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Abstract
Blockchain unlocks several use cases leveraging unique characteristics of trustless peer-to-peer transactions
and decentralised computing. Reaching consensus in blockchains is crucial to ensure a consistent state of the
ledger across the network participants. However, consensus also introduces performance and scalability gaps
concerning traditional centralised systems. Understanding those gaps is paramount, especially if blockchains are
established as the main computing infrastructure for future digital services.

In this paper, we propose an empirical approach to performance and scalability testing in blockchain systems.
We provide a framework that unlocks measurements of well-established metrics under different configuration
scenarios. This framework establishes a systematic methodology based on simulated private blockchain networks.
To this extent, we first provide a standardisation for performance and scalability metrics. Then, we describe the
testing methodology that establishes a reproducible environment for running quantitative tests with efficient,
asynchronous, results computation. We implement the framework with two blockchain platforms using different
consensus protocols, respectively Proof of Work and Proof of Stake. We demonstrate that the performance of
both protocols is impacted by different configuration settings like the difficulty parameter in Proof of Work and
the gossip protocol in Proof of Stake.
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1. Introducton

Blockchain technology provides a trustless infrastructure for both transactional, peer-to-peer systems
and distributed computing systems. Being decentralised, blockchains do not need to entrust third-party
providers to deliver secure and reliable services. Since the advent of Bitcoin [1], blockchains have
been considered as an infrastructure for building a decentralised economy [2], disrupting traditional
computation and storage systems [3], and decentralising both digital and physical systems [4]. Achieving
these use cases requires secure and efficient platforms able to operate under various configuration
settings and scenarios. In this context, several blockchains have been proposed in an attempt to surpass
the others with better performance while preserving their principle of decentralisation and trust [5].

Providing high-performance decentralised systems is not trivial. In this context, a critical component is
the consensus protocol. Consensus ensures that the decentralised parties reach an agreement on a certain
state or the next computing operations. However, this comes at the cost of heavy communications and
computation that undermine the whole system’s performance [6]. Various consensus implementations
exist today, each one providing a tradeoff between decentralisation and performance. In particular, it is
unclear how blockchain systems can scale to larger networks without suffering performance degradation
[7]. Some systems claim to provide outstanding performance without properly demonstrating their
claims. This brings confusion in the industry, undermining the technological credibility of several
existing platforms. To this extent, an approach to performance and scalability measuring is urgently
needed. Although some proposals already exist in literature [6, 8], they lack of a common methodology
creating ambiguous results.
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In this paper, we present an empirical framework for testing the performance and scalability of
blockchain platforms. The framework is based on a systematic methodology that leverages simulation
techniques to execute comprehensive testing scenarios. It implements simulated private blockchains as
System Under Test (SUT) running under controlled execution environments. A controlled SUT ensures
flexible and reproducible testing scenarios under various system configurations. The methodology is
quantitative, providing empirical testing under different workload scenarios, and is asynchronous for
the data collection and results generation. This framework has been designed to be optimum, in the
sense that provides accurate results without injecting unexpected overheads and is adaptable to any
possible blockchain. In this work, we implemented and tested the framework with two blockchain
platforms, Algorand (Proof of Stake) and Ethereum (Proof of Work). We used the framework to outline
the performance and scalability limitations of both protocols when deployed in different configuration
scenarios and varying the node parameters.

Contributions. The main contributions of this paper are:

• an empirical framework for testing performance and scalability of blockchain platforms based on
a systematic methodology that applies a quantitative measurement approach and asynchronous
data collection;

• an implementation of the above framework with two famous blockchain platforms, namely
Algorand and Ethereum, running respectively a Proof of Stake and Proof of Work consensus
protocols;

• a performance and scalability evaluation of both implementations with varying workloads and
configurations.

2. Related Works

Blockchain performance and scalability tradeoffs received particular attention from the scientific com-
munity in recent years. A comprehensive survey of the existing performance studies has been presented
by Caixiang et al. in [6]. The survey outlines state-of-the-art techniques to measure performance
with empirical and analytical models, thus presenting existing bottlenecks in blockchain performance
and future challenges. In literature, some effort has been spent also on the practical measurements of
blockchain performance. Zheng et al. [8], propose a real-time performance monitoring framework for
blockchain systems using a log-based approach to reducing computation overheads. This work outlines
the importance of offline data processing. Hao et al., present in [9] a quantitative analysis approach that
measures the throughput and latencies of two mainstream blockchains, namely Hyperledger Fabric
and Ethereum. The study shows the performance bottlenecks caused by the consensus protocols under
varying workloads. More focussed on Hyperledger Fabric, in [10] Sukhwani et al., propose a model
based on Stochastic Rewards Nets (SRN) to measure throughput, latency, mean queue lengths, and
resources utilisation of the different components involved in the “execute-order-validate” architecture
of Fabric. While Baliga et al. [11], study the performance features of the GoQuorum blockchain under
different configurations and with two different consensus protocols; Raft and IBFT. As an approach,
this work adapts the Caliper benchmarking tool to enable distributed workloads and measure the
transactions throughput and latencies in GoQuorum.

Related to benchmarks, several tools exist. A survey proposed by Shäffer et al. provides an overview of
the most prominent benchmarks [12]. Other popular tools are BTCMark [13] and Gromit [14]. BTCMark
is a framework to assess different blockchains through various application scenarios and different
emulated infrastructures. It has been used to evaluate the performance and resource consumption
of Ethereum and Hypoerledger Fabric blockchains. Gromi is a tool for systemic testing on specific
blockchain components. It has been used to test the validator’s performance of several blockchains,
including Ethereum, Algorand, and Avalanche. Finally, a broader analysis of performance and scalability
has been introduced by Schäffer et al. with [12]. The study considers the variation of performance
in Ethereum blockchains varying different configuration parameters. From the study emerged that
misconfigured nodes are a major cause of underperforming systems.



3. Blockchain as a System Under Test

In this work, model a blockchain as a benchmarking System Under Test (SUT) [15]. To introduce our
definition of SUT we first provide some basic blockchain concepts that will be used in this paper.

We consider a blockchain as a distributed ledger replicated across independent nodes of a decentralised
network [16]. The nodes run a distributed protocol, namely the blockchain protocol to collectively process
operations and maintain a consistent state. The ledger data structure is a list of records, called blocks,
cryptographically linked together. Blocks are of fixed dimension, block-size, and include information
such as the cryptographic hash of its predecessor, a timestamp, and a list of transactions. A transaction
is an operation processed on the blockchain protocol between two parties. Users send transactions for
different tasks, for example exchanging cryptocurrencies like Bitcoin [1], or executing smart contracts
like in Ethereum [17]. Users interact with the protocol with cryptographic identities, called accounts.
Transactions sent over a user requests on the blockchain are said submitted. The blockchain protocol
associates to each account a balance of the native token. Those tokens can be used to manage the
governance of the blockchain or as a cryptocurrency. The total supply of native tokens and the initial
distribution is usually defined within the genesis block. The genesis block is the first block of the
blockchain, and it specifies parameters like the block-size, the list of participation nodes, and more.

Blockchains rely on consensus to achieve a consistent view of the ledger. Consensus determines the
rules on which nodes agree to append new blocks on the blockchain and their frequency, i.e. block-period.
Not all consensus protocols can guarantee the same level of consistency at any point in time. Some
protocols allow the creation of forks. A blockchain fork happens when the nodes of the network have
different views of the ledger. When forks are unlikely to happen for a certain block, that block is said
final or finalised. Thus, we refer to the transactions of a final block as finalised.

We define a SUT as a private blockchain network composed of a fixed number of nodes running a
specific blockchain protocol. A node of a private network can be of two types, namely network node or
participation node. The former handles communication routing between the latter. Both node types
execute the blockchain protocol.

4. Performance and Scalability Framework

In this section, we present our framework for testing the performance and scalability of blockchain
systems. We first present the testing methodology that the framework implements. Then, we define
performance and security metrics, and an overview of the framework’s architecture and its components.

4.1. Testing Methodology

The methodology defines an empirical approach to performance and scalability testing. As intuition,
a test (or experiment)1 consists of a three-step process: (i) deploy a controlled SUT from a provided
configuration file, (ii) spawn a workload of SUT’s transactions, and (iii) collect data artefacts from the
SUT nodes and compute the test results. This methodology is said “systematic”, in the sense that follows
a standardised approach and ensures reproducibility, “quantitative”, allowing empirical performance
and scalability analysis under various workloads, and “asynchronous”, avoiding real-time monitoring
processes to collect the experiment results.

Deploy a controlled SUT. As a first step of the experiment, a clean SUT is deployed. The SUT is
clean being initiated from a fresh configuration. The configuration takes as input SUT parameters, such
as the testing blockchain platform, the underlying consensus protocol, a number 𝑁 of participation
nodes and a number 𝑀 of network nodes. The SUT is a private blockchain network running in a
controlled and reproducible playground environment. With this approach, it is possible to provide
various testing options, varying for example the number of network or participation nodes while testing

1From now on, the terms “experiment” and “test” will be used interchangeably.



the system’s scalability. Finally, the SUT runs in a separate and independent process. This design
maximises the SUT computing and networking capabilities and avoids unwanted overheads caused by
other components of the framework.

Workload Generation. The workload generation simulates batches of transactions, i.e. the load,
that periodically flood the SUT. The load is equally balanced across the participation nodes. This
avoids unrealistic load distribution over single nodes and reproduces a homogeneous distribution of
transactions across the network. The workload generator accepts custom configurations for various
load settings. The configurable load parameters are the load duration, i.e. the continuous period in
which a workload constantly generates new transaction requests; the input rate, namely the constant
transaction delivery rate; the batch size and batch count, respectively the number of transaction requests
in a single batch and the number of batches to spawn throughout the load duration.

Data collection. The data collection step follows an asynchronous approach. Once the workload
generation terminates, a routine is in charge of collecting artefacts from the participation nodes’ logs.
Those artefacts contain consensus data about all the processed transactions. Being the data collection
asynchronous, it waits for all pending transactions to be processed (and finalised) before collecting
the test artefacts. This approach does not leverage real-time performance monitoring or any pooling
service to the nodes’ APIs. In this way, no overheads to nodes’ performance are introduced, thus the
obtained results remain accurate [8]. The artefacts are parsed and merged into a single dataset. As a
result, a 6-tuple dataset gets generated: ⟨𝑛𝑜𝑑𝑒𝑖𝑑, 𝑡𝑥ℎ, 𝑡𝑥𝑠, 𝑡𝑥𝑓 , 𝑏𝑙𝑜𝑐𝑘𝑛, 𝑏𝑎𝑡𝑐ℎ𝑛⟩, where:

• 𝑛𝑜𝑑𝑒𝑖𝑑: is the node identifier in the SUT;
• 𝑡𝑥𝑖: is the unique identifier (hash) of a submitted transaction processed by the SUT;
• 𝑡𝑥𝑠: is the transaction submission timestamp;
• 𝑡𝑥𝑓 : is the transaction finalisation timestamp, i.e., timestamp when the block containing the

transaction 𝑡ℎ is considered final;
• 𝑏𝑙𝑜𝑐𝑘𝑛: is the number of the block that included 𝑡ℎ; assuming 𝑏𝑙𝑜𝑐𝑘0 = 0 as the first finalised

block of the ledger (genesis);
• 𝑏𝑎𝑡𝑐ℎ𝑛: is the numeric identifier of the batch with which 𝑡ℎ was submitted.

4.2. Evaluation Metrics.

The following metrics are defined:

• Throughput: is the number of transactions finalised by the SUT within a time frame. Given two
times of an experiment, 𝑡1 and 𝑡2, such that 𝑡2 > 𝑡1, the throughput can be measured as TPS
(transactions-per-second) as follows:

𝑇𝑃𝑆 =
#𝑡𝑥𝑠(𝑡1, 𝑡2)

𝑡2 − 𝑡1
(1)

where:
#𝑡𝑥𝑠: number of final transactions;
(𝑡1, 𝑡2): transactions finalisation period;
𝑡2 − 𝑡1: duration (seconds) of the finalisation period.

• Latency: it is the average transaction latency measured on all submitted transactions. Transaction
latency is the difference between the transaction finalisation time and the transaction submission
time, therefore given a transaction 𝑡𝑥 we have:

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑡𝑥𝑓 − 𝑡𝑥𝑠 (2)



where:
𝑡𝑥𝑓 : transaction finalisation time;
𝑡𝑥𝑠: transaction submission time.

• Scalability: measured as the variation of throughput and latency measurements obtained by
altering the number of nodes and the workload.
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Figure 1: Framework architecture. The arrows indicate the interaction between each component, whereas at
the centre there is the SUT.

4.3. Framework Architecture

The framework architecture is shown in figure 1. It is composed by two components called Orchestrator
and Evaluator. The former takes care of running the SUT, while the latter is in charge of the other
framework tasks. They operate on independent servers to optimise resources. components have been
designed for deploying the SUT and running the experiments afterwards.

Orchestrator. It deploys the SUT for the experiment. It takes as input the SUT nodes configuration
files that specify the SUT blockchain platform and consensus, along with the numbers 𝑁 and 𝑀 , of
participation and network nodes respectively, and an arbitrary array of additional configuration options
that can be tuned with the nodes. The Orchestrator takes care of configuring the SUT environment and
deploying the network.

Evaluator. It is generates the workload and collects data. It also provides in output the experiment
result by computing the performance and scalability metrics. Figure 2 illustrates a close-up view of
the Evaluator. As shown, it embeds two sub-components, the Transactions Generator and the Analyser.
The Transaction Generator receives a workload configuration file. It specifies the workload parameters,
like the load duration, input rate, and batches. For each transaction request, it generates an TX entity
object that is an HTTP request toward the nodes of the SUT. The Transactions Generator integrates
the blockchain platforms’ SDKs (Software Development Kit) to build transaction requests according
to their specification. TX entities get organised in batches, such that given a batch, 𝑇𝑋 − 𝑖 is the 𝑖th
transaction in the batch, with 0 < 𝑖 < 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒. Transactions are then load-balanced toward the
nodes of the SUT. The Analyser monitors the network and collects the artefacts from the nodes. It
parses data and produces the dataset. Finally, the Analyser returns a Result object, which is the metrics
measurement from the generated dataset.
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5. Implementation

We implement the framework with a combination of Bash and Python scripts and a Java routine. The
SUT is deployed using Docker, as a container-based virtual network, in which each Docker container
runs a node of the SUT. Containers embed the blockchain protocol of the supported platforms. We
integrate two blockchain platforms, namely Algorand [2] and Ethereum [17].

Ethereum is a well-known smart contract blockchain system. It comes with several implementations
for its participation nodes and different settings. In our implementation, we use the Geth [18] Ethereum
software to run a PoW network by executing the Ethash [19] protocol2. On the other hand, Algorand
is used to run a PoS network with its consensus protocol Pure PoS [2]. We use our framework to test
and compare the performance and scalability of both protocols, thus we showcase how different node
configurations can impact the measurements.

5.1. Orchestrator

The Orchestrator executes Bash commands that interact with the Algorand and Ethereum CLIs (Com-
mand Line Interfaces), respectively goal and geth. It is characterised by three different shell scripts
that control the creation, initialisation, and stopping of a SUT. The scripts are:

• createNetwork.sh: it reads from the configuration file the SUT parameters, such as the
blockchain platform, consensus, number of participation and network nodes, and additional
node options. This script configures the blockchain nodes, the network topology, and the genesis
file according to the passed configuration;

• startNetwork.sh: it accesses the environment in which the SUT has been created, thus it
starts the network by running the startup command on every node;

• stopNetwork.sh: it accesses the environment in which the SUT has been created and therefore
stops the network. It is responsible for storing the node logs in a repository external to the SUT
environment.

Networks Topologies. The network topology is dictated by the number of participants and network
nodes. In particular, given 𝑁 participation nodes, at least one network node is required to manage
the communications. The network nodes are called relay and bootnode respectively by Algorand and
Ethereum, whereas participation nodes are called non-relay (or participation) in Algorand, and miner
in Ethereum. Ethereum’s bootnodes bootstrap the peer-to-peer communication across the network,
conversely on Algorand the participation nodes cannot directly talk.

2The Ethash protocol is currently used in the Ethereum Classic network



The createNetwork.sh script interacts with a Python standalone program that deals with the
creation of the SUT network. This program creates a Docker configuration file, namely the docker-
compose.yml, that specifies the containerised Docker network. This file is used to start the SUT via the
Docker Compose daemon. We configure the Docker Compose to allocate a space of the host’s filesystem
for every container, i.e., docker volume. The Orchestrator uses volumes to store the generated artefacts,
such as the node and network configuration files, and their logs.

Nodes Configuration. The createNetwork.sh script interacts with the SUT to set up the configu-
ration according to the system specification. It includes the methods to generate the configuration data
necessary for a node to participate in the consensus protocol, including its existing accounts, balance,
and the blockchain genesis files. In particular, the genesis file includes the type of consensus protocol,
a network identifier called network id, and the initial balance allocation to accounts. The genesis file
represents the initial block of the blockchain and it is the same for every node.

Algorand Configuration. The Algorand CLI goal provides commands to deploy an Algorand
private network using a template file. The command is goal network., It prepares the configuration
files and the genesis file of each Algorand node taking as parameters:

• Network name: a simple string representing the unique network identifier. We used the parameter
𝑁 to assign the network name, for instance, a network with 𝑁 = 7 would have the name
7nodes-net;

• Total supply: total supply of ALGOs, i.e., Algorand’s native token;
• Accounts: set of accounts to use at the genesis. For each account, we specify the ALGOs distribu-

tion, and a boolean status indicating the account’s registration for PPoS consensus. Accounts
without a balance are not able to join the consensus. We create one consensus account per
participation node with equal ALGO allocation;

• Network topology: number 𝑀 of relay nodes and 𝑁 of non-relay nodes.

Algorand is characterised by two main processes, namely algod and kmd. The former is the main
Algorand process for handling the blockchain like message exchanges and transactions processing, the
latter handles the cryptographic operations for generating wallets and accounts private keys, and for
signing transactions. These processes are configured using a JSON file. Algorand relay nodes do not
host wallets and therefore the KMD is not needed. We implement the startNetwork.sh script to
start the algod processes of each configured node, and the respective kmd process for non-relay nodes.
Similarly, the stopNetwork.sh kills those processes and stops the SUT.

Ethereum Configuration. The createNetwork.sh takes care of creating and deploying the
Ethereum environment. It creates the node configuration files, accounts, and genesis files according to
the Geth specifications provided with the software documentation. For each node, a new identifier is
created, called keystore. The genesis file is created with puppeth, an Ethereum command line tool to
create and customise Ethereum genesis files. There exist several node parameters that can be tuned in
Ethereum. However, the most relevant parameters are the gasLimit and difficulty [7]. Those impact
the Ethereum gas, i.e. the amount of tokens that users have to pay to process Ethereum transactions,
and the consensus performance. puppeth provides default values for both params. We changed those
values to reflect realistic network conditions:

• gasLimit: it determines the maximum block size. To obtain realistic measurements, we used the
gasLimit adopted at the time of writing by the Ethereum main network. Therefore, the default
value assigned by puppeth was changed from 524,288 to 12,500,000;

• difficulty: it determines the block period in a PoW network. It defines the difficulty of the
PoW puzzle and the rate at which miners can solve it. We fixed the default difficulty generated
by puppeth to align with Algorand’s block period.

Additional Ethereum parameters can be configured with the createNetwork.sh script. Table 1
shows the list of supported commands, such as (i) the number of threads used by the node to process



Table 1
geth options used to deploy a PoW miner node in Ethereum.

Option Value Description

–mine – Mining enabled
–miner.threads 1 Number of CPU threads to use for mining
–miner.gasprice 0 Minimum gas price for mining a transaction
–miner.gaslimit 12500000 Maximum gas ceiling for mined blocks
–miner.target 12500000 Target gas for mined blocks

transactions, (ii) the transactions fees, called gasPrice, (iii) the gasLimit, and (iv) the target gas usage.
We chose those parameters as they can be tuned to obtain different performances [].

5.2. Evaluator

The Evaluator is implemented as a standalone Java application. To interact with Algorand and Ethereum
blockchains, the Evaluator imports the Algorand and Ethereum Java SDKs, respectively AlgoSDK and
web3j.

Transactions Generator. It accepts a workload configuration and generates the respective transactions.
The cryptographic operations of signing a transaction are delegated to the respective SDKs before
sending the workload. In this way, the blockchain nodes do not have to waste performance computing
cryptographic operations, as shown in [12].

The Algorand Transaction Generator interacts with the AlgoSDK to create and sign TX entities objects
using the kmd daemon. To guarantee the uniqueness of concurrent transactions, we use the note field
adding a random identifier (UUID.randomUUID() method from the java.util package). Similarly
to Algorand, Ethereum’s transactions need to be distinguished to avoid concurrency errors. We used
the nonce field of the Ethereum transactions for uniqueness. For each transaction, we compute the
nonce as 𝑛𝑜𝑛𝑐𝑒 = 𝛾 + 𝑐𝑁𝑜𝑛𝑐𝑒, where 𝑐𝑁𝑜𝑛𝑐𝑒 indicates the value of the previous nonce and 𝛾 is the
batch size. The workload generation works as a multi-thread process. For each batch of TX entitys, the
Transactions Generator starts a Java thread. Threads issue transactions concurrently. We modify the
timeout used by Java threads to ensure that threads do not get killed before all queued transactions get
processed by the nodes. We used the CountDownLatch from the java.util.concurrent package.

The process of workload generation used with the Transaction Generator is described with the
Algorithm 1. The parameters and the functions used in the algorithm are detailed below:

• 𝑁 := {𝑛1, 𝑛2, . . . , 𝑛𝑛} is the finite set of participation nodes;
• 𝐴 := {𝑎1, 𝑎2, . . . , 𝑎𝑛} is the finite set of accounts;
• Ω : 𝑁 ↠ 𝐴, is a one-to-one function that accepts a participation node and returns its account;

given a node 𝑛1, Ω(𝑛1) returns the account of 𝑎1;
• 𝛽 is the number of workload batches;
• 𝛾 it the size of a workload batch, i.e., the number of TX entities in a batch;
• Π := {𝜋1, 𝜋2, . . . , 𝜋𝑖} is a finite set of transactions ready to be submitted - signed TX entities.

The size of Π depends on 𝛾 and the size of the network (|𝑁 |), thus |Π| = |𝑁 | × 𝛾.
• 𝜏 defines batches issuance rate.
• 𝑅𝑛 := {𝑟1, 𝑟2, . . . , 𝑟𝛾} defines the set of receivers (accounts) for a given node 𝑛, 𝑛 ∈ 𝑁 ; for a

node 𝑛1 and its account 𝑎1 derived from Ω(𝑛1), then 𝑅𝑛 = {𝐴− {𝑎1}};
• ∆ : (𝑁 × 𝐴 × 𝑅) → Π, is a function executed by each node to create a TX entity; it takes as

input a 3-tuple ⟨𝑛1,Ω(𝑛1), 𝑟1⟩ (a node, a sender and a receiver) and it returns a TX entity 𝜋1;
• 𝑇𝑋 := {𝑡𝑥1, 𝑡𝑥2, . . . , 𝑡𝑥𝑛}: it represents a list of transactions receipt in which 𝑡𝑥𝑖 corresponds

to the transaction identifier on the blockchain TX entities;
• Φ : Π→ 𝑇𝑋 , is a function executed by the nodes to process submitted TX entities; it takes as

input a TX entity and returns the receipt of processed transaction 𝑡𝑥𝑖.



Algorithm 1 Pseudocode of Transactions Generator Workload
Require: 𝑁 , Ω, 𝑅𝑛, ∆, 𝛽, 𝜏 , 𝛾
Ensure: TX, the set of all transactions processed by the network.

1: 𝑇𝑋 ← ∅
2: for 𝛽 batches do
3: Π← ∅
4: for all 𝑛𝑜𝑑𝑒 ∈ 𝑁 do
5: for 𝛾 iterations do
6: 𝑠𝑒𝑛𝑑𝑒𝑟 ← Ω(𝑛𝑜𝑑𝑒)
7: 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟← 𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟(𝑅𝑛𝑜𝑑𝑒) //selects any 𝑟 from 𝑅𝑛𝑜𝑑𝑒

8: 𝑇𝑋𝑒𝑛𝑡𝑖𝑡𝑦𝛾 ← ∆ (node, sender, receiver)
9: Π← Π ∪ {𝑇𝑋𝑒𝑛𝑡𝑖𝑡𝑦𝛾}

10: end for
11: end for
12: for all 𝑇𝑋𝑒𝑛𝑡𝑖𝑡𝑦 ∈ Π do
13: 𝑡𝑥← Φ(𝑇𝑋𝑒𝑛𝑡𝑖𝑡𝑦)
14: 𝑇𝑋 ← 𝑇𝑋 ∪ {𝑡𝑥}
15: end for
16: 𝑡𝑖𝑚𝑒𝑜𝑢𝑡(𝜏)
17: end for

Table 2
Framework dataset

𝑛𝑜𝑑𝑒𝑖𝑑 𝑡𝑥ℎ 𝑡𝑥𝑠 𝑏𝑙𝑜𝑐𝑘𝑛 𝑏𝑎𝑡𝑐ℎ𝑛 𝑡𝑥𝑓

1 0x54a5aa1862... 1618940343328 23 1 1618939903046
2 0xc6c4a43dd3... 1618940345193 21 1 1618245653328
... ... ... ... ... ...

Analyser. The Analyser is implemented as a single Java process responsible for collecting the logs of
the SUT nodes and processing them to generate the dataset. It retrieves the list of TX entities and the list
of transaction receipts 𝑇𝑋 . Therefore, it starts a new process waitTransactionsToBeProcessed(),
which waits for the execution of every transaction in 𝑇𝑋 . This method checks the transaction queues,
i.e. the mempools, and terminates when all the mempools are empty. The Analyser iterates over the
list of transaction receipts 𝑇𝑋 and, for each 𝑡𝑥𝑖, parse the values 𝑛𝑜𝑑𝑒𝑖𝑑, 𝑡𝑥𝑖, 𝑡𝑠, 𝑏𝑙𝑜𝑐𝑘𝑛, and the batch
number 𝑏𝑎𝑡𝑐ℎ𝑛. We call this dataset transactionsResults.csv.

The finalisation time 𝑡𝑓 is then derived from the nodes’ logs. It collects the blocks’ finalisation
timestamps from each node of the SUT and computes the average times to assign a final value to 𝑡𝑓 . In
Ethereum, the PoW consensus finalisation time is displayed by the node logs with the string similar
to INFO [04-04|10:41:46.601] Block reached canonical chain number=517 .... We
implement the log parser so that it stores the timestamp when the logs show that particular message
for the expected block number.

On the other hand, Algorand’s PPoS proceeds in rounds and for each round, one block is proposed.
PPoS provides instant finality; blocks get finalised when the round terminates. We parse the logs
identifying the rounds termination times, i.e., when the log entry Type=RoundConcluded. The parser
collects 𝑁 logs and computes the average finalisation time of a block. Finally, we consider the round
number the same as the block number as the protocol generates one block per round.

At the end of the parsing phase, the Analyser creates a dataset similar to table 2.
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6. Experimental Evaluation

The environment used to deploy and evaluate the framework was composed of a PowerEdge R730xd
rack server with 56 logical processors Intel(R) Xeon(R) CPU E5-2695 v3 2.30GHz running the VMware
ESXi hypervisor. We ran one virtual machine with 68-Core Intel Core i7 2.6 GHz with 132 GB 2667
MHz DDR4 RAM and 1T storage. We deploy the SUT running 𝑁 + 𝑀 containers with 2 CPUs and
4GB RAM each. The SUT ran with Docker v18.09.7 and Docker Compose v1.24.0. We used Algorand
v2.8.0 stable and the Ethereum Geth v1.10.6. Those versions of the software were picked as battle-tested
implementations. We left for future investigation the usage of our framework to compare the latest
versions of those protocols with the obtained results.

6.1. PoW Difficulty Configuration

We tuned the difficulty parameter of the Ethereum PoW. The main purpose was to make Ethereum’s
experiments comparable with the Algorand block period. We ran an experiment for both platforms
deploying a private network of 𝑁 = 5 and 𝑀 = 1 nodes, with a workload of 𝛽 = 20 batches at the
input rate of 40 tx/s 𝛾/𝜏 . We compute the average block block-period (BP) with the following equation 3:

𝐵𝑃𝑏 = 𝑓𝑖𝑛𝑎𝑙𝑖𝑠𝑒𝑑𝑏 − 𝑓𝑖𝑛𝑎𝑙𝑖𝑠𝑒𝑑𝑏−1 (𝑚𝑠) (3)

where:
𝑏: The block number
𝑓𝑖𝑛𝑎𝑙𝑖𝑠𝑒𝑑𝑏: finalisation timestamp of block 𝑏.

The first block is equal for every node and it is computed straightforwardly from the genesis file,
hence 𝐵𝑃0 = 0𝑠. To calculate the average 𝐵𝑃 , we compute 𝐵𝑃 with equation 4:

𝐵𝑃 =

∑︀𝑁
𝑛=1𝐵𝑃𝑛

𝑁
(𝑚𝑠) (4)

where:
𝑁 : quantity of all blocks generated during an experiment.

In normal conditions, Algorand v2.x experienced a 𝐵𝑃 is ≈ 4.5𝑠 according to recent benchmarks
[14, 20]. Conversely, in Ethereum’s PoW, the 𝐵𝑃 value depends on the difficulty params set at
genesis. We tune the PoW’s difficulty such that 𝐵𝑃𝑃𝑜𝑊 ≈ 𝐵𝑃𝑃𝑃𝑜𝑆 . The default difficulty set by
the Ethereum’s command puppeth is 0x80000, i.e., 524288 in decimal format. Figure 3 shows that the
experiment measured for Algorand a 𝐵𝑃 = 4.24𝑠 as expected. Then, we ran the same experiment for
Ethereum. We first tested the platform using the default difficulty value and we obtained 𝐵𝑃 = 2𝑠.
Then we increased it by 50, 100 and 125% to find the closest 𝐵𝑃 to Algorand. The chart shows that
increasing the default value by 100% gives us a 𝐵𝑃 = 4.08𝑠.



Table 3
Experiment setting for performance evaluation.

Parameter Value

𝑁 5
𝛾 100
𝜏 1
𝛽 120
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Figure 4: PPoS and PoW TPS 200s experiment

Figure 3 also reveals to us that 𝐵𝑃 ’s PoW can be variable and not stable as for Algorand, reaching a
maximum of 7.6s. This is because the PoW forks are common, and if they occur, the process to confirm
a block is delayed. On the other hand, the probability of forking is negligible [2].

6.2. Performance: PoW versus PPoS

We compared PPoS and PoW performance measuring their throughput and latency over time. We used a
fixed input rate and network size. As shown in table 3, we deployed a network of 5 nodes and we tested
it with a workload of 500 tx/s for 2 minutes. A SUT with one single network node was used in all tests.

Throughput Evaluation. Figure 4 shows the transactions throughput over time. We measured
the throughput by counting the number of transactions finalised in a block 𝑏 and its 𝐵𝑃𝑏. The y-axis
represents the average throughput normalised to a 5 seconds range. PPoS achieves a constant throughput
equal to the input rate, whereas the PoW shows a less stable pattern. This result provides evidence that
PPoS generates blocks at a constant rate, whereas PoW blocks’ generation is variable due to mining and
eventual forks. To further understand this throughput rate, we measured the average block period and
the number of transactions per block. Figure 5(a) shows that PPoS maintains its block period stable,
finalising an average of 1859.5 transactions per block, which means that the input rate is immediately
processed and finalised. On the other hand, PoW’s blocks were generated with different block periods
ranging from less than 1 second up to 18 seconds resulting in even higher peak throughput than PPoS
due to low block periods. This suggests that blocks were generated by multiple miners, which increased
the probability of forking. Looking at the number of transactions in Figure 5(b), PoW produced empty
blocks (with no transactions) between block 75 and block 150, delaying the entire experiment time.
This provides evidence that a fork occurred, and miners struggled to synchronise on the longest chain.
To prove this claim, we examined the logs of the nodes to find out whether some blocks got refused, i.e.,
uncle blocks [17]. We found that five blocks were classified as uncle blocks during the experiment, which
means the transactions contained inside were reverted to the transaction mempool. These transactions
got finalised in the last 100 seconds of the experiment.

Latency Evaluation. We measured the average transaction latency per batch. Figure 6(a) shows
the latency of 120 batches submitted sequentially with a rate of 500 tx/s. In PoW, the latency linearly
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Table 4
Experiments setups to measure PPoS and PoW scalability varying input rate and fixed network size

Experiment name 𝑁 𝛾 𝛽 𝜏

8 nodes - 100tx/s 8 13 60 1
8 nodes - 200tx/s 8 25 60 1
8 nodes - 400tx/s 8 50 60 1
8 nodes - 600tx/s 8 75 60 1
8 nodes - 800tx/s 8 100 60 1

increased as the batches were delivered, reaching an average latency of 137s, while PPoS presents a
constant behaviour with an average transaction latency of 7.2s. Hence, a constant input rate does not
impact PPoS throughput and latency, whereas the PoW suffers from unstable throughput that leads to a
linear increase in latency over time.

6.3. Scalability: PoW versus PPoS

Input Rate Variation. The following experiment shows how the variation of input rate may affect
scalability in both protocols. Figure 4 summarises the experiments we conducted. For each experiment,
we estimate the overall throughput by considering the number of transactions confirmed during the
experiment time, that is, the period from the first transaction submitted to the last transactions finalised
by the network. The transaction latency is measured by taking the average of all transaction latencies.
Figure 7 shows the transaction latency and transaction throughput versus the input rate ranging from
100tx/s to 800tx/s. The graph 7(a) shows that the average transaction latency in PPoS always stays
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Figure 7: Comparison of PPoS and PoW average throughputs and latencies with input rates ranging from
100tx/s to 800tx/s, and a network size of 8 nodes

under 10s regardless the input rate. By contrast, increasing the input rate from 400 tx/s to 600tx/s
doubled PoW’s latency from around 50s to just over 110s. When the input rate from 600tx/s to 800tx/s,
PoW’s high latency declined steadily, whereas PPoS’s latency slightly increased from 6.5s to 9.8s. In
comparison, PoW’s latency is about 10× higher when delivering 800 tx/s.

Looking at the transaction throughput in 7(b), PPoS achieved the best performance, improving its
throughput linearly while maintaining the same latency. Conversely, in PoW, the throughput slightly
increased but always remained under 200 TPS for all input rates, whereas PPoS achieved a maximum
throughput of 500 TPS with an input rate of 800 tx/s. The lower PoW throughput is caused by the
gasLimit parameter that we assigned to Ethereum nodes. In our configuration, each block had a
theoretical cap of 595 transactions 3 transactions per block. We observe in figure 7(a) a sharp increase in
transaction latency when delivering 600 tx/s, which means that the network must generate two blocks
to fit 600 transactions, instead of just one; therefore, this also explains the latency 2× higher drifting
the input rates from 400 tx/s to 600 tx/s and 800 tx/s.

Input Rate and Network Size Variation. We varied both the network size and input rate. Figure 8
illustrates a comparison of the protocols under input rates of 400 tx/s and 800 tx/s. We ran four
experiments with 𝑁 = 4 up to 𝑁 = 32 per input rate. Overall, the two graphs (8a-(b) and 8b-(b))
show that the horizontal scaling of the system lowered the throughput of both protocols, reaching
roughly the same value moving from 16 to 32 nodes. This was caused by the type of network topology
used, in which the network node, i.e., relay for Algorand and bootnode for Ethereum, represented a
bottleneck of the blockchain network delaying the propagation of blocks and transactions to all nodes.
We leave as future work the evaluation of the same experiment in a more complex topology without
centralised network nodes. Looking closely at figure 8a-(a), the transaction latency of both protocols
sharply increases when raising the number of nodes from 16 to 32. Figure 8b-(a), however, shows that
with a higher input rate, only PoW’s latency increased, whereas PPoS’s latency remained under 10s.
This behaviour was caused by the fact that in PoW more miners generate more blocks simultaneously
hence the probability of forks increases. As a result, the PoW had to run more iterations to resolve the
forks, introducing additional delays to transaction finalisation. Differently, figure 8a-(a) shows that
switching from 16 to 32 nodes, with an input rate of 400tx/s, caused in PPoS a drastic increase in latency.
This result was caused by the relay node failing to verify messages. Specifically, these issues occurred
during the Block Proposal phase where nodes broadcast the blocks using the Algorand gossip protocol
[2]. In this phase, only one block is selected. However, in the case of relay overloading, some messages
may fail and some rounds skipped with zero transactions finalised - no block finalised.

3Value obtained by dividing the gasLimit by the standard Ethereum transaction’s gas value of 21k: 12500000/21000 = 595.2
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7. Conclusion

In this paper, we presented a framework for measuring the performance and scalability of blockchain
systems. It adopts an empirical approach based on a novel methodology for testing blockchain as a
System Under Test (SUT). The methodology is systematic with the SUT deployment environment and
testing reproducibility. It allows the deployment of configurable blockchain networks with custom
parameters. The framework unlocks precise quantitative analysis based on ad-hoc workload generation
and efficient data collection. The framework has been implemented and tested with two blockchain
platforms, namely Ethereum (Proof of Work) and Algorand (Proof of Stake). The analysis measured
performance under various network dimensions and workloads. It emerged that the configuration
parameters of blockchain nodes are crucial when it comes to performance testing. We showed that
Algorand’s consensus achieves better results than Ethereum’s Proof of Work with different loads and
network sizes. However, we also demonstrate that, in large networks, the adoption of a communication
relayer can introduce performance bottlenecks, and thus should be avoided.

References

[1] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2008. URL: https://bitcoin.org/bitcoin.
pdf.

[2] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, N. Zeldovich, Algorand: Scaling byzantine agreements
for cryptocurrencies, in: Proceedings of the 26th Symposium on Operating Systems Principles,

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf


SOSP17, Association for Computing Machinery, New York, NY, USA, 2017, p. 51–68. doi:10.1145/
3132747.3132757.

[3] N. Zahed Benisi, M. Aminian, B. Javadi, Blockchain-based decentralized storage networks: A
survey, Journal of Network and Computer Applications 162 (2020) 102656. doi:https://doi.
org/10.1016/j.jnca.2020.102656.

[4] D. Sarkar, Generalised depin protocol: A framework for decentralized physical infrastructure
networks, 2023. arXiv:2311.00551.

[5] Y. Xiao, N. Zhang, W. Lou, Y. T. Hou, A survey of distributed consensus protocols for blockchain net-
works, IEEE Commun. Surv. Tutorials 22 (2020) 1432–1465. doi:10.1109/COMST.2020.2969706.

[6] C. Fan, S. Ghaemi, H. Khazaei, P. Musilek, Performance evaluation of blockchain systems: A
systematic survey, IEEE Access 8 (2020) 126927–126950. doi:10.1109/ACCESS.2020.3006078.

[7] M. Schäffer, M. di Angelo, G. Salzer, Performance and scalability of private ethereum blockchains,
in: C. Di Ciccio, R. Gabryelczyk, L. García-Bañuelos, T. Hernaus, R. Hull, M. Indihar Štemberger,
A. Kő, M. Staples (Eds.), Business Process Management: Blockchain and Central and Eastern
Europe Forum, Springer International Publishing, 2019, pp. 103–118.

[8] P. Zheng, Z. Zheng, X. Luo, X. Chen, X. Liu, A detailed and real-time performance monitoring
framework for blockchain systems, in: F. Paulisch, J. Bosch (Eds.), Proceedings of the 40th
International Conference on Software Engineering: Software Engineering in Practice, ICSE (SEIP)
2018, Gothenburg, Sweden, May 27 - June 03, 2018, ACM, 2018, pp. 134–143. doi:10.1145/
3183519.3183546.

[9] Y. Hao, Y. Li, X. Dong, L. Fang, P. Chen, Performance analysis of consensus algorithm in private
blockchain, 2018, pp. 280–285. doi:10.1109/IVS.2018.8500557.

[10] H. Sukhwani, N. Wang, K. S. Trivedi, A. Rindos, Performance modeling of hyperledger fabric
(permissioned blockchain network), in: 17th International Symposium on Network Computing
and Applications, NCA 2018, Cambridge, Nov 1-3, IEEE, 2018, pp. 1–8.

[11] A. Baliga, I. Subhod, P. Kamat, S. Chatterjee, Performance evaluation of the quorum blockchain
platform, CoRR (2018).

[12] M. Schäffer, M. di Angelo, G. Salzer, Performance and scalability of private ethereum blockchains,
in: C. Di Ciccio, R. Gabryelczyk, L. García-Bañuelos, T. Hernaus, R. Hull, M. Indihar Štemberger,
A. Kő, M. Staples (Eds.), Business Process Management: Blockchain and Central and Eastern
Europe Forum, Springer International Publishing, Cham, 2019, pp. 103–118.

[13] D. Saingre, T. Ledoux, J.-M. Menaud, Bctmark: a framework for benchmarking blockchain
technologies, in: 2020 IEEE/ACS 17th International Conference on Computer Systems and
Applications (AICCSA), 2020, pp. 1–8. doi:10.1109/AICCSA50499.2020.9316536.

[14] B. Nasrulin, M. De Vos, G. Ishmaev, J. Pouwelse, Gromit: Benchmarking the performance and
scalability of blockchain systems, in: IEEE International Conference on Decentralized Applications
and Infrastructures (DAPPS), 2022, pp. 56–63. doi:10.1109/DAPPS55202.2022.00015.

[15] R. Almeida, M. Poess, R. Nambiar, I. Patil, M. Vieira, How to advance tpc benchmarks with
dependability aspects, in: R. Nambiar, M. Poess (Eds.), Performance Evaluation, Measurement and
Characterization of Complex Systems, Springer, Berlin, Heidelberg, 2011, pp. 57–72.

[16] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso, P. Rimba, A taxonomy of
blockchain-based systems for architecture design, in: 2017 IEEE International Conference on
Software Architecture (ICSA), 2017, pp. 243–252. doi:10.1109/ICSA.2017.33.

[17] G. Wood, Ethereum: A secure decentralised generalised transaction ledger, Ethereum Project
Yellow Paper (2014).

[18] Ethereum, Ethereum geth client, https://geth.ethereum.org, 2016.
[19] Ethereum, Ethereum mining - ethash, https://ethereum-org-fork.netlify.app/vi/developers/docs/

consensus-mechanisms/pow/mining-algorithms/ethash, 2016.
[20] K. Korkmaz, J. Bruneau-Queyreix, S. Ben Mokhtar, L. Réveillère, Alder: Unlocking blockchain

performance by multiplexing consensus protocols, in: 2022 IEEE 21st International Symposium on
Network Computing and Applications (NCA), volume 21, 2022, pp. 9–18. doi:10.1109/NCA57778.
2022.10013556.

http://dx.doi.org/10.1145/3132747.3132757
http://dx.doi.org/10.1145/3132747.3132757
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2020.102656
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2020.102656
http://arxiv.org/abs/2311.00551
http://dx.doi.org/10.1109/COMST.2020.2969706
http://dx.doi.org/10.1109/ACCESS.2020.3006078
http://dx.doi.org/10.1145/3183519.3183546
http://dx.doi.org/10.1145/3183519.3183546
http://dx.doi.org/10.1109/IVS.2018.8500557
http://dx.doi.org/10.1109/AICCSA50499.2020.9316536
http://dx.doi.org/10.1109/DAPPS55202.2022.00015
http://dx.doi.org/10.1109/ICSA.2017.33
https://geth.ethereum.org
https://ethereum-org-fork.netlify.app/vi/developers/docs/consensus-mechanisms/pow/mining-algorithms/ethash
https://ethereum-org-fork.netlify.app/vi/developers/docs/consensus-mechanisms/pow/mining-algorithms/ethash
http://dx.doi.org/10.1109/NCA57778.2022.10013556
http://dx.doi.org/10.1109/NCA57778.2022.10013556

	1 Introducton
	2 Related Works
	3 Blockchain as a System Under Test
	4 Performance and Scalability Framework
	4.1 Testing Methodology
	4.2 Evaluation Metrics.
	4.3 Framework Architecture

	5 Implementation
	5.1 Orchestrator
	5.2 Evaluator

	6 Experimental Evaluation
	6.1 PoW Difficulty Configuration
	6.2 Performance: PoW versus PPoS
	6.3 Scalability: PoW versus PPoS

	7 Conclusion

