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Abstract  
Software testing is a key stage in the life cycle of airborne software development. At this stage, 
airborne software test cases are developed manually, so the preparation of test cases requires a 
lot of time and labor costs and is prone to human errors. To solve this problem, on the basis of 
Long Short-Term Memory, this paper proposes an airborne software test case automatic 
generation algorithm based on Bi-LSTM-CRF named entity recognition model and Part-Of-
Speech tagging. First, preprocess the airborne software requirement document, replace the 
testable variable name and filter out the untestable requirement statements. Then, the airborne 
software domain corpus is trained through Bi-LSTM-CRF model to obtain named entity 
recognition model. Finally, the tag sequence is generated from the requirement statement 
through the named entity identification model, and the test case is generated through the triplet 
generation algorithm and the coverage criteria processing algorithm. The experiment uses the 
engine indicator software requirements document to verify the effect. The results show that 
compared with the traditional Bi-LSTM-CRF model, the training method with Part-Of-Speech 
tagging is more accurate, and the accuracy of the final test case generation can reach more than 
80%. 
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1. Introduction 

Software testing is to evaluate the software according to the requirements collected from the system 
specifications[1]. Due to the high safety and reliability requirements of airborne software, it is very 
important to ensure the quality and correctness of software. In addition to strictly controlling the 
software development process, the software testing process is also of great significance[2]. It is estimated 
that software testing takes 50% of the total development cost, while testing activities consume about 
40% of the overall development time[3]. 

The requirements-based testing process mainly solves two problems: 
(1) Verify that the requirements are correct, complete, clear and logically consistent. 
(2) Design necessary and sufficient test cases according to the requirements. 
Requirements documents for airborne software are written in natural language, so these requirements 

written in natural language need to be translated into computer readable patterns to facilitate automated 
test case generation. NLP can transform sentences expressed in natural language into sentences that can 
be understood in syntax and semantics and generate corresponding test cases. At present, airborne 
software test cases are developed manually, but there are some serious problems in the manual 
development of test cases[4]. In order to improve the efficiency and effectiveness of testing, testers need 
to create high-quality test cases. However, writing test cases is a long and tedious task, and is prone to 
human errors. Therefore, we need to find a method to automatically generate high-quality test cases. 
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This paper describes the process of automatically generating test cases from natural language 
requirements. The proposed method uses requirements documents as input and test case files as output. 

2. Related Work 

Requirements-based testing involves multiple manual processes. Among them, software testers must 
define test standards, design test cases according to requirements, build test cases, execute test cases 
and verify whether software requirements are met. If the requirements-based test process cannot run 
correctly or consistently, the test case may not provide the expected effect, and the testing time may 
increase significantly[1]. 

Automatic generation of test cases is not a new concept. Anurag and Shubhashis[5] developed the 
Litmus tool for generating test cases from requirements documents. The tool processes each 
requirement statement and generates one or more test cases through a five-step process. Charles et al.[6] 

developed an automated test case generator (ATCG), which also takes requirement statements as input 
and test cases as output. However, in the above methods, the test coverage generated by the requirement 
statement is not complete and is not applicable to the field of airborne software. 

3. Implementation of Automatic Test Case Generation 

In this paper, we first preprocess the requirements documents, and then train the requirements 
statements in the airborne software domain through natural language processing technology and Part-
of-Speech tagging(POS). Then the requirement statements that need to generate test cases are generated 
into corresponding named entities through the Bi-LSTM-CRF named entity recognition model, and test 
cases are generated from standard templates through the triplet generation algorithm and coverage 
criteria. The test case generation process is shown in Figure 1. 

 
Figure 1: Test case generation process 

3.1. Document Preprocessing 

Not all the requirement statements in the requirements document can be transformed into test cases 
for testing, and there are some explanations and definitions of terms. For example, "the engine 
indication software includes normal and compression modes". Therefore, untestable requirement 
statements need to be filtered out. A requirement is a contract that specifies what the user \ agent does 
to the system and how the system responds. So, a testable sentence can be defined as one that has subject, 
action, and optional object. 

Since the constants and variables of the requirements document and the airborne software model 
have one-to-one correspondence relationship tables, and the test case of airborne software is to verify 
the assignment of software model variables, the requirements document can be filtered by extracting 
the constants and variables in the relationship table and replacing the constants and variable names in 
the requirements document. Figure 2 shows an example of the comparison before and after the 
requirement document preprocessing. 
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Figure 2: Comparison of requirements documents before and after preprocessing 

3.2. Requirement Statement Extraction 

In order to process the requirements item by item, the statements in the requirements document need 
to be extracted separately. For testable requirements documents, they can be divided into single-line 
requirements and multi-line requirements. Single-line requirements are requirements with only one 
sentence. A multi-line requirement contains multiple statements, and the statements are connected by 
logical symbols such as "AND" or "OR". The last example in Figure 2 is a multi-line requirement. 

For the extraction of single-line requirements, it does not require too many operations. It can be 
obtained directly from the requirements document. For the extraction of multi-line statements, it is 
necessary to divide each line and logical symbols into multiple statements for processing the statements 
one by one. For example, the requirements in Figure 2 can be divided into“当以下条件满足时，左侧

发动机 N1 振动读数应显示为白色”, “ip_state 为 4”, “-AND-”, “ip_state 为 4 并且 ip_value 为 0”, 
“-OR-”, “ip_value 为 1”, and then process one by one. 

3.3. Named Entity Recognition Model 

The purpose of named entity recognition is to identify all entities in the requirement statement. The 
input of the model is the requirement statement, and the output is the named entity tagging sequence. 
The requirement statement is transmitted through the Bi LSTM-CRF neural network model. First, 
bidirectional LSTM is used for forward and backward training to obtain the output score of the tag. 
Then, run the CRF layer to calculate the gradient of network output and state transition edge. Finally, 
we update the network parameters, including the parameters of the state transition matrix and the 
original bidirectional LSTM. In order to improve the accuracy of named entity tagging, the following 
two problems should be solved: 

(1) For the requirement statement, what is the label of the training model. 
(2) How to improve the performance of the model. 
For the first question, use the label method of SPO (subject predicate object) to tagging the target 

element, operation instruction and interaction information of the test case as the three types of labels of 
the training model. For the second problem, the Part-Of-Speech tagging is used as the feature of the 
training model while tagging the triplets. 

The named entity recognition model proposed in this paper is based on Bi-LSTM-CRF, and the POS 
features are added on this basis. 
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3.3.1. LSTM Network Structure 

Recurrent Neural Network (RNN) is a kind of neural network used to process sequence data. It is 
very effective for data with sequence characteristics, which enables the trained model to predict results 
through long distance characteristics[7]. 

Theoretically, RNN can learn long-term dependence, but there are defects in dealing with long-term 
memory, such as gradient disappearance and gradient explosion [8]. It tends to consider the recent state. 
Long Short-Term Memory (LSTM) adds a storage unit to RNN to filter past states, so that it can choose 
which states have more influence on the current situation, and better discover and utilize the 
dependencies in the data , instead of simply selecting a nearby state. The module at moment t of LSTM 
is shown in Figure 3. 

 
Figure 3: LSTM module at moment t 

 
LSTM adjusts the values of input and hidden layers through the gate structure, which is composed 

of forgetting gate, memory gate and output gate. Among them, σ Represents a sigmoid function whose 
output is between 0 and 1. Tanh is a hyperbolic tangent function with values between - 1 and 1. 

The forgetting gate determines the forgetting ratio in the last moment 𝐶௧ିଵ, and the formula is: 𝑓௧ = 𝜎ሺ𝑊 ∙ [ℎ௧ିଵ, 𝑥௧] + 𝑏ሻ, (1) 

The memory gate obtains the weight of the new memory through the σ layer, and then adds the 
weighted new memory 𝑖௧ ∗ 𝐶ሚ௧ to the existing state, and then realizes the update from 𝐶௧ିଵ to 𝐶௧. The 
formula is as follows: 𝑖௧ = 𝜎ሺ𝑊 ∙ [ℎ௧ିଵ, 𝑥௧] + 𝑏ሻ, (2) 𝐶ሚ௧ = 𝑡𝑎𝑛ℎሺ𝑊 ∙ [ℎ௧ିଵ, 𝑥௧] + 𝑏ሻ, (3) 𝐶௧ = 𝑓௧ ∗ 𝐶௧ିଵ + 𝑖௧ ∗ 𝐶ሚ௧, (4) 

Finally, the short-term memory ℎ௧ is obtained by updating the output gate, and the formula is as 
follows: 𝑜௧ = 𝜎ሺ𝑊 ∙ [ℎ௧ିଵ, 𝑥௧] + 𝑏ሻ, (5) ℎ௧ = 𝑜௧ ∗ 𝑡𝑎𝑛ℎ ሺ𝐶௧ሻ, (6) 
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Both RNN and LSTM can only predict the output of the next moment based on the previous time 
series information, but in the process of named entity recognition, the output is not only related to the 
previous state, but also related to the future state. Therefore, this paper uses bidirectional LSTM to 
predict named entities based on the context, takes words as the minimum unit, takes the word vector 
encoding sequence 𝑥 generated through the embedding layer as the input of each moment of the LSTM, 
and then splices the hidden state output sequences of each position of the forward LSTM and the 
backward LSTM, that is, ℎ௧ = [ℎሬ⃗ ௧; ℎ⃖ሬ௧]. The new sequence contains both historical information and 
future information, which can further improve the accuracy of recognition. 

3.3.2. CRF Layer 

Conditional Random Field (CRF) is a distribution model that takes the input sequence as a condition 
and then obtains another set of conditional probabilities of the output sequence. It is widely used in 
word segmentation, part-of-speech tagging, and named entity recognition. Input the label distribution 
probability obtained through bidirectional LSTM to the CRF layer, and then output the corresponding 
label sequence of each word. If the CRF layer is not used as the constraint, the tag with the highest 
probability of each word is taken as the output when the label is output, which is easy to generate a tag 
sequence that does not conform to common sense. For example, the subject tag follows the predicate 
tag. By calculating the transition probability between tags, CRF can obviously filter out these error 
outputs. In this paper, CRF is used to establish the output of the whole sentence, and the CRF model is 
used to score the labels of words in the sentence. The tag sequence with the highest score is output. The 
scoring formula can be expressed as: 𝑠ሺ𝑋, 𝑦ሻ = ∑ୀଵ 𝐴௬,௬ାଵ + ∑ୀଵ 𝑃,௬ , (7) 

In Formula (7), A is the transfer matrix of (k+2)*(k+2), 𝐴௬,௬ାଵ is the transfer probability from tag 𝑦 to tag 𝑦ାଵ, where k is the number of tag categories. P is the emission matrix of n * (k+2), 𝑃୧,௬  is the 
emission probability of the tag 𝑦 obtained from the word 𝑥, where n is the length of the sequence. 

3.3.3. Word-based Tagging 

Triplets have corresponding role components in the requirement statements of airborne software. 
The subject is usually the variable name in the airborne software, the predicate is generally a verb, and 
the object is the data related to the subject. According to the above analysis, this paper uses the POS 
feature and the BIO annotation method to build a neural network. By training the neural network to 
learn the relationship between triplets and parts of speech, the named entity recognition performance of 
the model can be effectively improved. 

We use the jieba to tag the part of speech of the requirement statement. Since jieba supports adding 
custom dictionaries, we can supplement the custom dictionaries to cover more comprehensive 
vocabulary in specific fields and improve the accuracy of tool tagging. 

BIO tagging is a kind of union tagging. Specifically, B-X represents that the element is of type X 
and is located at the beginning of the segment of this type, I-X represents that the element is of type X 
and is located at the middle or end of the segment of this type, and O represents that it is not an entity 
type that needs to be tagged. 

3.3.4. Model Training 

In the process of model training, we use one-hot coding, input the tagged words as samples, and then 
use the embedding layer to convert the coding into a low dimensional, dense vector to solve the feature 
sparse problem. To avoid overfitting during training, we add dropout[9] to the LSTM layer with the 
parameter set to 0.5. The optimizer chooses Adam[10], using stochastic gradient descent algorithm with 
a learning rate of 0.001 for 100 epochs. The Bi-LSTM-CRF training model is shown in Figure 4. 
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Figure 4: Bi-LSTM-CRF model 

3.4. Triplet Generation Algorithm 

Since the output of the model during prediction is a sequence of BIO tags, the tags need to be 
converted into corresponding triplets. The statements in the requirements document are "subject, 
predicate, object" or "subject, predicate" structures. In order to extract the triplets of requirement 
statements, a verb centered algorithm is established to extract the relationships between complex 
statements. The input of the algorithm is a requirement statement, which extracts single/multiple 
relationships between entities into triplets. For example, " ip_state 为 3 并且 ip_value 为 1。" The 
extracted triplet is: (ip_state, 为, 3), (ip_value, 为, 1). 

3.5. Coverage Criteria Processing Algorithm 

In view of the requirements for high safety and reliability of large aircraft, according to DO-178C, 
airborne software of large aircraft is divided into categories A, B, C, D and E[11], and different categories 
of airborne software correspond to different coverage criteria. 

Since the engine instruction software is class B software and needs to satisfy the Decision Coverage 
(DC), this paper designs a DC-based processing algorithm. 

3.5.1. Decision Coverage 

The basic idea of decision coverage is to design enough test cases so that each decision in the 
program can obtain at least one "true" and one "false", that is, each true or false branch is executed at 
least once, so it is also called branch coverage. 
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In order to achieve decision coverage, this paper converts each requirement into two test cases, in 
which all parameters in one test case are true, and in the other test case, all parameters are false. Since 
in multiple requirement statements, there may be two statements connected by "OR" with the same 
parameter setting different values, so this paper adopts the strategy that if the same parameter exists 
above, the parameter value will remain unchanged. 

3.5.2. Keyword Mapping Table 

Since the same semantics of the verbs in the demand statement may have multiple representation 
methods, for example, "is" and "equal to" both indicate setting a value, so this paper replaces the same 
semantic characters with keywords. 

Among them, EQ, NEQ, GR, LE, GRE, and LEE correspond to equal to, not equal to, greater than, 
less than, greater than or equal to, and less than or equal to, respectively, which are used to replace the 
same semantics and facilitate the processing of triplets. 

3.6. Test Case Generation 

Test cases need to be generated into corresponding formats before they can be used for testing and 
generating test scripts. A complete test case should include the start flag, requirement number, 
requirement content, test case content, end flag, etc. This paper uses the method of filling the test case 
template to fill the requirement number, requirement content and test case content to the corresponding 
position. 

4. Effect verification 
4.1. Model effect verification 

The evaluation indexes of model experimental results are P(Precision), R(Recall) and F1(F-
measure)[12]. F1 is the result of the weighted calculation of Precision and Recall, which is used as the 
comprehensive evaluation index of the model. The calculation formulas of P, R, and F1 are: 

 𝑃 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑡𝑎𝑔𝑠𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑔𝑠 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 × 100%, (8) 

  𝑅 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑡𝑎𝑔𝑠𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑔𝑠 × 100%, (9) 

  𝐹1 = 2 × 𝑃 × 𝑅𝑃 + 𝑅 × 100%, (10) 

 
In this paper, we compare the effect of two tagging methods, BIO and BIO-POS, in identifying 

triplets of requirement statements. It can be seen from Table 1 that the recall rate of BIO-POS tagging 
method is significantly higher than that of traditional BIO tagging method, which indicates that BIO-
POS tagging method has better performance in the task of identifying triplets of airborne software 
requirements. 

 
Table 1 
Comparison of recognition effects under different tagging methods 

Tagging Precision Recall F1-measure 
BIO 91.18% 92.53% 91.85% 

BIO-POS 90.46% 96.18% 93.23% 
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4.2. Test case generation effect verification 

In this paper, representative test case results are selected for effect verification, and the generation 
effect is shown in Table 2. In order to save the length of the article, positive test cases are intercepted 
for each requirement. 

 
Table 2 
Results of some test cases generated 

Requirement 1. 当 ipFL 有效性为 VALID 时，左发动机模拟表盘的红线标记应显示为白色。 

Test Case 
SET ipFL_state 3 

VERIFY 左发动机模拟表盘的红线标记应显示为白色 

Requirement 2. 当 ipEC 有效性为 VALID，并且 ipEC 的值为 TRUE 时，发动机显示软件应为

压缩模式。 

Test Case 
SET ipEC_state 3 
SET ipEC_value 1 

VERIFY 发动机显示软件应为压缩模式 

Requirement 

3.当以下条件满足时，左发动机 N1 指针应显示为白色： 

1.ipFL 的有效性为 VALID 

-AND- 

2a.ipFE 的有效性为 INVALID 

-OR- 

2b.ipFE 的有效性为 VALID，并且 ipFE 的值为 TRUE 

Test Case 

SET ipFL_state 3 
SET ipFE_state 4 
SET ipFE_value 1 

VERIFY 左发动机 N1 指针应显示为白色 
Requirement 4. 当涉及显示迟滞的 ipFL 的值增加时，左发动机指针应顺时针旋转。 

Test Case Test case generation failed 
Requirement 5. 当 N1 值等于或大于 100%时，N1 指示应以 XXX 显示。 

Test Case 
SET N1_value 100 

VERIFY 左发动机指针应顺时针旋转 
Requirement 6. 当 ipFRT的有效性为VALID且 1<=ipFRT的值<=11,对应推力模式应显示。 

Test Case 
SET ipFRT_state 3 
SET ipFRT_value 11 

VERIFY 对应推力模式应显示 

Requirement 7. 当 ipHP的有效性为 VALID，并且 ipHP 的值在[33°，35°]范围内时，襟

翼卡位应显示为 4。 

Test Case 
SET ipHP_state 3 
SET ipHP_value 34 

VERIFY 襟翼卡位应显示为 4 
Requirement 8. ipFC 的有效性变为 INVALID 且保持 1.2s，通信标志 FMS 应不显示。 

Test Case 
SET ipFC_state 4 

WAIT 1.2 
VERIFY 通信标志 FMS 应不显示 

 
From the results, we can see that most of the requirement statements have a good conversion effect. 

In Requirement 5, since there is no reference value for the relevant parameters of a single statement, 
the corresponding value cannot be set. The next step will be to set the initial value or contact the context 
to solve such problems. 
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Through the analysis of the requirements document, it can be found that the forms in Table 3 can 
cover more than 80% of the testable requirement statements, that is to say, as long as the relevant 
generation algorithms are processed well, most of the conversion results can be generated correctly. 

5. Conclusions 

This paper explores the application of automatic test case generation method based on NLP in the 
field of airborne software. The strong robustness of Bi LSTM-CRF named entity recognition model and 
the ability to effectively use past and future features are comprehensively considered. Aiming at the 
specific corpus in the field of airborne software, the BIO-POS tagging method is used to train the model, 
and a good effect of named entity recognition is obtained. According to the results of named entity 
recognition, a verb-centered triplet generation algorithm and a triplet-based coverage criterion 
processing algorithm are proposed. Experiments show that the correct rate of the test cases generated 
by the algorithm in this paper is more than 80%. However, when the variables in some sentences do not 
have corresponding reference values or the sentence patterns are special, the method in this paper will 
not be able to identify effectively. Therefore, the next step is to study the processing of requirement 
statements that need to contact the context to obtain initial values and special sentence patterns, so as 
to further improve the generation effect of test cases. 
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