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Abstract
Considerable work, both theoretical and empirical, has shown that Recurrent Neural Network (RNN)
architectures are capable of learning formal languages under specific conditions. In this study, we
investigate the ability of linear and ReLU RNNs to learn Dyck-1 languages in whole sequence classification
tasks. We observe that counting bracket sequences is learned but performance on full Dyck-1 recognition
is poor. Models for both tasks do not generalise well to longer sequences. We determine correct weights
for the given tasks with suitable architectures, but the standard setup for classification surprisingly departs
from the correct values. We propose a regression setup with clipping that we find to stabilise correct
weights, but it makes learning from random weight initialisation even less effective. Our observations
suggest that Dyck-1 languages seem unlikely to be learned by ReLU RNNs for most practical applications.
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1. Introduction

Neural Networks (NNs) have become the predominant state-of-the-art machine learning tech-
nique for natural language processing. However, it is not clear to what extent more systematic
tasks, such as counting as needed to parse Dyck-1 languages can be learned by NNs, in particular
recurrent ones (RNNs). Weiss et al. [1] and Suzgun et al. [2] show that LSTMs can learn both
tasks to some extent under certain conditions. However, simpler RNNs have been less studied
for this task, despite theoretical results that they can represent counters and Dyck-1 parsers. In
this study, we therefore aim to answer the following research questions:

1. To what extent can RNNs be trained to behave as counters and parse Dyck-1 sequences?
2. Do they learn the required systematic behaviour and generalise to longer sequences?

The contributions of the paper are as follows:

1. We propose two RNN models with specific weights that operate as a linear counter and as
a Dyck-1 parser. This is done using linear RNNs and Rectified Linear Unit (ReLU) RNNs.

2. We observe that these models do not learn the correct weights during training.
3. We also find that using a standard classification setup results in correctly initialised

models unlearning the correct weights.
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Figure 1: Diagrams of the architecture and correct weights for a) Task 1 (bracket counting) and b) Task
2 (Dyck-1 recognition). Each box represents a neuron with different activation functions indicated by
colours (yellow: input, blue: ReLU, green: linear, purple: output - see text for details).

4. We provide evidence that using a regression setup causes models to retain correctly
initialised weights, but does not improve their ability to learn the correct weights.

2. Experimental Setup

In our experiments, we evaluate the ability of RNNs to learn Dyck-1 languages in two tasks.
Task 1 (bracket counting) detects if there is a surplus of opening brackets in a string, which is
not full Dyck-1 recognition. Task 2 (Dyck-1 recognition) detects invalid Dyck-1 sequences, i.e.
one that has a surplus of opening brackets overall or that has a surplus of closing brackets at
any previous point, versus valid ones. Both tasks require internally counting up for opening and
down for closing brackets. For Task 1, calculating the difference and comparing to a threshold
is sufficient, which can be achieved with a linear network. For Task 2 we need also to flag
negative counter values at any time point for full Dyck-1 recognition. We know that this is
possible with a small RNN with ReLU activation from the theoretical results of Siegelmann et al.
[3], Leshno et al. [4] and Weiss et al. [1].

Our experimental setup is similar to those of Weiss et al. [1] and Suzgun et al. [2], but there
are some important differences. Weiss et al. [1] use 𝑎𝑛𝑏𝑛 sequences and predict the next token.
Suzgun et al. [2] only use valid Dyck-1 sequences and determine at every point the valid next
tokens, like in Gers and Schmidhuber [5], effectively classifying incomplete versus complete
Dyck-1 sequences. While our experiments follow Suzgun et al. [2], our datasets contains also
invalid Dyck-1 sequences, i.e. ones with a surplus of closing brackets, which adds complexity
to the task. We also use shorter sequences than Weiss et al. [1] and Suzgun et al. [2].

In addition to standard random weight initialisation, we evaluate the effect of training from
correct weights. In order to determine the necessary size of the NN and for experimenting with
correct weight initialisation, we define two NNs with weights that correctly perform Tasks 1
and 2 as shown in Figure 1. These models operate correctly on sequences of arbitrary length,
within the limits of the numeric representation range.



Table 1
Results for Task 1 (bracket counting): average, minimum, and maximum accuracy over 10 runs.

Setup Train Train 10 Tokens 20 Tokens 50 Tokens
Config/Init. Length Avg(Min/Max) Avg(Min/Max) Avg(Min/Max) Avg(Min/Max)

Class./Random 2 100 (100/100) 69.8 (66.5/78.6) 69.2 (6.04/77.3) 69.0 (66.7/72.7)
Class./Random 4 100 (100/100) 74.8 (74.6/75.7) 94.8 (94.7/95.3) 89.3 (88.7/90.0)
Class./Random 8 100 (100/100) 100 (99.9/100) 96.9 (94.0/100) 92.7 (78.7/98.0)
Reg./Random 2 90.0 (50.0/100) 72.0 (50.0/99.9) 64.5 (50.0/96.0) 61.2 (50.0/91.3)
Reg./Random 4 86.1 (50.0/100) 84.4 (50.0/100) 83.9 (50.0/100) 82.9 (50.0/100)
Reg./Random 8 90.0 (50.0/100) 90.0 (50.0/100) 90.0 (50.0/100) 88.3 (50.0/100)
Class./Correct 2 100 (100/100) 67.9 (67.9/67.9) 71.3 (71.3/71.3) 69.3 (69.3/69.3)
Class./Correct 4 100 (100/100) 74.1 (74.1/74.1) 94.0 (94.0/94.0) 92.0 (92.0/92.0)
Class./Correct 8 100 (100/100) 100 (100/100) 96.7 (96.7/96.7) 93.3 (93.3/93.3)
Reg./Correct Any 100 (100/100) 100 (100/100) 100 (100/100) 100 (100/100)

Table 2
Results for Task 2 (Dyck-1 recognition): average, minimum, and maximum accuracy over 10 runs.

Setup Train Train 10 Tokens 20 Tokens 50 Tokens
Config/Init. Length Avg(Min/Max) Avg(Min/Max) Avg(Min/Max) Avg(Min/Max)

Class./Random 2 56.7 (50.0/83.3) 52.7 (50.0/65.3) 54.1 (50.0/71.3) 59.9 (50.0/71.3)
Class./Random 4 55.9 (50.0/79.4) 55.2 (50.0/76.1) 54.5 (50.0/72.7) 54.3 (50.0/71.3)
Class./Random 8 55.3 (50.0/76.6) 55.2 (50.0/76.1) 54.5 (50.0/72.7) 54.3 (50.0/71.3)
Reg./Random 2 56.7 (50.0/83.3) 55.2 (50.0/76.1) 54.5 (50.0/72.7) 54.3 (50.0/71.3)
Reg./Random 4 55.9 (50.0/79.4) 55.2 (50.0/76.1) 54.5 (50.0/72.7) 54.3 (50.0/71.3)
Reg./Random 8 55.3 (50.0/76.6) 56.6 (50.0/83.4) 54.5 (50.0/72.7) 54.3 (50.0/71.3)
Class./Correct 2 100 (100/100) 49.8 (49.8/49.8) 50.0 (50.0/50.0) 50.0 (50.0/50.0)
Class./Correct 4 100 (100/100) 100 (100/100) 86.7 (86.7/86.7) 80.67 (80.7/80.7)
Class./Correct 8 96.7 (96.7/96.7) 97.9 (97.9/97.9) 66.7 (66.7/66.7) 48.0 (48.0/48.0)
Reg./Correct Any 100 (100/100) 100 (100/100) 100 (100/100) 100 (100/100)

We train both models using sequences of lengths 2, 4, and 8 tokens and test with sequences
of 10, 20, and 50 tokens. The datasets contain all possible sequences for lengths 2-10, and a
sample of 150 sequences for lengths 20 and 50. All datasets are class balanced. There is a
label at the end of each sequence, (Task 1: ‘1’ - incomplete, ‘0’ - balanced or surplus of closing
brackets; Task 2: ‘1’ - invalid or incomplete, ‘0’ - valid Dyck-1 sequence). This is different to
Gers and Schmidhuber [5], Weiss et al. [1] and Suzgun et al. [2], who use labels at every time
step and a target encoding in terms of legal next tokens. We use two different setups, standard
classification (sigmoid output activation with cross-entropy loss), and regression setup (clipped
output [0, 1] with mean squared error (MSE) loss). We use two initialisation schemes: random
weights and correct weights according to Figure 1. We train for 100 epochs using the Adam
optimiser by Kingma and Ba [6] and a learning rate of 0.005.



3. Results

In Table 1, we observe that Task 1 is learned on the training set, but generalises less for longer
sequences. Longer sequences in the training data do lead to improved generalisation, but still
not perfect in most cases. Interestingly, starting from correct weights with the classification
setup does not lead to better generalisation. This is intriguing, as the training apparently
unlearns the correct weight values. In order to avoid this problem, we developed the regression
setup, which does not change the correct weights (last row in Table 1), but it does not learn well
from random initialisation. In Task 2, the learning from random weights never leads to perfect
training or generalisation. Even with correct initialisation, generalisation is mostly poor.

The models used are custom designed for their respective tasks, and it is possible for these
models to be used to solve these tasks with the correct weights. However, in practice, they do
not converge to the correct weights. The systematic behaviour to solve these tasks does not
emerge in our models during training, irrespective of the setup used, and when the standard
classification setup is used, the correctly trained models even unlearn the correct weights. When
the regression setup is used, the correctly initialised models do not unlearn the correct weights.
However, we observe that the use of the regression setup does not improve the ability of the
models to learn systematically and generalise more effectively to longer sequences. This leads
us to believe that both of these setups are not suited for this type of task.

4. Conclusion

We have a few interesting observations in our experiments. Learning Dyck-1 sequences from
random weights is a difficult task and the results do not generalise to long sequences in any
setup not initialised with correct weights. Using longer (and thus more) training sequences
leads to some improvements, but generalisation to longer sequences is still limited. Initialising
the network with correct weights could help, but even that is not effective in a classification
task. The tested approach of using a regression setup (clipping and MSE) can avoid unlearning
of correct weights, but it hinders learning from random weight initialisation, and is thus not
effective either. Given our results it seems unlikely RNNs would learn Dyck-1 languages in a
practical scenario. Using LSTMs could improve the situation, but probably only to a limited
extent, given the results by Weiss et al. [1] and Gers and Schmidhuber [5]. Overall, further
studies and designs are needed to address reliable learning of Dyck-1 languages with NNs.

The observation is that RNNs fail to learn symbolic patterns and the systematic behaviour
required to count brackets and recognise Dyck-1 sequences. This is consistent with studies that
focus on the abilities of NNs to learn systematic behaviour, such as Fodor and Pylyshyn [7],
Marcus et al. [8], and Lake and Baroni [9]. These studies show that NNs struggle with tasks
that are simple for humans to learn from a small number of examples. The difficulty to learn
symbolic patterns in a systematic manner is not exclusive to larger models, and is evidently
exhibited by our very small models. Achieving systematicity in smaller models can potentially
serve as a stepping stone towards achieving systematicity for larger models. In the future we
aim to develop a deeper understanding of the learning dynamics of our models, and develop
methods that can improve systematic learning.
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