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Abstract
In this paper we introduce a simple way to evaluate epistemic logic programs by means of answer set
programming with quantifiers, a recently proposed extension of answer set programming. The method
can easily be adapted for most of the many semantics that were proposed for epistemic logic programs.
We evaluate the proposed transformation on existing benchmarks using a recently proposed solver for
answer set programming with quantifiers, which relies on QBF solvers.
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1. Introduction

Answer Set Programming (ASP) is a generic, fully declarative logic programming language that
allows users to encode problems such that the resulting output of the program (called answer
sets) directly corresponds to solutions of the original problem [1, 2, 3, 4].

Epistemic Logic Programs (ELPs) are an extension of ASP with epistemic operators. Originally
introduced as the two modal operators K (“known” or “provably true”) and M (“possible” or
“not provably false”) by Gelfond [5, 6], epistemic extensions of ASP have received renewed
interest (c.f. e.g. [7, 8, 9, 10, 11, 12, 13, 14, 15]), with refinements of the semantics and proposals
of new language features. Further, the development of efficient solving systems is underway
with several working systems now available [16, 12, 17].

Recently, another language extension for ASP has been proposed, named ASP with Quanti-
fiers, or ASP(Q) [18], which introduces an explicit way to express quantifiers and quantifier
alternations in ASP, in a similar way as in Quantified Boolean Formulas (QBFs). It has the form

□1𝑃1□2𝑃2⋯□𝑛𝑃𝑛 ∶ 𝐶,

where the 𝑃1, 𝑃2, …are classical ASP programs, □1, □2, …are quantifiers, and 𝐶 expresses a set
of constraints in ASP.

Example 1. The intuitive reading of the ASP(Q) program

∃𝑠𝑡𝑃1∀𝑠𝑡𝑃2⋯𝑃𝑛 ∶ 𝐶
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is that there exists an answer set 𝐴1 of ASP program 𝑃1 such that for each answer set 𝐴2 of the
ASP program 𝑃2 combined with 𝐴1 … such that the ASP program 𝐶 combined with 𝐴𝑛 is coherent
(has an answer set).

Since evaluating ASP(Q) programs is PSpace-complete in general [18], this formalisms forms
an interesting target for rewriting ELPs. In this paper, we propose such a rewriting, where,
given an ELP Π, we create an ASP(Q) program that is consistent if and only if Π has a world
view. This happens by using the ASP(Q) quantifiers to directly encode the semantics of world
views of ELPs, and, in turn, the existence the relevant stable models inside of that world view.
We then experimentally verify that this encoding, together with a QBF solver-based ASP(Q)
solver, indeed performs well, compared to current ELP solvers.

Contributions. The results and contributions presented in this paper can be summarized as
follows.

• We specify a rewriting from ELPs to ASP(Q) programs in such a way that preserves
consistency. This rewriting also allows us to extract information about the world views of
the original ELPs by evaluating the outermost quantor of the obtained ASP(Q) program.

• We implement a rewriting tool that performs our rewriting on real-world ELP instances.
• We compare the performance of evaluating ELPs via our rewriting tool and state-of-the-art
ASP(Q) solvers versus several existing ELP solvers. We observe that, indeed, our ASP(Q)
rewriting approach shows competitive performance.

Related Work. Most ELP solvers build upon an underlying ASP solver that is called multiple
times in a procedural, sequential manner [19]. The selp system [17] follows a similar approach
as the one proposed in this paper, since it tries to rewrite an ELP into a non-ground ASP program
with fixed arity in order to then use a single call to an ASP solver to establish the consistency of
the input ELP. In this work, we try to follow a similar approach by rewriting ELPs to the language
of ASP(Q). This is due to the fact that ASP(Q) allows one to easily express the quantification
that is needed to write an intuitive encoding of the ELP semantics. However, other target
languages that follow a similar idea would be available, including the stable-unstable semantics
[20], for which a solver implementation has recently been proposed [21], but also the language
of Quantified ASP [22], which follows a similar approach as ASP(Q), but does not quantify over
answer sets but over atoms. We found the language of ASP(Q) to be very intuitive to use in
practice, as well as having several solver implementations available, and hence chose this as
our target language in this paper.

Structure. The remainder of the paper is structured as follows. In Section 2, we provide an
overview of ELPs and ASP(Q). In Section 3, we present our rewriting of ELPs to ASP(Q). We then
perform an experimental evaluation in Section 4. We conclude with a summary in Section 5.



2. Preliminaries

Answer Set Programming (ASP). We assume the reader is familiar with ASP and will only
give a very brief overview of the core language. For more information, we refer to standard
literature [3, 23, 24], and, in our case, the ASP-Core-2 input language format [25].

Briefly, ASP programs consist of sets of rules of the form

𝑎1 | ⋯ | 𝑎𝑛 ← 𝑏1, … , 𝑏ℓ, ¬𝑏ℓ+1, … , ¬𝑏𝑚.

In these rules, all 𝑎𝑖 and 𝑏𝑖 are atoms of the form 𝑝(𝑡1, … , 𝑡𝑛), where 𝑝 is a predicate name,
and 𝑡1, … , 𝑡𝑛 are terms, that is, either variables or constants. A literal is either an atom or a
negated atom. The domain of constants in an ASP program 𝑃 is given implicitly by the set
of all constants that appear in it. Generally, before evaluating an ASP program, variables are
removed by a process called grounding, that is, for every rule, each variable is replaced by all
possible combination of constants, and appropriate ground copies of the rule are added to the
resulting program ground(𝑃). In practice, several optimizations have been implemented in
state-of-the-art grounders that try to minimize the size of the grounding.

The semantics of a (ground) ASP program 𝑃 is as follows [2]. An interpretation 𝐼 (i.e., a set of
ground atoms appearing in 𝑃) is called a model of 𝑃 iff it satisfies all the rules in 𝑃 in the sense
of classical logic. It is further called an answer set of 𝑃 iff there is no proper subset 𝐼 ′ ⊂ 𝐼 that is
a model of the so-called reduct 𝑃 𝐼 of 𝑃 w.r.t. 𝐼. 𝑃 𝐼 is defined as the set of rules obtained from 𝑃
where all negated atoms on the right-hand side of the rules are evaluated over 𝐼 and replaced by
⊤ or ⊥ accordingly. The main decision problem for ASP is deciding whether a program has at
least one answer set. This has been shown to be Σ2P -complete [26]. The set of answer sets of an
ASP program 𝑃 is denoted AS(𝑃).

In this paper, we will make limited use of choice rules as defined in [25] that look like {𝑎}.
and mean that atom 𝑎 can be assumed to be true or not.

Answer Set Programming with Quantifiers (ASP(Q)). An extension of ASP, referred to
as ASP(Q), has been proposed in [18], providing a formalism reminiscent of Quantified Boolean
Formulas, but based on ASP. An ASP(Q) program is of the form

□1𝑃1□2𝑃2⋯□𝑛𝑃𝑛 ∶ 𝐶,

where, for each 𝑖 ∈ {1, … , 𝑛}, □𝑖 ∈ {∃𝑠𝑡, ∀𝑠𝑡}, 𝑃𝑖 is an ASP program, and 𝐶 is a stratified normal
ASP program (this is, as intended by the ASP(Q) authors, a “check” in the sense of constraints).
∃𝑠𝑡 and ∀𝑠𝑡 are called existential and universal answer set quantifiers, respectively.

The intuitive reading of an ASP(Q) program ∃𝑠𝑡𝑃1∀𝑠𝑡𝑃2⋯𝑃𝑛 ∶ 𝐶 is that there exists an answer
set 𝐴1 of 𝑃1 such that for each answer set 𝐴2 of 𝑃2 extended by 𝐴1 … such that 𝐶 extended by
𝐴𝑛 is coherent (has an answer set).

Let us be more precise about a program 𝑃 being extended by an answer set, or rather
interpretation 𝐼: For an interpretation 𝐼, let 𝑓𝑃(𝐼 ) be the ASP program that contains all true
atoms in 𝐼 as facts and all false atoms in 𝐼 w.r.t. the Herbrand base of ASP program 𝑃 as
constraints (i.e. rules of the form ⊥ ← 𝑎, for some atom 𝑎). Furthermore, for a program 𝑃 and an
interpretation 𝐼, let 𝑓𝑃(Π, 𝐼 ) be the ASP(Q) program obtained from an ASP(Q) Π by replacing



the first program 𝑃1 in Π with 𝑃1 ∪ 𝑓𝑃(𝐼 ). Coherence of an ASP(Q) program is then defined
inductively:

• ∃𝑠𝑡𝑃 ∶ 𝐶 is coherent if there exists an answer set 𝑀 of 𝑃 such that 𝐶 ∪ 𝑓𝑃(𝑀) has at least
one answer set.

• ∀𝑠𝑡𝑃 ∶ 𝐶 is coherent if for all answer sets 𝑀 of 𝑃 it holds that 𝐶 ∪ 𝑓𝑃(𝑀) has at least one
answer set.

• ∃𝑠𝑡𝑃Π is coherent if there exists an answer set 𝑀 of 𝑃 such that 𝑓𝑃(Π,𝑀) is coherent.
• ∀𝑠𝑡𝑃Π is coherent if for all answer sets 𝑀 of 𝑃 it holds that 𝑓𝑃(Π,𝑀) is coherent.

In addition, for an existential ASP(Q) program Π (one that starts with ∃𝑠𝑡), the witnessing
answer sets of the first ASP program 𝑃1 are referred to as quantified answer sets.

In general, deciding coherence for an ASP(Q) program is known to be PSpace-complete [18,
Theorem 2], and on the 𝑛-th level of the polynomial hierarchy for programs with 𝑛 quantifier
alternations [18, Theorem 3].

Epistemic Logic Programming (ELP). An epistemic literal is a formula K ℓ or M ℓ, where ℓ
is a literal and K and M are the epistemic operators of certainty (“known” or “provably true”)
and possibility (“maybe,” “possible,” or “not provably false”). An epistemic logic program (ELP)
is a tuple Π = (𝒜,ℛ), where 𝒜 is a set of propositional atoms and ℛ is a set of rules of the
following form:

𝑎1 ∨ ⋯ ∨ 𝑎𝑘 ← ℓ1, … , ℓ𝑚, 𝜉1, … , 𝜉𝑗, ¬𝜉𝑗+1, … , ¬𝜉𝑛,

where 𝑘 ⩾ 0, 𝑚 ⩾ 0, 𝑛 ⩾ 𝑗 ⩾ 0, each 𝑎𝑖 ∈ 𝒜 is an atom, each ℓ𝑖 is a literal, and each 𝜉𝑖 is an
epistemic literal, where the latter two each use an atom from 𝒜. Such rules are also called ELP
rules. Similar to ASP, we consider an ELP ground, if no variables appear in it, and treat programs
with variables as an abbreviation of the ground program, where each variable is replaced with
every possible constant from the program.

Let H (𝑟) = {𝑎1, … , 𝑎𝑘} denote the head elements of an ELP rule, and let B(𝑟) =
{ℓ1, … , ℓ𝑚, 𝜉1, … , 𝜉𝑗, ¬𝜉𝑗+1, … , ¬𝜉𝑛}, that is, the set of elements appearing in the rule body. The
union (or combination) of two ELPs Π1 = (𝒜1,ℛ1) and Π2 = (𝒜2,ℛ2) is the ELP Π1 ∪ Π2 =
(𝒜1 ∪ 𝒜2,ℛ1 ∪ ℛ2). The set of epistemic literals occurring in an ELP Π is denoted elit(Π).

The semantics of ELPs are given viaworld views. A world view of an ELPΠ has originally [5, 6]
been defined as a set of (ASP) interpretations ℐ = {𝐼1, … 𝐼𝑛}, such that ℐ = AS(Πℐ), where Πℐ

is called the epistemic reduct of Π w.r.t. ℐ, and is obtained from Π by (1) removing all rules from
Π that contain an epistemic literal which is negated but true in ℐ, or unnegated and false in ℐ;
and (2) removing all epistemic literals from the remaining rules. Here, K ℓ is true in ℐ, if and
only if ℓ is true in all interpretations in ℐ, and M ℓ is true in ℐ, if and only if ℓ is true in at least
one interpretation in ℐ.

Various other semantics have been defined over the years and most of them can be character-
ized by reducts, either over sets of interpretations (as above) or over the set of elit(Π) that are
satisfied by ℐ. A concise summary can be found in [19].

The main reasoning task for ELPs is checking whether they are consistent, that is, whether
they have a world view. This problem is also referred to as world view existence problem and is
known to be ΣP3 -complete [11].



3. Transformation

The basic idea of our transformation is to “guess” a set of epistemic literals that are true and
represent them as standard atoms, and verify that a world view exists that is defined precisely by
this guess. This can be done since a world view is uniquely determined by the set of epistemic
literals that it entails [15].

In order to verify that a world view for the guessed epistemic literals actually exists, several
existential and universal ASP(Q) sub-programs, corresponding to the epistemic reduct, are
created that check (a) for epistemic literals 𝜉 of type M 𝑎 and ¬K 𝑎 the existence of an answer set
verifying the truth of 𝜉 via an existential program for each such 𝜉 and (b) for epistemic literals 𝜉
of type K 𝑎 and ¬M 𝑎 the non-existence of an answer set contradicting the truth of 𝜉 via a single
universal program. Finally, a set of constraints check that each of these witness answer sets is
consistent with the guessed set of epistemic literals.

We first illustrate this idea with an example.

Example 2. The ELP program
𝑎 ← K¬𝑏
𝑏 ← K¬𝑎

has two world views {{𝑎}} and {{𝑏}}. An ASP(Q) program that implements the idea outlined above
would be Π = ∃𝑠𝑡𝑃1∃𝑠𝑡𝑃2∀𝑠𝑡𝑃3 ∶ 𝐶 with 𝑃1 being

{𝑘𝑛𝑎}.
{𝑘𝑛𝑏}.

𝑃2 being
𝑎′ ← 𝑘𝑛𝑏.
𝑏′ ← 𝑘𝑛𝑎.

𝑃3 being
𝑎″ ← 𝑘𝑛𝑏.
𝑏″ ← 𝑘𝑛𝑎.

and 𝐶 consisting of
← ¬𝑘𝑛𝑎, ¬𝑎′.
← ¬𝑘𝑛𝑏, ¬𝑏′.
← 𝑘𝑛𝑎, 𝑎″.
← 𝑘𝑛𝑏, 𝑏″.

Here, 𝑃1 has four answer sets, which serve as representations of the potential world views. 𝑃2 and
𝑃3 are used to determine answer sets of the epistemic reduct, and 𝐶 makes sure that these answer
sets are consistent with the potential world view of 𝑃1. In the example, there are two quantified
answer sets of Π, {𝑘𝑛𝑎} and {𝑘𝑛𝑏}.

There is one issue that does not become apparent in this example, though: in general, different
epistemic literals may require different existential witnesses. This can best seen by another
example.



Example 3. Consider the ELP program

𝑎 | 𝑏
𝑐 ← M 𝑎,M 𝑏

This program has one world view {{𝑎, 𝑐}, {𝑏, 𝑐}}. Following the pattern of the previous example, one
would come up with Π′ = ∃𝑠𝑡𝑃 ′1∃𝑠𝑡𝑃 ′2∀𝑠𝑡𝑃 ′3 ∶ 𝐶′ with 𝑃 ′1 being

{𝑚𝑎}.
{𝑚𝑏}.

𝑃 ′2 being
𝑎′ | 𝑏′.

𝑐′ ← 𝑚𝑎, 𝑚𝑏.

𝑃 ′3 being
𝑎″ | 𝑏″.

𝑐″ ← 𝑚𝑎, 𝑚𝑏.

and 𝐶′ consisting of
← 𝑚𝑎, ¬𝑎′.
← 𝑚𝑏, ¬𝑏′.
← ¬𝑚𝑎, 𝑎″.
← ¬𝑚𝑏, 𝑏″.

But Π′ is not coherent, so there are no quantified answer sets. The reason is that only one answer
set of 𝑃 ′2 will be considered (so either 𝑎′ is true and 𝑏′ is false or 𝑎′ is false and 𝑏′ is true), while for
𝑚𝑎 we need the answer set with 𝑎′ being true and for 𝑚𝑏 we need the answer set with 𝑏′ being true.
To get this behaviour, we can introduce two copies of 𝑃 ′2 , getting Π″ = ∃𝑠𝑡𝑃 ′1∃𝑠𝑡𝑃𝑚𝑎2 ∃𝑠𝑡𝑃𝑚𝑏2 ∀𝑠𝑡𝑃 ′3 ∶

𝐶″ with 𝑃 ′1 and 𝑃 ′3 remaining unchanged and 𝑃𝑚𝑎2 being

𝑎𝑚𝑎 | 𝑏𝑚𝑎.
𝑐𝑚𝑎 ← 𝑚𝑎, 𝑚𝑏.

and 𝑃𝑚𝑏2 being
𝑎𝑚𝑏 | 𝑏𝑚𝑏.

𝑐𝑚𝑏 ← 𝑚𝑎, 𝑚𝑏.

and 𝐶″ consisting of
← 𝑚𝑎, ¬𝑎𝑚𝑎.
← 𝑚𝑏, ¬𝑏𝑚𝑏.
← ¬𝑚𝑎, 𝑎″.
← ¬𝑚𝑏, 𝑏″.

It can be checked that Π″ has one quantified answer set {𝑚𝑎, 𝑚𝑏}.



3.1. Formalization

Given an ELP Π, we create an ASP(Q) program Π𝜏 = ∃𝑠𝑡𝑃1∃𝑠𝑡𝑃
𝑠1
2 ⋯∃𝑠𝑡𝑃 𝑠𝑛2 ∀𝑠𝑡𝑃3 ∶ 𝐶, where 𝑃1

consists of one choice rule containing one fresh atom 𝜏 (𝑠𝑖) for each element of elit(Π) = {𝑠1, … , 𝑠𝑛},
𝑃 𝑠12 to 𝑃 𝑠𝑛2 are copies of Π, one for each epistemic literal, where all non-epistemic literals are
annotated with 𝜏 (𝑠𝑖) for the respective 𝑠𝑖 and all epistemic literals ℓ are replaced by 𝜏 (ℓ), and 𝑃3
is yet another copy of Π annotated with a special symbol 𝑎𝑙𝑙. 𝐶 consists of two constraints for
each 𝑠 ∈ elit(Π), for instance for K 𝑎 these will be ← 𝜏(K 𝑎), ¬𝑎𝑎𝑙𝑙 and ← ¬𝜏(K 𝑎), 𝑎𝜏 (K 𝑎).

The transformation can be quite easily adapted for several other semantics by leveraging
different reducts within the programs 𝑃2. However, for the semantics provided by Shen and
Eiter [11] more care would have to be taken, as an additional minimization over the epistemic
literals chosen in 𝑃1 is required.

4. Experimental Evaluation

We tested the rewriting approach described in Section 3, by benchmarking it against existing
ELP solvers. We will refer to our rewriting tool as elp2qasp. To compare, we chose the state-
of-the-art ELP solver EP-ASP [12] and the selp solver [17] based on a rewriting to plain ASP.
For our rewriting, we used two ASP(Q) solvers as backends: the qasp solver [27], as well as the
q_asp solver [28].

We use the same three test sets proposed in [17]. For every test set, we measured the time
it took to solve the consistency problem. For selp, the underlying ASP solver clingo [29] was
stopped after finding the first answer set. For EP-ASP, search was terminated after finding the
first candidate world view1. For qasp and q_asp, the output of our ELP to ASP(Q) rewriting
directly tells us whether the ELP is consistent or not, depending on whether the ASP(Q) program
is consistent.

Experiments were run on an AMD EPYC 7601 system (2.2GHz base clock speed) with 500
GiB of memory. Each process was assigned a maximum of 14 GB of RAM, which was never
exceeded by any of the solvers tested. A time limit of 900 seconds was used for each benchmark
set. For EP-ASP, we made trivial modifications to the python code in order for it to run with
clingo 5.4.1. For selp and qasp, the same version of clingo was used. For selp, in addition, we used
the htd library, version 1.2.0, and lpopt 2.2. We used qasp 1.1.0 and q_asp 0.1.2 as the backend
solvers for our ASP(Q) rewriting generated by elp2qasp. The time it took to convert input ELP
programs into the specific input formats of the various tools we used (e.g. the input format
for selp or EP-ASP ) was not measured, since we did not want the input format conversion to
influence the benchmark results. EP-ASP was called with the preprocessing option for brave
and cautious consequences on, since it always ran faster this way. The time for selp, qasp, and
q_asp is the sum of the time it took to run all required components. For selp, clingo was always
called with SAT preprocessing enabled, as is recommended by the lpopt tool.

1Note that to have a fair comparison we disabled the subset-maximality check on the guess that EP-ASP performs by
default.



4.1. Benchmark Instances

We used three types of benchmarks, two coming from the ELP literature and one from the
QSAT domain 2. This is the same benchmark set as used and published by the authors of the
selp solver, which they used in the associated conference publication [17]. We briefly describe
the benchmark set below.

Scholarship Eligibility. This set of non-ground ELP programs is shipped together with
EP-ASP. Its instances encode the scholarship eligibility problem for 1 to 25 students.

Yale Shooting. This test set consists of 25 non-ground ELP programs encoding a simple
version of the Yale Shooting Problem, a conformant planning problem: the only uncertainty
is whether the gun is initially loaded or not, and the only fluents are the gun’s load state and
whether the turkey is alive. Instances differ in the time horizon. We follow the ELP encoding
from [16].

Tree QBFs. The hardness proof for ELP consistency [11] relies on a reduction from the
validity problem for restricted quantified boolean formulas with three quantifier blocks (i.e.
3-QBFs), which can be generalized to arbitrary 3-QBFs [17]. In that publication, the reduction
is applied to the 14 “Tree” instances of QBFEVAL’16 [30], available at http://www.qbflib.org/
family_detail.php?idFamily=56.

4.2. Results

The results for the first two sets are shown in Figure 1 and Figure 2, respectively. For the
Scholarship Eligibility Problem, we can observe, confirming the observations by Bichler et
al. [17], that EP-ASP can solve 16 instances, while selp is able to solve all instances, independent of
time, within 5 seconds. Interestingly, the same holds true for our elp2qasp rewriting, when using
q_asp as a backend. This combination can solve all instances within 13 seconds. Interestingly,
the qasp backend is only able to solve three instances successfully within the time limit. The
difference in performance between the two tools may be due to the fact that q_asp uses a QBF
solver, while qasp delegates the solving work to the ASP solver clingo or wasp [31]. In all our
benchmarks we use the latter option.

For the Yale Shooting Problem, we can see that both EP-ASP and selp are unable to solve all
instances. Note that all instances of this problem are inconsistent, which sometimes allows
EP-ASP to realize this fairly quickly. However, in seven cases, we dont get any answers from
EP-ASP within the time limit. On the other hand, our elp2qasp approach with the q_asp backend
is able to solve all instances of this problem within 70 seconds, with the solving time increasing
moderately with the increase in the time horizon. For the qasp backend, we unfortunately
encountered a problem in the implementation, which lead to an internal error message for all
instances of the Yale Shooting Problem.

Finally, for the Tree QBF Problem, we confirmed the results of Bichler et al. [17]: selp was
able to solve 4 of the 14 instances within the time limit of 900 seconds, whereas both EP-ASP
2https://drive.google.com/file/d/12lAzaM1wTXomqTniT75C7lWrh5EMJn6r

http:// www.qbflib.org/family_detail.php?idFamily=56
http:// www.qbflib.org/family_detail.php?idFamily=56
https://drive.google.com/file/d/12lAzaM1wTXomqTniT75C7lWrh5EMJn6r
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Figure 2: Yale Shooting Problem

and elp2qasp with the qasp backend were unable to solve any instances at all. For the q_asp
backend, this class of problems is unsolvable, since the resulting ASP(Q) rewriting contains
rules that are not head-cycle free and are hence not treatable by q_asp. Since selp was the only
solver able to successfully solve instances of this problem, we omit a dedicated figure for this
problem here.

These results confirm that elp2qasp is competitive for solving ELP programs, especially when
paired with the q_asp solver for ASP(Q), which, in turn, is based on an internal QBF solver. On
the other hand, the ASP(Q) solver qasp does not seem to match this success, but this may be an



inherent limitation, since it internally relies on the ASP solver clingo or wasp to solve ASP(Q)
instances, which may lead to an exponential number of internal calls to that ASP solver.

5. Conclusions

In this paper, we proposed a rewriting that transforms epistemic logic programs (ELPs) into
programs for answer set programming with quantifiers (ASP(Q)). It does this by faithfully
mimicking the semantics of ELPs and formulating them directly in ASP(Q), which is possible
because of the explicit support for quantification that ASP(Q) provides.

We then implement our approach and, using state-of-the-art ASP(Q) solvers as a backend,
test our rewriting approach against existing solvers for ELPs. We show that, for several problem
domains, our rewriting approach offers competitive performance when compared to existing
solvers, especially in the case where the q_asp ASP(Q) solver [28] is used, which internally uses
a QBF solver to evaluate the given ASP(Q) program.

Future work includes further refining and optimizing the rewriting, as well as adapting it for
the various other semantics that exist for evaluating ELPs [9, 10, 11, 12, 13, 14, 15]
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