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Abstract

Artificial intelligence (AI) is revolutionizing various industries, including cybersecurity, by emulating human intelligence
to address complex threats. In the cybersecurity domain, Al offers significant potential, bolstering defense mechanisms,
optimizing threat detection, and advancing incident response capabilities. Al-powered systems can analyze vast datasets
to identify anomalies, predict cyberattacks, and enhance overall security posture. Machine Learning (ML), a subset of Al
enables systems to learn from data and make informed decisions, such as predicting optimal security measures based on
threat intelligence and operational context. Deep Learning (DL), another ML subset, harnesses Artificial Neural Networks
(ANNS) to process intricate data patterns and provide accurate threat assessments. DL, especially through Convolutional
Neural Networks (CNNs), is transforming cybersecurity by extracting meaningful features from network traffic and log data
for anomaly detection and threat hunting. Moreover, DL integrated with Natural Language Processing (NLP) streamlines
tasks like threat intelligence analysis and incident response coordination. The versatility of AI underscores its pivotal role
in cybersecurity, driving resilience enhancements and fostering proactive defense strategies. In this paper, we highlight AT
projects in the cybersecurity sector from the University of Naples Federico II node of the CINI-AIIS Lab, showcasing their

innovative contributions to cyber defense.
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1. Introduction

Artificial intelligence (Al) is a transformative force across
various industries, providing a paradigm shift in cyberse-
curity practices. Within the cybersecurity domain, Al is
heralding significant advancements, redefining defensive
strategies, amplifying threat detection capabilities, and
refining incident response mechanisms. By harnessing
Al technologies, organizations can fortify their defensive
postures, anticipate and mitigate cyber threats proac-
tively, and elevate overall security resilience.

At the core of Al's impact on cybersecurity lies its
capacity to analyze vast and diverse datasets, enabling
the identification of anomalies, prediction of emerging
threats, and optimization of security measures. Machine
Learning (ML), a pivotal subset of Al equips systems with
the ability to learn from data, thereby enhancing decision-
making processes based on evolving threat landscapes
and operational contexts. Deep Learning (DL), another
cornerstone of Al leverages sophisticated Artificial Neu-
ral Networks (ANNs) to discern intricate patterns within
data, furnishing precise threat assessments and action-
able insights. Particularly through Convolutional Neural
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Networks (CNNs), DL revolutionizes cybersecurity by
extracting salient features from network traffic and log
data, facilitating anomaly detection, threat prediction,
and forensic analysis.

Moreover, the fusion of DL with Natural Language
Processing (NLP) streamlines critical cybersecurity tasks,
such as threat intelligence analysis, malware detection,
and incident response coordination. By comprehensively
analyzing textual data, NLP-powered systems augment
analysts’ capabilities, enabling rapid threat identification
and proactive response measures.

The adaptable and multifaceted nature of Al positions
it as a cornerstone of cybersecurity, driving innovation,
resilience, and agility in the face of evolving threats. In
this paper, we present a comprehensive overview of Al
initiatives in cybersecurity, drawing from projects con-
ducted at the University of Naples Federico II node of the
CINI-AIIS Lab. Through these endeavors, we showcase
the transformative potential of Al in bolstering cyber
defense strategies and safeguarding digital ecosystems
against emerging threats.

2. Interpreting Al Models for
Behavioral Malware Detection

In the past decade, the landscape of cyber threats to In-
formation Systems has undergone a remarkable trans-
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formation, driven largely by the widespread adoption of
Internet of Things (IoT) devices and Cloud Computing
technologies. This proliferation has provided cybercrimi-
nals with a fertile ground for launching a multitude of
attacks, ranging from the insertion of unwanted adver-
tisements into websites to the clandestine exfiltration of
sensitive data for illicit financial gains. At the forefront of
these attacks are various forms of malicious software, col-
lectively referred to as malware, which pose significant
challenges to the security and integrity of digital systems.
Examples of such malware include trojans, backdoors,
spyware, and worms, each designed with the explicit
purpose of exploiting vulnerabilities in target systems
([1].

The detection of malware represents a formidable re-
search endeavor, compounded by the ever-evolving so-
phistication of cyber threats. As Cyber Security (CS)
researchers develop new detection techniques, malware
authors respond in kind, continually refining their strate-
gies to evade detection ([2, 3]). In this perpetual arms
race, traditional antivirus software programs, reliant
on signature-based detection mechanisms, have strug-
gled to keep pace with the rapidly evolving threat land-
scape. Signature-based detection relies on identifying
known patterns or signatures of malicious code within a
database, often leading to a cat-and-mouse game where
malware authors employ advanced evasion techniques
such as code obfuscation to circumvent detection ([4, 5]).

To address the shortcomings of signature-based detec-
tion, researchers have explored alternative approaches
that focus on analyzing malware behavior, rather than
static code signatures. These approaches can be broadly
categorized into Static Malware Detection (SMD) and
Behavioral Malware Detection (BMD). SMD techniques
analyze the static characteristics of malware, such as its
byte-code structure, while BMD approaches monitor the
dynamic behavior of malware at runtime, particularly
the sequence of Application Programming Interface (API)
calls made by the software to the underlying operating
system ([6]). This behavioral analysis provides valuable
insights into the actions performed by malware, offering
a more comprehensive understanding of its capabilities
and intentions.

However, the complexity and variability of modern
malware present significant challenges to both SMD and
BMD approaches. Static analysis techniques are vulnera-
ble to evasion tactics such as dynamic code linking and
encryption, while behavioral analysis can be computa-
tionally intensive and time-consuming ([7, 8]). In re-
sponse to these challenges, researchers have turned to
advanced Machine Learning (ML) and Deep Learning
(DL) techniques to enhance the effectiveness of malware
detection systems ([9, 10, 7]). These approaches lever-
age the power of neural networks to automatically learn
complex patterns and features from raw data, offering

promising avenues for improving detection accuracy and
efficiency.

Despite their impressive performance, ML and DL-
based detection systems often lack transparency and in-
terpretability, raising concerns about their trustworthi-
ness and reliability in real-world applications. To address
these concerns, researchers have begun exploring the
field of eXplainable Artificial Intelligence (XAI), which fo-
cuses on developing models and techniques that can pro-
vide human-understandable explanations for Al-driven
decisions ([11]). In the context of malware detection, XAI
methodologies aim to elucidate the underlying reasoning
behind classification decisions, offering valuable insights
into the features and patterns driving the detection pro-
cess.

While XAI approaches have shown promise in enhanc-
ing the explainability of malware detection systems, their
application to Behavioral Malware Detection (BMD) re-
mains relatively unexplored, particularly in the context
of deep sequential neural networks. This gap in research
underscores the need for comprehensive investigations
into the explainability of BMD systems, especially as they
become increasingly reliant on advanced DL techniques.
In our research, we present a novel XAl framework for
BMD, leveraging a range of state-of-the-art techniques
to provide transparent and interpretable explanations
for classification decisions. Through extensive experi-
mentation on publicly available datasets, we evaluate the
effectiveness and robustness of our framework, shedding
light on its utility and potential limitations in real-world
cybersecurity applications.

More in details, our methodology builds upon a
pipeline composed by three steps: the sequence pre-
processing module aims to standardize the data format,
the model is a classification learner that exploits the se-
quence structure of input data to perform the classifica-
tion and the explainer generates the explanation support-
ing the model’s prediction. Our methodological workflow
is summarized in Fig. 1.

To sum up, we introduced an Explainable Artificial
Intelligence (XAI) framework for behavioral malware de-
tection. We aimed to assess the effectiveness of four XAI
methods within a sequence-based deep learning model
and their relevance in contemporary cybersecurity appli-
cations.

Our experiments demonstrated the feasibility of vari-
ous XAl techniques in explaining the decisions of LSTM-
based classifiers, considering both explanation quality
and computational efficiency. While our focus was on
local explanations for individual samples, global expla-
nations were not addressed.

However, limitations exist, particularly regarding the
lack of qualitative metrics to directly evaluate XAl effec-
tiveness and the potential influence of domain-specific
factors on our findings.
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Figure 1: Methodological workflow. The pre-processing step aims to standardize the data format. The model classifies the
input sequence as malware/goodware, and the explainer generates the explanation. The models are then evaluated in terms of

classification performance, efficiency and explanations quality.

Future research will explore additional XAI methods
and assess the robustness of our framework against ad-
versarial attacks. We also plan to investigate whether
explanations can enhance classification performance and
assist in identifying systematic errors in predictive mod-
els. Real-world scenarios will be considered to evaluate
the practical utility of explanations in aiding expert ana-
lysts.

3. Autoencoder-Based Deep
Learning Pipeline for Network
Anomaly Detection

In recent years, the rapid expansion of interconnected
devices, like those found in IoT and Cloud networks, has
highlighted the urgent need for strong network secu-
rity assessments. One crucial aspect of addressing this
challenge is detecting network anomalies, which serve
as important indicators of network intrusions, privacy
breaches, system damage, and fraudulent activities. Deep
neural networks, known for their ability to learn intricate
anomaly patterns from data, have become increasingly
popular in this field. However, their effectiveness can
be hampered by the unique characteristics of network
traffic data, which is sparse, noisy, and often imbalanced
due to the multitude of devices and internet applications
generating it. Anomalies typically occur in only a small
fraction of instances, ranging from 0.001% to 1%. In our
research, we tackle these challenges with a focused ap-
proach. Initially, we use an autoencoder (AE) to identify
instances of anomalous behavior. Then, these anoma-
lies are classified by an attack classifier based on their
specific type. We have tested our framework on a large-
scale dataset consisting of real-world network traffic data,
yielding promising results.

Our proposed framework, as depicted in Figure 2, op-
erates at a high level by processing session description

attributes s; (such as port number and bytes transferred)
and determining whether the input is benign or repre-
sents an attack. In cases of an attack, the output y; iden-
tifies the specific type of attack (e.g., DDoS, sweep).

Denoising Autoencoder (DAE): The DAE module
processes the i-th session s; € R™ and outputs its latent
representation T; € R* and the reconstructed instance
3; € R™. The latent representation can be considered
as the DAE features, while the reconstructed instance
represents how the input session might be generated
from the latent space.

Reconstruction Error (RE) Module: The RE mod-
ule utilizes the output of the DAE, §;, to calculate the
reconstruction error e¢; € R. This error is indicative of
the autoencoder’s proficiency in interpreting the input
session - a higher error suggests a poorer representation.
The RE module assesses the similarity between s; and 3;
using various metrics m(), such as cosine similarity or
dot product, with empirical evidence favoring the former
for enhanced results.

Threshold Module (TRH): The TRH module con-
catenates the reconstruction error e; with the latent rep-
resentation Z;, forming a comprehensive feature vector
for the input instance. It functions as a binary classifier
within a multilayer perceptron architecture, discerning if
the DAE has recognized s; as akin to the benign instances
it was trained on:

f:z e R = {0,1} (1)

Here, a positive class indicates a benign session, while
a negative class signals an attack, the specifics of which
are determined by the AC module.

Attack Classifier (AC): In tandem with the TRH com-
putation, the AC module also receives the concatenated
vector of e; and Z;. The AC module employs a multi-
class tabular classifier (such as a random forest or sup-
port vector machine) that can be trained using standard



Figure 2: Overview of proposed NAD pipeline.
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Figure 3: DAE reconstruction error on training and validation

splits. On the x axis we report the increasing number of epochs,
while MSE values are reported on the y axis.

supervised machine learning methods. It assigns the at-
tack typology to the input instance, with the choice of
classification algorithm impacting overall performance,
as detailed in the experimental section. The final decision
of the framework is derived by considering the outputs
of both the TRH and AC modules. If the TRH output is
zero, indicating successful reconstruction by the DAE,
the input instance is classified as benign. If not, the input
instance is classified according to the attack type pre-
dicted by the AC module. This approach leverages the
DAE’s ability to recognize benign sessions, a capability
honed through extensive training on numerous instances,
while the AC module provides the specificity in attack
typology classification when an attack is presumed.

Our dataset has been provided with the NAD2021 chal-
lenge [12], where participants are provided with traf-
fic records from three specific dates, classified as either
normal traffic or a specific type of network attack. The
challenge focuses on two primary types of attacks: (1)
probing attacks, that involve attempts to extract data from
a targeted network, and (2) DDOS-Smurf attacks, which
are characterized by the use of numerous ICMP flows,
aimed at overwhelming and halting traffic to a specific
destination IP address.

The DAE module was trained using an early stopping
mechanism, halting after three epochs without MSE im-
provement on the validation set. Figure 3 show that
training stops at 69 epochs and the model easily learns
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Figure 4: TRH accuracy on training and validation splits. On
the x axis we report the increasing number of epochs, while
accuracy values are reported on the y axis.

Table 1

Attacks Classifier, validation performance
Anomaly Precision  Recall  F1
DDoS 0.99 1.00 0.99
IP sweep 1.00 1.00 1.00
Nmap sweep ~ 0.98 0.87 0.92
Port sweep 0.99 0.99 0.99

to reconstruct input samples. The final MSE scores were
1.2944e-5 for training and 1.2402e-5 for validation. Ad-
ditionally, further training for five epochs using both
training and validation data reduced the training MSE to
1.1759e-5.

The TRH model, integrating latent features from the
DAE and its reconstruction error, was trained to classify
samples as Normal (0) or Anomalous (1), using a similar
early stopping strategy set at 10 epochs. Figure 4 show
that training stops at epoch 202 with a training accuracy
Accirain = 0.9697 and validation accuracy Accyar =
0.9698. These results indicate the model’s proficiency in
differentiating between anomalous and normal samples.

The AC module, tasked with classifying attack samples
identified by the TRH, was trained using a RandomFor-
est classifier. Performance metrics, including Precision,
Recall, and F1 scores, are detailed in the classification
report. The confusion matrix provides further insights
into the classifier’s performance across different attack
types. We report results in Table 1 (Precision, Recall and



Table 2
Attacks classifier, validation confusion matrix
DDoS  IPsweep  Nmap sweep  Port sweep
DDoS 374 1 0 0
IP sweep 2 38310 0 172
Nmap sweep 1 4 116 12
Port sweep 2 109 2 12253
Table 3

Test performance of DAE+TRH modules distinguishing anoma-
lous and normal samples

Class Precision  Recall  F1
Normal 1.00 0.96 0.98
Anomaly  0.47 0.98 0.63

Table 4

Test performance of the entire DAE+TRH+AC pipeline
Class Precision  Recall  F1
DDoS 0.1 0.52 0.19
Normal 1.00 0.96 0.98
IP sweep 0.53 0.99 0.69
Nmap sweep ~ 0.96 0.83 0.89
Port sweep 0.34 0.95 0.50

F1 scores) and Table 2 (confusion matrix).

The final test assessed the combined performance of
the DAE, TRH, and AC modules on the test set. Given the
unbalanced nature of the data, Precision and Recall were
key metrics for evaluating the DAE+TRH’s ability to dis-
tinguish between normal and anomalous samples. While
these modules demonstrated high quality in differenti-
ating negatives from positives, there were limitations in
identifying all anomalies. The cumulative errors from the
DAE+TRH and AC modules are reflected in the overall
system performance. The aggregated Fi,3 score, evaluat-
ing the system across all classes, was recorded as 0.577,
indicating areas for improvement in the pipeline’s ability
to accurately classify various types of network activities.

In conclusion, we introduced a streamlined and effec-
tive framework for Network Anomaly Detection (NAD).
Our approach involves two main phases: (1) identify-
ing anomalies using latent features generated by a Deep
Denoising Autoencoder, and (2) classifying these anoma-
lies with a multi-label classifier. Despite potential error
propagation within the pipeline, our approach has shown
promising results. However, we observed a limitation in
the performance of the Threshold module (TRH), partic-
ularly in detecting attack samples, due to dataset imbal-
ance. Future research will focus on implementing class-
balancing techniques to improve the TRH module’s ef-
fectiveness and enhance the overall system performance.

4. Al Act and Biometrics

As Al becomes more integrated into daily life, cybersecu-
rity emerges as a critical concern. The AI Act, the first
global law on Al usage, serves as a key regulatory frame-
work within the European Union, emphasizing ethical
considerations in cybersecurity. This law seeks a balance
between technological innovation and the protection of
core ethical values, ensuring Al is used responsibly. Par-
ticularly important within the AI Act is the role of cyber-
security for high-risk AI systems, which requires a com-
prehensive security approach. One significant challenge
addressed by the AI Act is the management of biometrics,
acknowledging their sensitive nature and the privacy and
security implications for individuals. The act is partic-
ularly concerned with the ethical use of biometric data,
such as fingerprints, and facial and vocal recognition, due
to the personal data protection it necessitates. To regu-
late the deployment of facial and biometric recognition
technologies in public spaces, the AI Act sets strict rules,
allowing exceptions only in well-defined scenarios like
locating missing persons or preventing serious crimes
[13].

While the AI Act represents a significant step forward
in balancing the benefits of artificial intelligence with
the protection of fundamental rights, it also makes even
more complex the landscape of challenges that remain.
Indeed, on one hand, stringent regulations are essential
for managing the risks associated with Al technologies
and ensuring they adhere to ethical standards. On the
other hand, continuous research in the field of Al and
biometrics is critical. The need for advancing research in
biometrics is recognized globally, to the extent that nu-
merous international competitions have been established
to challenge researchers in identifying fake biometrics.
Over the years, the Naples’ CINI AI-IS node has made
significant contributions to the field of fake fingerprint
detection. It has actively participated in several editions
of LIVDET", an international competition that challenges
researchers with the task of distinguishing between live
and fake fingerprints created through diverse techniques
and spoofing materials. Our team has achieved notable
success in the last two editions, securing first place in
one and second place in another. These accomplishments
were made possible through our innovative use of adver-
sarial learning techniques, which allowed us to perform
a synthetic data augmentation able to improve the over-
all performance of a liveness detector [14] achieving an
accuracy over 90% on two dataset. More recently, ex-
ploiting the experience matured over the years, we also
developed a new fake fingerprint crafting strategy that
can be used to physically cast a fake fingerprint able to
bypass Al-based liveness detectors [15].

!https://sites.unica.it/livdet/



These results not only anticipate future cybersecu-
rity threats but also aid in formulating effective defence
mechanisms. To address this need while also protecting
people from unwanted misuses, we advocate that one of
the major challenges in the field of Al is education, to
promote a deeper understanding of the risks and ethi-
cal implications of Al and enable people to participate
in an informed and conscious manner in public debate
and decision-making regarding the use and regulation of
these technologies. In pursuing a balance between tech-
nological innovation and the protection of fundamental
rights, it seems necessary to promote an open and inclu-
sive dialogue involving both developers and civil society
stakeholders [16].
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