oj for recipient Pj :

y←$M(λ)

((((Êj , B
1
j , . . . , B

N−1
j ), Cj)), (), κ)← FormOnion((0 . . . 0), y, (Pj), pk(Pj), (), ())

Ej ← Enc(pk(Pj), h(B1
j , . . . , B

N−1
j ), (0 . . . 0));

form onion O1 by wrapping layers around Oj (using keys from FormOnion)

A cannot distinguish between running Hybrid6 and running Hybrid7. Otherwise, we could

construct a reduction (very similar to the reduction used for proving that Hybrid4 ≈ Hybrid5)

that can break the underlying pseudo-randomness of the PRP.

Hybrid8—swap truly random blocks in Hj+1 for pseudo-random blocks

(BN−j−1
j+1 , . . . , BN−1

j+1 ) Let Hybrid8 be the same procedure as Hybrid7 except in step 5, the

challenger wraps layers around a real onion Oj to obtain the output O1:

5: form onion Oj+1 (with all pseudo-random blocks);

form onion Oj for recipient Pj ;

y←$M(λ)

((((Êj , B
1
j , . . . , B

N−1
j ), Cj)), (), κ)← FormOnion((0 . . . 0), y, (Pj), pk(Pj), (), ())

Ej ← Enc(pk(Pj), h(B1
j , . . . , B

N−1
j ), (0 . . . 0));

form onion O1 by wrapping layers around Oj

A cannot distinguish between running Hybrid7 and running Hybrid8. Otherwise, we could

construct a reduction (very similar to the reduction used for proving that Hybrid3 ≈ Hybrid4)

that can break the underlying PRP-CCA2 security of the PRP.
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Hybrid9—swap key “0 . . . 0” for for real key kj Let Hybrid9 be the same procedure as

Hybrid8 except in step 5, the challenger wraps layers around a real onion Oj to obtain the

output O1:

5: form onion Oj+1;

form onion Oj for recipient Pj ;

form onion O1 by wrapping layers around Oj

Hybrid8 ≈ Hybrid9 A cannot distinguish between running Hybrid8 and running Hybrid9.

Otherwise, we could construct a reduction (very similar to the reduction used for proving

that Hybrid2 ≈ Hybrid3) that can break the underlying CCA2-security of the encryption

scheme.

Finally, Hybrid9 and Experiment1 produce the same result. In both procedures, onion

O1 is formed using the all-zero label “0 . . . 0”, a random message y, the truncated path

(P1, . . . , Pj) as the forward path and the empty return path “()”, and the oracle O.POI

ensures that Oj “peels” to the separately formed Oj+1.

This concludes our proof for case (a). The proofs for cases (b) and (c) are similar.

We now show that the history of outputs that S produces is indistinguishable from one

produced by running the real protocol to any environment Z.

Theorem 11. Shallot Encryption Scheme (Section 4.4) SUC-realizes the ideal functionality

FROES (Definition 15).

Proof. From Lemma 12, it suffices to prove that if a repliable-onion encryption scheme Σ

is repliable-onion secure, then it also SUC-realizes the ideal functionality FROES.

Our proof is via a hybrid argument.

Let Experiment1 be the ideal onion routing protocol in which the ideal honest parties

query FROES to form onions, process onions and form return onions.

Let Experiment0 be the real onion routing protocol in which the honest participants run

Σ’s algorithms to form onions, process onions and form return onions.

Let Hybrid0 be the experiment with the same set up at Experiment0 except that the

challenger controls all honest parties and the ideal functionality FROES, and the environment

is the adversary.

We define the remaining hybrid experiments as follows:

Let numFO be the upper bound on the number of honest “form onion” queries from the

environment.
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For all i ∈ [numFO], let Hybridi be the experiment in which the first i “form onion”

queries are “simulated”, and all remaining queries are “real”. The challenger runs FROES for

the first i “form onion” queries and runs FormOnion for the remaining ones. The challenger

always runs FROES to process an onion or to form a reply. This works because FROES just

runs ProcOnion or FormReply in cases where FROES doesn’t recognize the query onion’s

header.

Recall that N is the upper bound on the length of the forward (or return) path which

is also an upper bound on the number of segments per “form onion” query.

Next, we describe the hybrids between Hybridi−1 and Hybridi. For all j ∈ [N ], let

Hybridi,j be the experiment in which the first i − 1 “form onion” queries and the first j

segments of the i-th “form onion” query are “simulated”, and all remaining segments are

“real”. (i) The first i − 1 “form onion” queries are processed via FROES. (ii) All queries

after the i-th query are processed by running ProcOnion. (iii) The i-th query is processed

specially as follows.

Let (P→, P←) denote the routing path of the i-th query. First, the challenger partitions

(P→, P←) into (at most) j+1 subpaths (p→1 , . . . , p
→
j , q

→), consisting of the first j segments

(p→1 , . . . , p
→
j ) of (P→, P←) (or as many as they are) and the remaining subpath q→ of

(P→, P←) not covered by the segments (if it exists).

To process the i-th “form onion” request, the challenger essentially runs the same code as

FROES except with the subpaths as the “segments” of (P→, P←). (Onion layers and return

paths are stored in the same dictionaries, OnionDict and PathDict, used by the unmodified

FROES code.) As before, the challenger always runs FROES to process an onion or to form

a reply.

By construction, (i) Experiment0 and Hybrid0 produce identical results, (ii) for all i ∈
[numFO], Hybridi−1,N and Hybridi produce identical results, and (iii) HybridnumFO,N and

Experiment1 produce identical results. For any i ∈ [numFO] and j ∈ [N − 1], the repliable-

onion security of Σ guarantees that the environment cannot distinguish between running

Hybridi,j and Hybridi,j+1. Since the total number of segments is polynomially bounded in

the security parameter, it follows that the environment cannot distinguish between running

Experiment0 and running Experiment1. In other words, Σ SUC-realizes FROES.

4.6 Concluding remarks

In this chapter, we gave the first ideal functionality, FROES, for repliable onion encryption

and the first onion encryption scheme, Shallot Encryption Scheme, proven to UC-realize
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FROES.
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