
Hypertext Knowledge Workbench?

Max Völkel

FZI Forschungszentrum Informatik
Universität Karlsruhe (TH), Germany

voelkel@fzi.de, http://www.fzi.de/ipe/

Abstract. This paper presents a tool for semantic personal knowledge
management called Hypertext Knowledge Workbench (HKW), an edi-
tor and browser for semantic personal knowledge models. The tool is
designed to be used by a single person to manage her personal notes
about any topic that seems relevant. Existing wikis and semantic wikis
represent content as pages with a title and content. Hypertext-based
Knowledge Workbench (HKW) offers a more powerful yet simple to use
conceptual model and allows entering and using knowledge in different
degrees of granularity and formality.

1 Introduction

In 1958, Peter F. Drucker [8] was among the first to use the term knowledge
worker for someone who works primarily with information or one who develops
and uses knowledge in the workplace.

Frand and Hixon [10] were among the first to use the term Personal Knowl-
edge Management (PKM) in an academic context, followed by [2, 18]. Higgison
[12] defines personal knowledge management as “managing and supporting per-
sonal knowledge and information so that it is accessible, meaningful and valuable
to the individual; maintaining networks, contacts and communities; making life
easier and more enjoyable; and exploiting personal capital”.

Polanyi [24] makes a distinction between explicit knowledge encoded in arte-
facts such as books or web pages, and tacit knowledge which resides in the
individual. Concerning explicitness of knowledge, Nonaka and Takeuchi [20] dis-
tinguish two kinds of explicitness: explicit and tacit. Later works [6, 19] conclude
that external and internal (tacit) knowledge are two extremes on a spectrum.
Maurer [17] states that knowledge resides in the heads of people and the com-
puter can only store “computerized knowledge” which is to be understood as
“shadow knowledge”, a “weakish image” of the real knowledge. In PKM, we of-
ten deal with knowledge that is somewhere in the middle of these extremes. E. g.
note-taking is a core activity of PKM. An individual creates an external repre-
sentation for internal concepts. Later, the external representation is internalised

? Acknowledgments: Research reported in this paper has been financed by the EU
in the Social Semantic Desktop project NEPOMUK (IST-FP6-027705, http://
nepomuk.semanticdesktop.org).

http://www.fzi.de/ipe/
http://nepomuk.semanticdesktop.org
http://nepomuk.semanticdesktop.org


again to re-activate the knowledge in the individuals mind. If somebody writes
a short informal note to himself it is often completely meaningless to others.
The knowledge is thus not fully externalised – Yet such a note is an external
reminder about some knowledge that the author would otherwise forget. E. g. a
short note like “coffee” could mean anything from “buy coffee”, or “don’t forget
to have a coffee with an old friend next Tuesday” to “download and install the
latest source code management tool called coffee”. In HKW, knowledge can be
represented and organised within each note as well as by connections among
notes.

HKW is intended to serve as a personal log book for all kinds of knowledge.
E. g. it can be used to record ideas, bookmarks, text modules for or from docu-
ments, contact data of persons, notes on sport exercises, cocktail recipes, places
to travel to, list of friends who enjoy Chinese cuisine, favoured artists and their
interrelationships, nice restaurants, etc. These items often have relations that
cannot be represented in specialised tools, e. g. friends living in the cities where
I know a nice restaurant; text modules uses in which documents?; idea resulted
in which publication?; who knows more about this topic?; who has a record from
this rare music artist? The user can decide whether she represents e. g. a relation
between a person and a music artist as a tag, a link, typed link or just in natural
language. HKW is designed to relief the user from deciding “Will it be worth the
effort to take this note?” and “Where do I file this?” Authoring in HKW is “pay
as you go”, with very low initial costs yet expressive modelling abilities in the
same tool. A user can record any thought at low costs and might develop it later
into more structured, more linked, more important notes. HKW can represent
structured knowledge from any domain, because the relations and types can be
changed and extended by the user at runtime. Informal knowledge represented
as plain text or structured text needs no defined types and relations.

1.1 Existing Approaches

Existing approaches to personal note management are paper-based approaches
such as sticky-notes, paper notebooks, and a“Zettelkasten”[16]. The paper-based
approaches are hard to automate, e. g. in a Zettelkasten one has to traverse the
links from note card to note card manually. On paper it is especially costly to
change the content of notes or relations to other notes. Sometimes a complete
note has to be rewritten. Also there is no ability for full-text queries or semantic
queries.

There are many software-based approaches for note management; almost
all of them allow full-text search and a virtually unlimited amount of personal
notes. Unfortunately, search is not enough for PKM. As Barreau and Nardi [3]
point out, there is also a need to organize notes so that a note is even found if
the user was just querying for a related note or browsing to a certain folder or
category. On their desktop, users manage their content in files; these files are
organized in folders. Personal notes often have internal structure and relations
to other notes. These relations are hard to manage in plain text files and the file
system.



Software tools designed for knowledge management offer ways to
create links between notes. Such tools include blogs, wikis, PIM tools, mind map
tools, and desktop wikis. These tools offer better usability for quickly creating
structured content and linking it with exiting notes. However, if a knowledge
base grows to thousands of notes, mere store and retrieval reaches its limits.
E. g. which of your recipes were tasty when you tried but do not contain too
much chilli, because Dirk does not like chilli? You want to go to Heidelberg –
what was the name of the nice restaurant you went to together with Claudia last
summer? Or imagine you keep a diary where you occasionally note your running
times. Suddenly you weight more than the year before. Did you went running
less often than the year before? Most real-world use-cases are not restricted to
single domains, rather it is typical to have links across multiple domains (here:
recipes, people, travel, sports).

It is obvious that a system can support searching and browsing better, the
more structured, more formal the content is. However, requiring to formalise all
content is too expensive. Therefore plain ontology editors are not good PKM
tools. A system should let the user decide at each step how much formalisation
effort to put into the system. For numerical knowledge, spreadsheet applications
such as Microsoft Excel, are an example for the ability to formalise knowledge. A
user can either use a spreadsheet just like a sheet of paper or link different cells
into complex formulas. In a similar way, semantic wikis allow the same flexibility
for conceptual knowledge. A user can—but is not forced to—formalise link and
page types.

Semantic wikis are designed and used not only for collaborative use but
also for personal knowledge management (PKM) [21, 23]. Semantic wikis do
allow stepwise formalisation of content: First a page is created, then filled with
text, spell-corrected, structured, re-structured, and linked to other pages. Then
links are typed and pages linked to categories. Ironically, just like with paper-
based approaches, changing things is not that easy in semantic wikis. Tasks
such as moving content from one page to another or renaming a relation require
typically an administrator to run scripts over the database. Second, a common
use-case of PKM tools is the need to import knowledge from external sources.
In most semantic wikis, the import of semantic data needs to be represented by
artificially generated wiki syntax inserted into pages.

The Hypertext Knowledge Workbench (HKW) is different from se-
mantic wikis. HKW (a) is backed by a more flexible data model, (b) allows to
create and change formal statements easily, and (c) integrates authoring, struc-
turing and formalisation.

1.2 Outline

The remainder of this paper analyzes the conceptual model of wikis and semantic
wikis and compare it to the conceptual model of HKW, called Conceptual Data
Structures (CDS) (Sec. 2). In Sec. 3 we analyse the annotation abilities of CDS
compared to semantic wikis. We report on the HKW user interface in Sec. 4. In
Sec. 5 we compare CDS and HKW to related work before we conclude in Sec. 6.



2 Conceptual Models

A conceptual model is not to be confused with a technical data model. As an
analogy, compare the technical level of the file system, which consists of nodes,
blocks, node tables and file allocation tables, with the user-perceived model: A
strict tree containing folders and files.

Wikis have a simple conceptual model: Each page has a name, which is a
short string that can be typed on a keyboard and often be remembered by the
users. Attached to each page title is the wiki page content. Page content consist
of a longer string of characters which are interpreted by the wiki render engine
to produce HTML. Special syntax in the page content is interpreted as links to
other pages. Links are established by referring to other wiki page titles. Empty
wiki pages represent concepts with no description attached.

In semantic wikis, e. g. Semantic MediaWiki [14] (SMW), the user can state
link types and use a part of the page content itself as target of the semantic links.
However, it is not possible to link to these content snippets with another link.
The content snippets in SMW are not first-class entities.

The conceptual model of HKW — called Conceptual Data Structures
(CDS) — is a generalisation of that model. CDS [26, 27] consists of two layers:
The CDS data model and the CDS relation hierarchy. The semantics of CDS
re-use some of the semantics of RDFS [11]. Basically CDS uses sub-classes and
sub-properties, extended with inverse properties. The next two sections describe
the CDS data model and relation hierarchy. The complete CDS framework has
been implemented as Java API, available from http://cds.xam.de.

2.1 CDS Data Model

The CDS data model1 is a technical data model to represent knowledge. However,
most parts are intended to be directly exposed to the user as a conceptual model.

The conceptual model consists of six primitive types. Fig. 1 shows the techni-
cal data model with the conceptual parts shown in bold. We describe briefly how
the conceptual model works from a user’s perspective. This conceptual model is
exposed to the user in HKW.

Model A Model can be opened or saved, just like other documents. A Model is
a container for items. Such items might be items with content (i. e. Name-
Items, ContentItems, Relations, or Statements) or automatically appearing
triples.
Under the hood: Each Model has a URI. In RDF, each model is represented
as a Named Graph [4].

ContentItem These are simple text snippets, like the content of a wiki page
or a sheet of paper. One can write anything into such a note. The system
records automatically creation date, change date and author. One may use
wiki syntax to format the note, or link to NameItems by referring to their

1 It is the successor of the “Semantic Web Content Model” (SWCM) presented in [25]

http://cds.xam.de


Item (abstract)

Statement Relation

NameItem

source
target

inverse

0..1

0..n

relation

ContentItem

URI

Triple
Content 

Representation 
encoding : String
MIME-type : String
changeDate : xsd:Date
content : byte[]
author : URI

Model 
contextURI : URI

Must have content 
/\ content must be 
unique within model

Fig. 1. CDS data model

name. Like a wiki page, a ContentItems content size can range from very
short to very long. It may also be the case that a ContentItem has no content.
Under the hood: Each item (i. e. NameItems, ContentItems, Relations, and
Statements) has a unique URI to reference it. Even if the content of an item
changes, the references remain the same. No content can appear outside of
Items. Each piece of content is thus addressable, which makes it easier to
record metadata and introduce versioning. Currently there is no versioning
of content. The representation of content is modelled after resources on the
web (c. f. [9]). All metadata is represented in Resource Description Frame-
work (RDF), binary content is stored in a separate content repository. RDF
can store binary data only inconveniently as xsd:base64Binary types.
Current triple stores are not designed to handle large byte streams.

NameItem A NameItem is just a name. It is like the title of a wiki page or the
name of a file within a folder. Like in a wiki, a NameItem must be unique
within a model. NameItems do not have any content (besides their name)
but it is easy to create links to other items. NameItems allows a user to jump
directly to certain entities in the knowledge model, similar to navigating to
a known wiki page. Other items can be reached indirectly through search or
browse actions.
Under the hood: Representing names as first class citizens is handy to allow
a user to rename e. g. a NameItem without having to change each State-
ment using it. A NameItem has three restrictions on its content: First, a
NameItem has always exactly one content attached to it. Second, a Name-
Item may have only simple textual content, i. e. no line breaks and no wiki
syntax. The content of a NameItem can easily be entered a human (possibly
using an auto-completion mechanism). The MIME-type of the content is
always “text/plain”. Third, this textual content must be unique within a



knowledge model: No two NameItems can have different URIs and the same
content. Formally, for two NameItems n1 and n2 the following holds:

n1.content = n2.content⇔ n1 = n2 (1)

All these constraints do not hold for ContentItems: They can be empty or two
items can have the same content. There may also be ContentItems having
the same content as a NameItem.

Relation A Relation describes the way two items are linked to each other. There
are many pre-defined relations, but one can create new relations as needed.
The built-in relation hierarchy is described in the next section. Each relation
always has an inverse relation defined, so one can view each link from both
sides. E. g. “Dirk knows Claudia” is the same as “Claudia is known by Dirk”,
if “knows” has the inverse “is known by”.
Under the hood: A Relation is a special kind of NameItem. This implies
there can not be two different relations having the same name. Each Rela-
tion p has a mandatory inverse Relation −p. The inverse of the inverse of a
Relation p is again p:

− (−p) = p (2)

In CDS each statement of the form (s, p, o) can additionally be rendered as
(o,−p, s) with −p being the inverse of p.

Triple A CDS Triple is like a semantic link in a wiki. It connects any two items
and denotes the type of the link by a Relation. Triples appear in the user
interface e. g. as the result of queries using inferencing.
Under the hood: Triples are not items. They have no metadata or content
attached and a user has first to promote the triple to a Statement before it
can be annotated.

Statement A Statement is both a Triple and an Item. As such, it also has a
creation date, an author and may even be annotated or have textual content.
Annotating statements is useful to state the source of knowledge e. g. in
discussion systems.
There are two ways to create Statements. First, a user can use the name of
a NameItem in the text of a ContentItem. Then the system automatically
creates a statement, where the originating ContentItem is recorded as the
author. This allows the user to back-trace the origin of a statement. Second,
the user can directly create a Statement between any kind of item.
Under the hood: Statements are represented on RDF via a kind of reifi-
cation. Different from RDF, each CDS Statement does entail the ground
triple (s, p, o). For every Statement (s, p, o), the inverse Statement (o,−p, s)
is inferred, where −p is the inverse of p. That is:

∀s, p, o : (s, p, o) 7→ (o,−p, s) (3)

Note that the URI of the Statement does not influence the asserted facts.
It is possible that different statements with the same URI assert the same
facts but e. g. having different annotations. Statements with the same URI
must have the same content, i. e. the same source, relation and target.



2.2 CDS Relation Hierarchy

On top of this conceptual data model, CDS defines a hierarchy of relations.
The CDS built-in relations have been selected after an analysis of a number of

existing information structures in applications used for PKM. The core relation
types deal with order, hierarchy, different forms of annotation (i. e. free-text
annotations, tagging, and formal typing), and generic hyper-links. As the relation
hierarchy is represented in the CDS data model, the user can (and should) extend
it in CDS-based tools such as HKW.

The relation hierarchy itself is represented by the built-in relation cds:has-
SubRelation. Each lower-level Relation implies the higher-level Relations, just
like in RDF Schema (RDFS). The complete relation hierarchy is described in [28].

3 Semantic Annotations

In semantic wikis, users can usually either state the type of link or embed meta-
data about the current page using special syntax constructs. Some wikis (i. e.
SemperWiki) allow embedding arbitrary RDF statements on a page). There is a
high variance between the capabilities of semantic wikis to create semantic data.
[22] compares some popular semantic wikis with respect to their ability to create
annotations. We now analyse HKW with the dimensions given in [22]: Attribu-
tion, granularity, representation distinction, terminology reuse, object type, and
context.

Attribution Most wikis attribute their annotations to the page where the user
is editing the wiki syntax. In HKW (and CDS) links are external to the items.
Like in other semantic wikis it is possible to create links between entities via
syntax constructs. Internally, such syntax constructs are parsed and result
in generated statements. However, only HKW allows creating links which do
no originate from a wiki page. This allows e. g. easily importing an existing
ontology into the knowledge base without the need to append generated
wiki syntax to existing text. Furthermore, each Statement in HKW is an
Item itself and each Item in HKW has an author and a creation date. This
allows recording the provenance of Statements conveniently. The downside
of this extended flexibility is versioning. Existing semantic wikis where all
semantic statements originate in wiki syntax, the page-based wiki versioning
is re-used. In HKW, this is not possible. In fact, HKW has currently no
versioning. In the future, we plan to add two kinds of versioning: Item-level
versioning for the textual content and model-level versioning for the semantic
statements.

Granularity HKW allows creating ContentItems of varying size, ranging from
single words to full documents, just like the page content of a wiki page.
However, different from wiki pages, ContentItems have no name, therefore it
is cognitively easier to create a large set of them: Imagine an author of a long
document would have to name each paragraph in the document individually!



In wikis, every entity that one wants to link to must be written on its own
wiki page.

In HKW, the amount, size and relation between NameItems and Content-
Items can be chosen by the user. Therefore HKW can be used to mimic a clas-
sic wiki (with NameItem-ContentItem pairs), but can also be used in other
ways, i. e. linking ContentItems with ContentItems and NameItems with
NameItems.

Representation Distinction There have been long debates in mailing lists
and workshops over the role of URIs that are used to locate information
resources on the web and to denote abstract concepts. For practical every-
day personal knowledge management tasks this distinction does not matter
much. The individual users create their Items with URIs bound to a per-
sonal unique namespace, so there is no danger of accidental overlap. As we
separate the NameItems from the ContentItems, they have different URIs.
NameItems may contain only a short string. Line breaks and formatting
are not allowed. This reduces NameItems more or less to labels (but unique
ones). So there is the ambiguity whether one talks about the NameItem or
the concept denoted by the NameItem. However, the same ambiguity is in
our everyday life: Do we talk about the name “Dirk Hageman” or the per-
son “Dirk Hageman” when we say “Dirk Hageman”? For pragmatic reasons
HKW does not distinguish these two cases in the data model. Note that the
information-resource-like ContentItems are distinguished from the name-like
NameItems.

Terminology Reuse In HKW, the user is usually not confronted with URIs,
so she cannot directly re-use existing URIs. There are two options around
this: One is to create explicitly an Item with a given URI, another one is
to import an existing ontology as a set of NameItems. The ontology needs
either to have unique labels or labels have to be changed to become unique
at import time.

Object Type Most semantic wikis link either to other wiki pages or literal val-
ues. In HKW, there is no such distinction. All textual content is addressable
by URIs. So the object type is neither page nor literal but Item.

In the future, we will integrate the CDS API with the NEPOMUK backbone.
This will allow the user to link any semantic desktop item with any other
semantic desktop or CDS Item and vice versa.

Context As the annotations in HKW are stored as first-class citizens, prove-
nance and context can be stored. E. g. for each Item the author and creation
date are automatically recorded. In addition to that, each Statement can be
annotated further by the user. Note that none of the semantic wikis analysed
in [22] had a way to record context.



4 User Interface

Fig. 4 shows a screen-shot of the HKW GUI2 focusing on the NameItem “Dirk
Hageman”. The screen-shot shows the auto-completion list after entering the
letter “c”. The screen is divided into seven colored areas. Below the “Dirk” item,
HKW shows the Items related via the relation cds:hasDetail. E. g. the state-
ment“Dirk Hageman”–“born in”–“Offenburg” is rendered here. This tells the user
that ‘born in” is a cds:hasSubRelation of cds:hasDetail. The inverse
relation of cds:hasDetail is cds:hasContext. Items related to the selected
Item via cds:hasContext are rendered above the “Dirk” item. The other col-
ored boxes represent other CDS core relations. The GUI shows relations always
in their most specific box. Items are only rendered in different boxes at the same
time if the user assigned multiple super-relations to a relation. Behind the word

Fig. 2. Statement Widget

“Offenburg” there are icons allowing the user to navigate to the Statement “Dirk
Hageman”–“born in”–“Offenburg”. In a Statement view (c. f. Fig. 2), the State-
ment can be changed. E. g. the user can change the Relation or create a new
source or target. Auto-linking is supported wherever possible. Most actions in

Fig. 3. Relation Tree Widget

HKW are performed in the Relation Tree Widget (c. f. Fig. 3). Each relation

2 Try online or download from http://wiki.ontoworld.org/wiki/CDS_Editor

http://wiki.ontoworld.org/wiki/CDS_Editor


tree widget represents on of the CDS relations (detail, context, before, after,
tag, type, annotation, annotation member, related, source, or target). The wid-
get allows deleting existing statements by pressing the little red ’X’; creating
new items, relations and corresponding statements. By pressing the blue plus
icon next to an existing relation the widget expands and shows two form fields.
One to enter a relation name, pre-filled with the relation where the blue plus
was selected from and one form field to create a new item or select among the
existing NameItems. The user is free to enter a different relation name into the
relation field, again supported by auto-completion. At any time new relations
can be created by simply typing in a new Relation name. The Relation is au-
tomatically a sub-relation of the main Relation of a box. I. e. creating a new
Relation in the top right box (“has annotation”) creates a sub-relation of “has
annotation”. Inverse Relations are automatically created and named “inverse of
...”. The name can easily be change by the user in a single place. This allows
creating new semantically interlinked items easily. If the user enters a longer
text or uses line breaks, the system assumes the user creates a ContentItem. For
short text, the system suggest existing NameItems or creates new ones. As a re-
sult, a user can always just start typing in the address bar, no matter whether a
concept-like NameItem or a note-like longer ContentItem is going to be created.

The HKW prototype has been realised with the Google Web Toolkit (GWT),
an open-source AJAX-enabled web user interface toolkit by Google Inc. Styling
is done via Cascading Style Sheets (CSS). Due to CSS issues, the tool works
currently only properly in the Firefox browser. This is not a problem as Firefox is
available free of charge for all platforms. GWT applications are web-applications,
which can run in any servlet container. The typical use case is to run the server
locally on the desktop.

5 Related Work

A unified model for web content and semantic statements is presented in [13].
However, different from [13], the CDS model (i. e. ContentItems, NameItems,
Relations and Statements) is specifically designed to be exposed to and under-
stood by end-users. A model and system for a unified browsing and querying
across document boundaries is presented in [7], but authoring is not consid-
ered. Systems similar to HKW include Artificial Memory [15] and Haystack [1].
Artificial Memory shares the idea of CDS to break documents up into small,
interlinked parts to minimize redundancy and improve automated processing.
But Artificial Memory does not allow the user to create non-structured sloppy
entries. We believe letting the user decide how much effort to put into formalisa-
tion of a knowledge item is an important feature to keep the total cost of usage
low. Haystack emphasizes rendering and linking of RDF-based entities, but lacks
ways to author textual content intermingled with semantic facts.



6 Conclusions and Future Work

CDS lets the user express knowledge in the form of text (within an item), struc-
ture (structured text in items or structures between items) and formal statements
(by using relations with defined semantics). In HKW, searches and navigation
do not bring up long documents, but short fragments of text with its relations
to other parts.

In the future, we will extend HKW to allow a user to convert a Content-
Item structured with wiki syntax into a set of corresponding smaller Content-
Items. This will lower the cost of creating Items even further. The reverse oper-
ation should also be possible: Merge a set of Items into a single ContentItem, as
wiki syntax. This makes gradual formalisation of knowledge easier: First content
is written into ContentItems, then these items are structured using wiki syntax,
finally they are converted into many smaller Items that can further be annotated
as needed.



Fig. 4. HKW prototype screen shot, focusing on Dirk Hageman



Bibliography

[1] Adar, E., Karger, D. R. and Stein, L. A. [1999], Haystack: Per-user infor-
mation environments, in ‘CIKM’, ACM, pp. 413–422.

[2] Avery, S., Brooks, R., Brown, J., Dorsey, P. and O’Conner, M. [2001], Per-
sonal knowledge management: Framework for integration and partnerships,
in ‘Proc. of ASCUE Conf.’.

[3] Barreau, D. and Nardi, B. [1995], ‘Finding and reminding: File organization
from the desktop’, SIGCHI Bulletin 27(3), 39–43.

[4] Carroll, J. J., Bizer, C., Hayes, P. and Stickler, P. [2004], Named graphs,
provenance and trust, Technical report, HP.

[5] Decker, S., Park, J., Quan, D. and Sauermann, L., eds [2005], The Seman-
tic Desktop – Next Generation Information Management & Collaboration
Infrastructure, Galway, Ireland.

[6] Despres, C. and Chauvel, D. [2000], Knowledge Horizons: the present and
promise of Knowledge Management, Butterworth-Heinemann.

[7] Dittrich, J.-P. and Salles, M. A. V. [2006], idm: a unified and versatile data
model for personal dataspace management, in ‘VLDB ’06: Proceedings of
the 32nd international conference on Very large data bases’, VLDB Endow-
ment, pp. 367–378.

[8] Drucker, P. F. [1985], Management: Tasks, responsibilities, practices
(Harper & Row management library), Harper & Row.

[9] Fielding, R. T. [2000], Architectural styles and the design of network-based
software architectures, PhD thesis, University of California, Irvine.

[10] Frand, J. and Hixon, C. [1999], ‘Personal knowledge management : Who,
what, why, when, where, how?’, Speech. working paper.
URL: http://www.anderson.ucla.edu/faculty/jason.frand/

researcher/speeches/PKM.htm

[11] Hayes, P. [2004], RDF semantics, Recommendation, W3C.
URL: http://www.w3.org/TR/rdf-mt/

[12] Higgison, S. [2005], ‘Your say: Personal knowledge management’, Insight
Knowledge 7(7).

[13] Immaneni, T. and Thirunarayan, K. [2007], A unified approach to retriev-
ing web documents and semantic web data, in E. Franconi, M. Kifer and
W. May, eds, ‘ESWC’, Vol. 4519 of Lecture Notes in Computer Science,
Springer, pp. 579–593.

[14] Krötzsch, M., Vrandecic, D., Völkel, M., Haller, H. and Studer, R. [2007],
‘Semantic wikipedia’, Journal of Web Semantics . To appear.

[15] Ludwig, L. [2005], Semantic personal knowledge management, Technical
Report D11.01 v0.01, DERI Galway.

[16] Luhmann, N. [1992], Kommunikation mit zettelkästen. ein erfahrungs-
bericht, in A. Kieserling, ed., ‘Universität als Milieu’, Kleine Schriften, Haux
Verlag, Bielefeld, pp. 53–61. ISBN 3-925471-13-8.

http://www.anderson.ucla.edu/faculty/jason.frand/ researcher/speeches/PKM.htm
http://www.anderson.ucla.edu/faculty/jason.frand/ researcher/speeches/PKM.htm
http://www.w3.org/TR/rdf-mt/


[17] Maurer, H. [1999], The heart of the problem: Knowledge management and
knowledge transfer, in ‘Proc. ENABLE’99’, Espoo-Vantaa Institute of Tech-
nology, pp. 8–17.

[18] Mitchell, A. [2005], ‘The rise of personal km’, Inside Knowledge 9(1).
[19] Nonaka, I. and Konno, N. [1998], ‘The concept of ”ba”: Building a foundation

for knowledge creation’, California Management Review 40(3), 40–54.
[20] Nonaka, I. and Takeuchi, H. [1995], The Knowledge-Creating Company :

How Japanese Companies Create the Dynamics of Innovation, Oxford Uni-
versity Press.

[21] Oren, E. [2005], SemperWiki: a semantic personal wiki, in [5].
[22] Oren, E., Delbru, R., Möller, K., Völkel, M. and Handschuh, S. [2006],

Annotation and navigation in semantic wikis, in S. Schaffert and M. Völkel,
eds, ‘Proceedings of the First Workshop on Semantic Wikis - From Wiki to
Semantics at the ESWC 2006’.

[23] Oren, E., Völkel, M., Breslin, J. G. and Decker, S. [2006], Semantic wikis
for personal knowledge management, in ‘Database and Expert Systems Ap-
plications’, Vol. 4080/2006, Springer Berlin / Heidelberg, pp. 509–518.

[24] Polanyi, M. [1966], Tacit Dimension, Routledge & Kegan Paul Ltd, London.
[25] Völkel, M. [2007], A semantic web content model and repository, in ‘Pro-

ceedings of the 3rd International Conference on Semantic Technologies’.
URL: http://xam.de/2007/2007-05-voelkel-ISEMANTICS-swcm-CR.
pdf

[26] Völkel, M. and Haller, H. [2006], Conceptual data structures (cds) – towards
an ontology for semi-formal articulation of personal knowledge, in ‘Proc. of
the 14th International Conference on Conceptual Structures 2006’, Aalborg
University - Denmark.

[27] Völkel, M., Haller, H. and Abecker, A. [2007], Modelling higher-level
thought structures - method and tool, in ‘Proceedings of Workshop on Foun-
dations and Applications of the Social Semantic Desktop’.

[28] Völkel, M., Haller, H., Bolinder, W., Davis, B., Edlund, H., Groth, K.,
Gudjonsdottir, R., Kotelnikov, M., Lannerö, P., Lundquist, S., Sogrin, M.,
Sundblad, Y. and Westerlund, B. [2008], Conceptual data structure tools,
Deliverable 1.2, nepomuk consortium.
URL: http://nepomuk.semanticdesktop.org/xwiki/bin/download/

IST/WebHome/D1.2_v10_CDS-Tools.pdf

http://xam.de/2007/2007-05-voelkel-ISEMANTICS-swcm-CR.pdf
http://xam.de/2007/2007-05-voelkel-ISEMANTICS-swcm-CR.pdf
http://nepomuk.semanticdesktop.org/xwiki/bin/download/IST/WebHome/D1.2_v10_CDS-Tools.pdf
http://nepomuk.semanticdesktop.org/xwiki/bin/download/IST/WebHome/D1.2_v10_CDS-Tools.pdf

	Hypertext Knowledge Workbench
	Max Völkel, FZI Karlsruhe

