Test-Driven Development of Complex Information
Extraction Systems using TEXTMARKER

Peter Kluegl, Martin Atzmueller, and Frank Puppe

University of Wiirzburg,
Department of Computer Science VI
Am Hubland, 97074 Wiirzburg, Germany
{pkluegl, atzmueller, puppe } @informatik.uni-wuerzburg.de

Abstract. Information extraction is concerned with the location of specific items
in textual documents. Common process models for this task use ad-hoc testing
methods against a gold standard. This paper presents an approach for the test-
driven development of complex information extraction systems. We propose a
process model for test-driven information extraction, and discuss its implemen-
tation using the rule-based scripting language TEXTMARKER in detail. TEXT-
MARKER and the test-driven approach are demonstrated by two real-world case
studies in technical and medical domains.

1 Introduction

There are two main paradigms for information extraction approaches: Either the sys-
tems provide automatic extraction techniques, i.e., based on machine-learning tech-
niques, or they are based on manually acquired knowledge, mainly considering rule-
based knowledge. The first approach allows an easy application of the system since no
knowledge acquisition phase is required, and the extraction knowledge can be auto-
matically learned from annotated examples. However, the latter often performs better
for rather complex domains. There are several reasons to prefer a knowledge engi-
neering approach to a machine learning approach [1]: The knowledge can usually be
captured and extended quite easily by a domain specialist and therefore provides flexi-
ble techniques if the requirements change, for extensions, and for exceptions for certain
documents.

In this paper, we present an approach for the test-driven development of complex
text extraction systems using the rule-based scripting language TEXTM ARKER: We dis-
cuss a process model for the test-driven extraction process, and discuss the contained
steps in detail. Furthermore, we describe the TEXTMARKER system for rule-based in-
formation extraction. After that, we provide two case studies for demonstrating and
discussing the presented approach in detail.

The rest of the paper is structured as follows: Section 2 presents the process model
for the test-driven development of complex text extraction systems using TEXTM ARKER.
Section 3 gives a conceptual overview on the TEXTMARKER system, describing the
core concepts, the syntax and semantics of the TEXTMARKER language and its special
features. Section 4 discusses two real-world case-studies for the presented approach. Fi-
nally, Section 5 concludes with a discussion of the presented work, and provides several
interesting options for future work.

2 Test-Driven Process Model

In the following section, we describe the process model for test-driven development of
complex text extraction systems using TEXTMARKER. We distinguish two roles, the
knowledge engineer and the domain specialist. The latter is concerned with the annota-
tion, selection, and formalization of documents/test cases, whereas the former performs
the development and incremental refinement of the rule base for text extraction. The
process is shown in Figure 1, and discussed below.

Domain Knowledge
Specialist Engineer

o
Lo

O 5 -' .) hJ
Document Annotation Test Rule A Quality
Selection Cases Acquisition H Management

[y 7y ‘.. ¥

;
Debugging Extraction
Rules

Fig. 1. Process Model: Semi-Automatic Rule-Based Instance Generation from Texts

— Document Selection: The document selection steps provides a subset of the cases
contained in the text corpus that are applied as test cases later. Synthetic cases can
also be added (as test cases), therefore new cases can also be easily integrated for
coping with new requirements. For document selection also cluster techniques can
be applied in order to select a limited, heterogeneous and diverse set of cases.

— Annotation: During the annotation step, the domain specialist selects text frag-
ments and assigns pre-specified types (i.e., annotations) to these. Each added anno-
tation is either an input type (pre-specified information) or an output type (expected
result). Input annotations are used for testing specific features/rules in their context
(unit-tests). Output types are the expected types of the test. Visual editors allow the
user to annotate the text interactively.

— Rule Acquisition: During the rule acquisition step new extraction rules are formal-
ized, tuned and refined according to the given test corpus based on the results of the
subsequent quality management and debugging steps.

— Quality Management: In the quality management step, the knowledge engineer
assesses the correctness and completeness of the system based on the set of for-
malized test cases. Also, erroneous test cases that were marked during the quality
management step can be incrementally corrected.

— Debugging: The debugging step is mainly concerned with debugging specific rules.
The information about rule applications and their contexts can significantly help for
the improvement of the rule base and also for correcting test cases.

3 Conceptual Overview on the TEXTMARKER System

Whenever humans perform manual information extraction they often apply a strategy
according to a highlighter metaphor: First, relevant headlines are considered and clas-
sified according to their content by coloring them with different highlighters. The para-
graphs of the annotated headlines are then considered further. Relevant text fragments
or single words in the context of that headline can then be colored. Necessary addi-
tional information can be added that either refers to other text segments or contains
valuable domain specific information. Finally the colored text can be easily analyzed
concerning the relevant information. The TEXTMARKER ! system tries to imitate this
manual extraction method by formalizing the appropriate actions using matching rules:
The rules mark sequences of words, extract text segments or modify the input document
depending on textual features.

The current TEXTMARKER implementation is based on a prototype described in
[2] that supports a subset of the TEXTMARKER language described below. The present
TEXTMARKER system is currently being extended towards an integration as a UIMA
(Unstructured Information Management Architecture) component [3]. The default input
for the TEXTM ARKER system is semi-structured text, but it can also process structured
or free text. Technically, HTML is often used as a input format, since most word pro-
cessing documents can be easily converted to HTML.

In the following sections we first give a conceptual overview on the TEXTM ARKER
language by introducing its core concepts. After that, we discuss the syntax and the
semantics of the TEXTMARKER language in detail, and provide some illustrating ex-
amples. Next, we present special characteristics of the language that distinguishes the
TEXTMARKER system from other common rule based information extraction systems.

3.1 Core TEXTMARKER Concepts

As a first step in the extraction process the TEXTMARKER system uses a scanner to
tokenize the input document and to create a stream of basic symbols, providing the
initial feature selection. The types of the possible tokens are predefined by a manually
created taxonomy of annotation types. Annotations simply refer to a section of the in-
put document and assign a type or concept to the respective text fragment. Figure 2
shows an excerpt of a basic annotation taxonomy: For example, CW describes all to-
kens, that contain a single word starting with a capital letter, MARKUP corresponds to
HTML/XML tags, ANY combines all symbols that are not classified as MARKUP and
PM refers to punctuation.

Using the taxonomy, the knowledge engineer is able to choose the most adequate
types and concepts when defining new matching rules. If the capitalization of a word,
for example, is of no importance, then the annotation type W that describes words of any
kind can be used. The initial scanner creates a basic set of annotations that are used by
the matching rules of TEXTMARKER. Most information extraction applications require
domain specific concepts and annotations. Therefore, the knowledge engineer is able to
define new annotation types depending on the requirements of the given domain. These
types can then be flexibly integrated in the taxonomy of annotation types.

! textmarker is a common german word for a highlighter

|ANY |

(Now][]

MARKUP | |sw || cw || CAPL. | |PERIOD || COLON |

Fig.2. Part of a taxonomy for basic types. (W=Word, NUM=Number, PM=Punctuations,
SW=Word without capitals, CW=Word starting with a capital letter)

3.2 Syntax and Semantics of the TEXTMARKER Language

One of the goals in developing a new information extraction language was to maintain
an easily readable syntax while still providing a scalable expressiveness of the language.
Basically, the TEXTMARKER language consists of definitions of new annotation types
and matching rules. These rules are based on a list of rule elements headed by the type
of the rule.

The purpose of the different rule types is to increase the readability of rules by
making their semantic intention explicit. Each rule element contains at least a basic
matching condition referring to text fragments or already given annotations. Addition-
ally a list of conditions and actions may be specified for a rule element. Whereas the
conditions describe necessary attributes of the matched text fragment, the actions point
to operations and assignments on the current fragments. Needless to say these actions
will only be executed if all basic conditions matched on a text fragment or annotation
and the related conditions are fulfilled. Table 3.2 contains a short and simplified excerpt
of the TEXTMARKER syntax concerning matching rules.

Rule — RuleType RuleElement+ ’;’
RuleType = — ADDTYPE’ | 'DEFAULT’ |...
RuleElement — MatchType Conditions? Actions? *+’?
MatchType — Literal | Annotation

Annotation — ALLCIANY’'MARKUP I'W’L...
Conditions — ’{’ Condition (’;” Condition)* "}’
Condition — ’-’? CondType (’,” parameter)*
CondType — 'PARTOF’I’CONTAINS’I’'NEAR’I...
Actions — ’(’ Action (’;’ Action)* ’)’

Action — ActionType (’,” parameter)*
ActionType — 'MARK’I'FILTER’'REPLACE’I...

Table 1. BNF-Extract of the TEXTMARKER language

Due to the limited space it is not possible to describe all of the various conditions
and actions available in the TEXTM ARKER system. However, the common usage of the
language and its readability can be demonstrated by simple examples:

ADDTYPE CW{INLIST,animals.txt} (MARK,animal) ;
ADDTYPE animal "and’ animal
(MARK, animalpair,0,1,2);

The first rule considers all capitalized words that are listed in an external document
animals.txt and creates a new annotation of the type animal using the boundaries of the
matched word. The second rule searches for an annotation of the type animal followed
by the literal and and a second animal annotation. Then it will create a new annotation
animalpair covering the text segment that matched the three rule elements (the digit
parameters refer to the number of matched rule element).

ADDTYPE ANY{PARTOF,paragraph, ISINTAG,

font, color=red} (MARK,delete, +) +;
ADDTYPE firstname (MARK,delete,0,1) lastname;
DEFAULT delete (DEL);

Here, the first rule looks for sequences of any kind of tokens except markup and
creates one annotation of the type delete for each sequence, if the tokens are part of
a paragraph annotation and colored in red. The + signs indicate this greedy process-
ing. The second rule annotates first names followed by last names with the type delete
and the third rule simply deletes all text segments that are associated with that delete
annotation.

3.3 Special Features of the TEXTMARKER Language

The TEXTMARKER language features some special characteristics that are usually not
found in other rule-based information extraction systems. The possibility of creating
new annotation types and integrating them into the taxonomy facilitates an even more
modular development of information extraction systems than common rule-based ap-
proaches do. Beside others, there are three features that deserve a closer look in the
scope of this work: The robust extraction by filtering the token or annotation set, the
usage of scoring rules for uncertain and heuristic extraction and the shift towards a
scripting language.

Robust extraction using filtering Rule-based or pattern-based information extraction
systems often suffer from unimportant fill words, additional whitespace and unexpected
markup. The TEXTMARKER System enables the knowledge engineer to filter and to
hide all possible combinations of predefined and new types of annotations. Addition-
ally, it can differentiate between any kind of HTML markup and XML tags. The visi-
bility of tokens and annotations is modified by the actions of rule elements and can be
conditioned using the complete expressiveness of the language. Therefore the TEXT-
MARKER system supports a robust approach to information extraction and simplifies
the creation of new rules since the knowledge engineer can focus on important textual

features. If no rule action changed the configuration of the filtering settings, then the de-
fault filtering configuration ignores whitespaces and markup. Using the default setting,
the following rule matches all four types of input in this example (see [2]):

DEFAULT ’'Dr’ PERIOD CW CW;

Dr. Peter Steinmetz, Dr.PeterSteinmetz,
Dr. <i>Peter</i> Steinmetz

Heuristic extraction using scoring rules Diagnostic scores [4] are a well known and
successfully applied knowledge formalization pattern for diagnostic problems. Single
known findings valuate a possible solution by adding or subtracting points on an account
of that solution. If the sum exceeds a given threshold, then the solution is derived. One
of the advantages of this pattern is the robustness against missing or false findings, since
a high number of findings is used to derive a solution.

The TEXTMARKER system tries to transfer this diagnostic problem solution strat-
egy to the information extraction problem. In addition to a normal creation of a new
annotation, a MARK action can add positive or negative scoring points to the text frag-
ments matched by the rule elements. If the amount of points exceeds the defined thresh-
old for the respective type, then a new annotation will be created. Further, the current
value of heuristic points of a possible annotation can be evaluated by the SCORE con-
dition. In the following, the heuristic extraction using scoring rules is demonstrated by
a short example:

ADDTYPE p{CONTAINS,W, 1,5} (MARK,hl,5);

ADDTYPE p{CONTAINS,W, 6,10} (MARK,hl,2);
ADDTYPE p{CONTAINS, emph, 80,100,%} (MARK,hl,7);
ADDTYPE p{CONTAINS, emph, 30,80, %} (MARK, hl, 3);
ADDTYPE p{CONTAINS,W, 0,0} (MARK,hl,-50);
ADDTYPE hl{SCORE, 10} (MARK, realhl);

LOGGING hl{SCORE, 5,10} (LOG, " Maybe a hl’);

In the first part of this rule set, annotations of the type p (paragraph) receive scoring
points for a hl (headline) annotation, if they fulfill certain CONTAINS conditions. The
first condition, for example, evaluates to true, if the paragraph contains at least one and
up to five words, whereas the fourth conditions is fulfilled, if the paragraph contains
thirty up to eighty percent of emph annotations. The last two rules finally execute their
actions, if the score of a headline annotation exceeds ten points, or lies in the interval
of five and ten points, respectively.

Shift towards a scripting language Some projects using the TEXTMARKER system
have indicated that a rule-based language with a knowledge representation only based
on annotations may not overcome all challenges of a high level information task. Often
it is not possible to express the complex background knowledge with simple matching
rules or to control the matching process without control structures like loops. There-
fore the TEXTMARKER language is being extended with several common features of
scripting languages.

— Imperative programming: The TEXTMARKER system does not impose an exe-
cution order on the rules based on the fulfilled conditions and/or their complexity.
The development of bigger sets of rules has shown that a dynamic execution order
holds almost no advantages over imperative program execution order. Additionally,
the linear processing allows a comprehensible usage of filtering rules.

— Variables: The usage of variables can significantly improve the expressiveness of a
simple language. It is already possible in the TEXTMARKER system to e.g., count
the number of certain annotation types and evaluate the result in a condition. But
practice has shown that the additional concept of variables and expressions on vari-
ables is very useful and helps to solve complex rule engineering problems in an
elegant and simple way.

— Conditioned loop blocks: Besides variables and operations another construct known
by scripting and programming languages are conditioned statements and loops. In
the TEXTMARKER system we combine both constructs to the concept of the condi-
tioned loop blocks. These complex statements contain an identifier, a rule and a list
of rules, declarations or even other conditioned loop blocks. The rule defines both
the condition statement and the loop statement: The annotations of the rule match
on adequate text fragments. The conditions of the rule determine if the contained
rules may be executed. Yet the rule can match several times and therefore defines a
list of text fragments, on which the contained rules are applied.

BLOCK (' ID’) headlinedParagraph
{CONTAINS, relevantAnnotation} (
rules, declarations or blocks

)

In this short and simplified example, rules, declarations or blocks of rules are only
executed if an annotation of the type headlinedParagraph is located in the text and
if that annotation contains at least one annotation of the type relevantAnnotation
(condition statement). The statements in the block will be applied on all found text
fragments the rule matched and only on them.

More precisely, if the rule has matched on five headlinedParagraph annotations, the
contained statements will be executed five times overall, one time for each matched
annotations. This additional block structure can therefore increase the performance
of the TEXTMARKER system, because the considered text area can be restricted
and the rules do not need to be applied on the complete document.

— Method calls: Another common feature is the declaration and the reference of
methods or procedures. For this purpose we are using the conditioned loop blocks
again. The identifier is used to call the block like a method by the action of a rule.
If the calling rule is not part of the same block or rule file, additional identifiers,
respectively file names must be used to reference the complete namespace of the
block. Introducing method calls is enabling the TEXTMARKER system to utilize
rule libraries and further increases its modularity and reuse.

These efforts for extending the TEXTMARKER language towards a scripting language
was one of the reasons to replace the existing and successful development environ-
ment [2]. The new implementation is built on the Dynamic Language Toolkit? in order
to support the described scripting functionality in the development process.

In test driven development automatic test cases are ideally written for small, atomic
units [5]. The smallest unit of a TEXTMARKER scripting file is a single rule. However,
with the integration in UIMA, the interfaces of a UIMA component and the informa-
tion structure [6] are especially suitable for the specification of test cases. The TEXT-
MARKER system is integrated in UIMA as a component, i.e. an Analysis Engine that
provides the functionality of including several scripting files. If the functionality of a
large rule set is split into several modular scripting files with internal block structure,
then it is still possible to create small and self-contained festing units. Therefore the test
cases are specified independently of the TEXTMARKER implementation by using the
UIMA interfaces, but they can still refer to specific parts of functionality, especially
single block definitions of a TEXTMARKER scripting file.

4 Case Studies

In the following sections we describe two real-world case studies applying parts of
the presented approach. The first case study is concerned with high-level information
extraction in a technical domain. The second case study considers the generation of
structured data records given semi-structured medical discharge letters.

4.1 High-Level Information Extraction

The case study is about a high level information extraction, automatic content seg-
mentation and extraction task. Unfortunately, we can only describe the case study in
a very general way due to non-disclosure terms. As a general setting, word process-
ing documents in common file formats? like Microsoft Word or OpenOffice are mined
for information specific to certain projects, with temporal margins, e.g., similar to cur-
ricula vitae. The input documents feature an extremely heterogeneous layout and are
each written by a different person. Interesting text fragments may relate from plain text
to structured tables or even combinations or parts of them. Additionally, the layout is
not sufficient enough for a correct classification, since also domain dependent seman-
tics may change the relevance of a fragment. The output of a document are a set of
templates that contain exact temporal information, the exact text fragment related to
the template and various domain specific information, e.g., a project name or company
names in our curriculum vitae example.

Although the application is still under development, it already involves 479 rules
and several domain specific dictionaries with up to 80000 entries. Basically, the TEXT-
MARKER system tries to imitate the human perception of text blocks. For this purpose
interesting named entities, e.g., temporary information, are recognized. Then, the appli-
cation locates text structures of different types of complexity and size, e.g., a headlined

2 Dynamic Language Toolkit: http://www.eclipse.org/dltk/
3 The input documents are converted to HTML

paragraph or a row of a table. If one of these text fragments or a set of text fragments
of the same type contains a significant pattern of interesting named entities, then they
are marked as a relevant block of text. Finally, additional rules are used to detect the
domain specific information which is also used to refine the found segments. In the cur-
rent state the TEXTMARKER application was evaluated on correct text fragments and
temporal data only. It achieved an F1 measure of 89% tested on 58 randomly selected
documents with 783 relevant text fragments. These results seem to indicate potential
for further improvements, however, in order to obtain more reliable results we need to
perform more evaluations together with our project partners first.

The development of the application used a process model similar to the common
model with ad-hoc testing. Normally, an information extraction application is tested
automatically for quality assurance. But due to the characteristics of the high level in-
formation extraction task, it is often not suitable to utilize complete annotated docu-
ments for back testing. Therefore a semi-automatic approach with several supporting
tools was used. The applied process works as follows: At the beginning a new appli-
cation or a new requirement is defined by the domain specialist. He or she manually
selects a representative set of documents and creates a test corpus. The knowledge en-
gineer develops new rules using the test corpus and informal specifications. The domain
specialist tests the new rules with the test documents for their functionality. Then he or
she creates a feedback document, a documentation of the errors with examples. Fur-
thermore, the new rules are additionally tested on a new test corpus with randomly
selected documents. The feedback document is extended with the new reported errors.
The knowledge engineer writes new rules to correct the documented errors. If the func-
tionality or the quality of the rules is not sufficient enough, the process is iterated: Either
new features are added or the rule set has to be improved further. In both possibilities
the knowledge engineer receives a new representative corpus for testing.

The experience with this application motivated the development of the presented
test-driven process model. The process has already been partially implemented, and
especially the controlled formalization of test cases, the isolated specification of new
features and the automatic back testing of different kinds of test cases provide distinct
advantages over the current ad-hoc testing process model.

4.2 Diagnostic Case Extraction from Textual Discharge Letters

The second case study considers the generation of cases from semi-structured medical
discharge letters. These letters are written by the physicians when a patient has been
diagnosed and leaves after a hospital stay. The letters are typically written by the re-
sponsible physicians themselves and are stored as MS Office (Word) documents. These
contain the observations, for example, the history of the patient, results from certain ex-
aminations, measurements of laboratory parameters, and finally the inferred diagnoses
of the patient. Figure 3 shows an example of a partial (anonymized) discharge letter
with the diagnosis, anamnesis, and some laboratory values. The available electronic
discharge letters provide the basis for various purposes, for example, for quality control
with respect to a hospital information system, for medical evaluations, or for creating
case-based training sessions.

Diagnosen:

Leberzirrhose ethyltoxisch CHILD C

Therapierefraktarer Aszites (chylos)

Indikation zur TIPSS-Anlage

Indikation zur Lebertransplantation

Z. n. Osophagusvarizenblutung

Z. n. spontan bakterielle Peritonitis

Z. n. Prostataektomie bei Prostata-Karzinom.

Hyperplastischer Magenpolyp

Z. n. Polypektomie eines Colon-Polypens an der Bauhin’schen Klappe.

Anamnese:

Herr X wurde uns mit therapierefraktdrem Aszites bei Leberzirrhose vorgestellt. Auch unter gesteigerter Diuretika-
Dosierung waren Aszitespunktionen in kurzen Abstéanden notwendig. Herr X wurde nun zur erneuter Aszitespunktion und
Neueinstellung der medikamentdsen Therapie stationar aufgenommen. Des Weiteren sollte eine Gastroskopie bei
bekannten hyperplastischen Magenpolypen durchgefiihrt werden. Der Patient berichtete Uber eine Gewichtszunahme
von 6 kg innerhalb von einer Woche. Die Trinkmenge lage z. Z. bei 2,5 — 3 Liter pro Tag. Wegen zahlreicher
Nebenwirkungen wurde die aktuelle Medikation in Riicksprache mit unterer gastroenterologischen Ambulanz abgesetzt.
Zuletzt nahm der Patient an Torasemid 20 mg und Spironolacton 200 mg téglich ein.

Labor:

XX.XX.20XX 10:20:00

Klinische Chemie: Eisen: 38 [59 - 158] pg/dl;

Gerinnung: Thromboplastinzeit n. Quick: 44 [70 - 130] %; Ratio int. norm.: 1.63 [0.85 - 1.18] ; PTT: 64.1 [23 - 36] s;
Antithrombin IlI: 27 [75 - 125] %; Fibrinogen (Clauss): 2.6 [1.8 - 3.5] g/I; Faktor II: 27 [70 - 120] %; Faktor V: 27 [70 - 140] %; D-
Dimere (immunol.): 0.420 [0 - 0.190] mg/l;

Serumproteine und Tumormarker: Ferritin: 30 [30 - 400] pg/l; Transferrin: 169 [200 - 380] mg/dl; Transferrinsattigung: 15.9 [16 -

Fig. 3. Example of a partial discharge letter (in german): The screenshot shows the diagnoses,
anamnesis, and laboratory examination part ("Diagnosen, Anamnese, Labor"). Then, the seg-
ments corresponding to these need to be extracted, and post-processed for data extraction.

The text corpus is made up of a set of discharge letters for a set of patients. The goal
is to process these and to extract the relevant information (observations, diagnoses)
from the discharge letters. We started with a training corpus of 43 discharge letters. For
extracting the relevant information, we developed a set of rules that take the structure of
the document into account. A discharge letter needs to follow a certain standard struc-
ture: The document is started by the salutation, the diagnosis part, the history of the
patient, textual paragraphs describing the results of various examinations like computer
tomography (CT), and the result of laboratory examinations, i.e., the measured parame-
ters. For applying the TEXTM ARKER system, we can therefore focus on these building
blocks of the document. Therefore, the domain specialist provided this information and
annotated several documents concerning the important text blocks, and the respective
concepts. Each of the documents contained in the test corpus was annotated with the
concepts that are mentioned in the document. In this way, we developed a set of rules
for extracting segments of the letter first, for example, considering the diagnosis block.
After that, those segments were split up further, for example, considering the fact that
individual diagnoses are almost always contained in separate lines.

The corpus is still being extended, and new diagnoses and observations are being
added to the set of important concepts. Therefore, this provides for an ideal option for
further applying and testing the presented approach. The new concepts can be integrated
and captured with new rules, and their application can be debugged in context using the
new framework.

5 Conclusions

Information extraction is part of a widespread and still growing scientific community
that originates a multiplicity of new systems, tools and approaches. The initial devel-
opment of the TEXTMARKER system was influenced by the LAPIS system [7] and the
L1xXTO SUITE [8] with its LIXTO VISUAL WRAPPER.

Test-driven development is a well known and successfully applied development
strategy. It is often combined with agile methods like extreme programming and is sup-
ported by an automatic testing framework. Test-driven development is not only a test
first approach for quality management, but also for the analysis and design process [5].

Various studies have shown that test-driven development reduces the defect rate
and detects defects earlier. Maximilien et al. [9] have shown a reduction of defect by
50 percent compared to an ad-hoc unit testing approach. Baumeister et al. [10] applied
automatic tests and restructuring methods for an agile development of diagnostic knowl-
edge systems. They defined different types of tests, e.g., on correctness, anomalies or
robustness, and noticed significant improvements for the evolutionary development.

In the area of text mining and information extraction, ad-hoc testing against a hand
annotated gold standard is common practice. The tool CFE (Common Feature Extrac-
tion) [11] is a system for testing, evaluation and machine learning of UIMA based
applications. It provides the declarative language Feature Extraction Specification Lan-
guage (FESL) that is interpreted and executed by a generic UIMA component. How-
ever, to the best knowledge of the authors, there is no prominent tool that supports a
test-driven development of information extraction applications beyond common back
testing. The strategy of test-driven development can be used for the development of
complex information extraction applications. Yet, the transfer is not straight forward
for common rule-based or pattern-based tools. The test specification and the test frame-
work has to incorporate the imprecise nature of the unstructured information domain.

In this paper, we have presented a test-driven approach for the development of com-
plex text extraction systems using TEXTMARKER. We have proposed a process model
for the discussed task, and we have introduced the necessary components and features
of TEXTMARKER in detail. Additionally, we have discussed two real-world case stud-
ies for exemplifying the presented approach.

The test-driven strategy is being integrated in our case studies. We expect a sig-
nificant improvement in the development in general and especially in defect detec-
tion, defect reduction and an accelerated development. The process model described
in this paper has some prominent features that are not found in the common develop-
ment strategy. The presented process model supports an incremental development with
minimal initial test cases. Real world test cases that define the common requirements
can be combined with synthetic test cases for specific features and quality management.
Furthermore, the proposed test-driven development process contains short iterations of
different steps and provides a flexible way to create complex information extraction
applications. The debugging step combines the advantages of the rule-based approach
of the language, the powerful integrated development environment and the information
contained in the test cases. Therefore detailed debugging information about the rule ap-
plications, the matched text and the conditions of each rule elements can explain each
occurred error. The common red-green metaphor of the automatic testing frameworks is

therefore extended, because the test information can be displayed in combination with
debugging information directly in the textual document of the test case.

In the future, we plan to consider one major part of test-driven development that was
not addressed yet: Refactoring techniques for TEXTMARKER scripts in order to further
enhance the user experience and applicability of the presented approach. Additionally,
we aim to integrate machine learning techniques, e.g., knowledge-intensive subgroup
discovery methods [12], for a more semi-automatic development approach.

Acknowledgements

This work has been partially supported by the German Research Council (DFG) under
grant Pu 129/8-2.

References

1. Appelt, D.E.: Introduction to Information Extraction. Al Commun. 12(3) (1999) 161-172

2. von Schoen, P.: Textmarker: Automatische Aufbereitung von Arztbriefen fiir Trainingsfille
mittels Anonymisierung, Strukturerkennung und Teminologie-Matching [TextMarker: Auto-
matic Refinement of Discharge Letters for Training Cases using Anonymization, Structure-
and Terminology-Matching]. Master’s thesis, University of Wuerzburg (2006)

3. Ferrucci, D., Lally, A.: UIMA: An Architectural Approach to Unstructured Information
Processing in the Corporate Research Environment. Nat. Lang. Eng. 10(3-4) (2004) 327-
348

4. Puppe, F.: Knowledge Formalization Patterns. In: Proc. PKAW 2000, Sydney, Australia
(2000)

5. Janzen, D., Saiedian, H.: Test-Driven Development: Concepts, Taxonomy, and Future Di-
rection. Computer 38(9) (2005) 43-50

6. Gotz, T., Suhre, O.: Design and Implementation of the UIMA Common Analysis System.
IBM Syst. J. 43(3) (2004) 476489

7. Kuhlins, S., Tredwell, R.: Toolkits for Generating Wrappers — A Survey of Software Toolkits
for Automated Data Extraction from Web Sites. In Aksit, M., Mezini, M., Unland, R., eds.:
Objects, Components, Architectures, Services, and Applications for a Networked World.
Volume 2591 of Lecture Notes in Computer Science (LNCS)., Berlin, International Confer-
ence NetObjectDays, NODe 2002, Erfurt, Germany, 2002, Springer (2003) 184—198

8. Baumgartner, R., Flesca, S., Gottlob, G.: Visual Web Information Extraction with Lixto. In:
The VLDB Journal. (2001) 119-128

9. Maximilien, E.M., Williams, L.: Assessing Test-Driven Development at IBM. In: ICSE ’03:
Proceedings of the 25th International Conference on Software Engineering, Washington, DC,
USA, IEEE Computer Society (2003) 564-569

10. Baumeister, J., Seipel, D., Puppe, F.: Using Automated Tests and Restructuring Methods for
an Agile Development of Diagnostic Knowledge Systems. In: FLAIRS’04: Proc. 17th Intl.
Florida Artificial Intelligence Research Society Conference. (2004) 319-324

11. Sominsky, I., Coden, A., Tanenblatt, M.: CFE - a System for Testing, Evaluation and Ma-
chine Learning of UIMA based Applications. In: LREC ’08: The sixth international Confer-
ence on Language Resources and Evaluation. Towards Enhanced Interoperability for Large
HLT Systems: UIMA for NLP. (2008)

12. Atzmueller, M., Puppe, F, Buscher, H.P.: = Exploiting Background Knowledge for
Knowledge-Intensive Subgroup Discovery. In: Proc. 19th Intl. Joint Conference on Arti-
ficial Intelligence (IICAI-05), Edinburgh, Scotland (2005) 647-652

