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Abstract
Personalized search aims to tailor the retrieval results to the particular interests of individual users. The user’s
cognitive level and level of expertise in specific domains are some of the key factors to be considered during the
development of personalized models. This work proposes the integration of a Mixture-of-Experts architecture
with Dense Retrieval Models, leveraging the cognitive complexity levels defined in Bloom’s Taxonomy for
personalized Information Retrieval based on the user’s level of expertise in educational search.
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1. Introduction

Personalization in Information Retrieval (IR) aims to tailor the search outcome based on the user’s (or
group of users’) preferences and their online behavior [1, 2, 3]. In this paper, we address personalized
IR from the aspect of the user’s cognitive complexity level on a given field, as defined in Bloom’s
Taxonomy [4]. This newly considered factor can be beneficial for specific personalization tasks, such as
in an educational search scenario, where the search results can be personalized based on information
about the user’s level of expertise on a given topic. Since neural models were widely adopted in IR, the
development and application of Dense Retrieval Models (DRMs) [5, 6], which leverage deep learning to
learn semantic relationships between queries and documents (semantic embeddings) [7], significantly
increased. DRMs achieve high performance in domain-specific search scenarios [8], where IR systems
are designed for specialized fields or subjects [9], and given their great adaptability to various tasks [7],
there is also the potential for their application in personalized IR [10].

This work proposes an approach that integrates a Mixture-of-Experts (MoE) architecture with DRMs
to leverage and incorporate the cognitive complexity levels defined in Bloom’s Taxonomy [11], aiming
to enhance the generated embedding representations of text and provide personalized search outcomes
based on the user’s level of expertise in educational search.

2. Background and Related Work

Bloom’s Taxonomy. For the proposed work, we adopt the Cognitive Complexity of text as defined in
Bloom’s Taxonomy [11]. Bloom’s Taxonomy, introduced in 1956 and later revised (Revised Bloom’s
Taxonomy - RBT) in the early 2000s [4], aims to facilitate educators to optimize the conveyance of
knowledge by classifying learning objectives into six different levels of increasing cognitive complexity,
i.e., Remember, Understand, Apply, Analyze, Evaluate, Create. This classification of text into different
levels of cognitive complexity intends to implicitly depict the user’s level of expertise on the given topic.
Figure 1 illustrates some examples of sentences classified into the RBT categories with incrementing
cognitive complexity. While the readability of the text is not considered for this classification, RBT
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Figure 1: Examples of sentences classified into the six classes of the Revised Bloom’s Taxonomy (RBT).

focuses on how knowledgeable the user is on the given topic. RBT consists of two dimensions -
Knowledge and Cognitive, with the latter being widely used in the literature for various tasks of Text
Classification in levels of cognitive complexity [12, 13, 14].
Mixture-of-Experts. MoE [15] is a Machine Learning (ML) technique used in various contexts

within the ML community [16], and also in the field of NLP [17, 18, 19]. MoE allows the division of
complex problems into sub-domains or sub-tasks, each managed by a uniquely trained expert, increasing
the underlying model’s adaptivity. This technique has been effectively applied to enhance Transformer-
based dense models across various NLP tasks by incorporating linguistic knowledge, such as sentence
structural complexity [20, 21]. In this work, we describe our plan to inject linguistic knowledge about
the cognitive complexity of text by integrating a MoE architecture in a DRM.

3. Proposed Methodology

Motivations. Bloom’s Taxonomy is designed to help educators create meaningful learning objectives
for their courses by classifying them into gradually increasing levels of cognitive complexity. Therefore,
an appropriate application for our proposed model is in an Educational Search Engine scenario for
personalized retrieval based on the user’s educational level on a given course or topic. Furthermore,
the cognitive complexity of a text as defined in Bloom’s Taxonomy can be also associated with the
user’s expertise on the related given topic. Hence, by taking into account user data on tasks such
as domain-specific retrieval, we consider the employment of the proposed model for personalization.
To give an example, in an academic environment where two distinct students are known to have or
have not attended a certain course (e.g., physics), the search outcome for the same (physics-related)
query should differ based on their course attendance data. More specifically, the model should retrieve
documents with higher cognitive complexity for the student who has attended a given topic considering
that they would be able to comprehend more advanced related content.
The Proposed Model. The method of adapter tuning [22, 23] is employed for the implementation

of the MoE architecture. The proposed model builds upon a traditional bi-encoder DRM architecture,
enhancing it with an MoE module that targets both query and document representations. A bi-encoder
architecture [5, 24] allows for independent encoding of documents and queries, which enhances
scalability and enables the computation of relevance scores through the similarity function of the
query and document representations. A Transformer-based network is commonly used to embed both
queries and documents. While it is possible to employ separate encoders [25], using a single encoder
for both queries and documents has been shown to improve robustness, without significantly affecting
performances [5, 26].



Each expert is trained in a different cognitive complexity class (i.e., Remember, Understand, Apply,
Analyze, Evaluate, and Create as defined in RBT) leading to six experts in total for the proposed
model. The MoE component receives the input embedding from the tokenizer and applies a series of
transformations through specialized experts (Figure 2). The output results in six modified embedding
representations, enriched with expert representations. The representations are then weighted by the
gating function and aggregated by the pooling module to form the final embedding representation,
which is eventually used for similarity assessment.

Figure 2: The overall architecture of the proposed model.

The gating function computes the likelihood for the input text to belong to any of the six predefined
RBT classes. This mechanism relies on a six-label classifier and does not assume the mutual exclusivity
of labels. Instead, it allows an input to belong to multiple RBT classes. Finally, the pooling module
merges the enhanced representations computed by the experts on the basis of the RBT class likelihood,
estimated by the gating function in the form of a normalized vector of six weights. Merging is achieved
by simply weighting and summing up the outputs of the experts, as shown in Figure 2.

4. Planned Experiments & Evaluation Strategy

In order to gain meaningful insights concerning the model’s performance in various tasks and domains,
we consider the following two standard IR benchmarks.

Zero-shot Evaluation. As an initial step, we consider the evaluation of our model in a zero-shot
retrieval scenario. Specifically, we plan on evaluating the proposed approach on the BEIR benchmark
collection (BEnchmarking IR [27]), a heterogeneous benchmark for zero-shot evaluation of IR models,
allowing us to assess our approach without prior user and task-specific training. With this setting, we
aim to evaluate the adaptability of the proposed model across various tasks and scenarios and showcase
the proposed approach’s effects on the robustness and retrieval performance of the underlying dense
retriever. At this evaluation phase, the model will be assessed as a first-stage dense retriever and will
be compared with the best-performing dense retrievers on the BEIR benchmark (e.g., Contriever [28])
on metrics such as nDGC@10 and Recall@100 [29].

Multi-Domain Benchmark for Personalized Search Evaluation. Moreover, we consider evalu-
ating the proposed approach on the task of personalized domain-specific academic search, by exploiting
the evaluation benchmark proposed by Bassani et al. [30]. The authors provided a multi-domain
evaluation benchmark for Personalized Academic Search with more than 18 million documents and 1.9
million queries across four domains (i.e., computer science, physics, political science, and psychology),
along with baseline performance including pre-trained neural models, especially for the evaluation of



Personalized Re-Ranking models. This setting enables the evaluation of the model’s ability to enhance
the underlying DRM’s embedding representations with expert insights, thereby personalizing search
outcomes during the re-ranking stage according to the user’s expertise. At this stage, the proposed
model will be evaluated as a Personalized Re-Ranking model, with retrieval performance assessed based
on user data reflecting their expertise on a given topic.

Limitations. Besides the aforementioned evaluation approaches and personalization strategies in IR
being under study for a long time, there is still a lack of high-quality large-scale benchmark datasets
for conducting offline comparative evaluations, especially in an educational search scenario, which
constitutes one of the main limitations that have to be addressed in the future.

5. Conclusions & Future Work

This work proposes an approach that incorporates information about the cognitive complexity of text
in DRMs using an MoE architecture, to generate enhanced embedding representations for personalized
search based on the user’s level of expertise on a given topic in educational search. Our model leverages
Bloom’s Taxonomy, a method developed to classify text into different levels of increasing cognitive
complexity, to inject linguistic knowledge into DRMs and improve retrieval performance. Initially, we
plan the evaluation of our approach in a zero-shot retrieval scenario, without any prior user or task-
specific training, to conduct an overall assessment of the model’s retrieval performance and capabilities.
Consequently, we intend extending the application and evaluation of our approach to the task of
personalized domain-specific academic search by leveraging available benchmarks in the literature. In
this scenario, we intend assessing the model’s capabilities in personalized search based on the user’s
level of expertise on a given topic. Although at this stage the model would personalize the search
results based solely on the user’s level of expertise, we consider expanding the personalization model
by taking into account an enriched user profile with additional information about the user’s preferences
and prior searches as future work. Ultimately, the proposed approach considers a novel dimension for
personalized IR models and aims to create space for further research in the field of educational search
by taking into account the user’s cognitive level and level of expertise in a certain field.
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