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Abstract—MASCAT is a research-based road traffic simulator.
In this paper, we propose a plugin for MASCAT. The aim of
this proposition is to provide a semantic data analysis for the
simulators Multi-Agent System (MAS). The plugin introduce an
interpretation phase during vehicle to vehicle communication
(V2V). It will allow connected vehicles to make the most ef-
ficient behavioral decisions based on the state of surrounding
environment. We designed a semantic web ontology to describe
traffic data and ameliorate behavioral decisions. Our semantic
plugin can link, structure, analyze MASCATs traffic data and
can also optimize the Local Leader Election Protocol. Indeed,
we demonstrate that a small percentage of connected cars can
ensure traffic regulation specially in a shifting environment.

Index Terms—Ontologies, Semantic Rules, Multi-agent System,
Connected Vehicles, Local Leader Election Algorithm (LLEA)

I. INTRODUCTION

The progressive growth of the number of vehicles in our
cities is considered as a cause of traffic congestion, but it is not
the only reason for traffic jam. In order to study this problem
thoroughly, it is necessary to simulate real traffic conditions
by using an appropriate traffic simulator that would help us
study the behavior of the vehicles.
Connected vehicles are able to sense and adapt their be-
havior according to their environment. How these vehicles
will change the way we deal with traffic regulation? What
percentage of connected vehicles is enough to ensure traffic
regulation? In this paper, we will answer these questions,
by describing the details of the framework we implemented
as a semantic plugin for the MASCAT simulator. Semantic
description provides the means to store information while
giving it a logical meaning and a richer context.

This also means that we can construct advanced and intel-
ligent queries over an ontology. The objective is to obtain the
information inferred (by a reasoner) from the ontologys set of
pre-defined relations and rules. Semantic rules are simply a set
of IF-THEN statements for structuring complex axioms about
a specific domain. We will start in section II with exploring
the related work. In section IIIwe will describe our proposed
solution. The solution design and implementation are detailed
in section IV, while results are shown and analyzed in section
V. Finally, conclusions and future work are exposed in section
VI .

II. RELATED WORK

V2V (Vehicle-to-Vehicle) communications need to be tested
through intensive experiments. Simulation models should in-
clude mobility models for providing accurate simulation of
real time vehicular networking environment. The simulation
tools should be selected based on their compatibility with
application requirements and similarity to real-time traffic. We
analyzed some existing traffic simulators. For the needs of our
work, the chosen platform will not necessarily have to offer a
very detailed definition of a mesh network.
Our affinities with free and community software push us to
retain two main candidates: SUMO and MovSim, which offer
in addition a lot of functionalities by their stage of maturity
compared to the previous platforms. SUMO is widely used
and well represented in research, and MovSim is a newer and
less represented platform at the moment.
Simulation of Urban MObility (SUMO) is a road traffic
simulator [12]. With SUMO, traffic demand consists of single
vehicles moving though a given road network. Real-world
networks are modeled as graphs, where the roads and intersec-
tions are respectively represented as a graphs. In SUMO, each
vehicle’s speed is computed using a Car-Following Model.
This model usually compute a targeted vehicle’s speed by
looking at its own speed, its distance to the group leader, and
the leader’s speed. SUMO is widely used and well represented
in research, but MovSim was recently developed based on the
main recent concepts in traffic theory [28] [30].
Regarding V2V inter-vehicle communication, an extension of
SUMO is under development and aims to study the effects
of on-board applications on driver behavior [13]. In addition,
VEINS project aims to offer a set of models dedicated to inter-
vehicle communications (IVC) in SUMO. But in MovSim
side, the developers imagined the integration of these forms of
communication from the start of the project [23] [26]. MAS-
CAT [8] is a research-based road traffic regulation simulator
developed using the already existing Movsim simulator [29] by
transforming it into a Multi-Agent System where each vehicle
is modeled as an intelligent separate entity which can run
according to an algorithm of its own. Each instance of the
Vehicle entity is simulated independently either by respecting
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the well-known IDM mobility model, thus representing the
unconnected vehicles or by respecting a Local Leader Election
Algorithm (LLEA) to represent connected vehicles (CVs).
Multi-Agent System (MAS) is a loosely coupled network
of problem-solving entities called agents that collaborate in
resolving problems that are beyond the single individual’s
scope of capabilities and knowledge [7]. In the traffic simulator
MASCAT, connected vehicles are modeled as agents to find
the best behavioral decision for the CVs that are moving in
a constantly shifting environment. So, to ensure vehicle to
vehicle communication, the vehicles must plan their actions
jointly to allow better cooperation between them. So the key
issue in a MAS is to formalize the coordination between agents
[24]. Many works have been proposed based on MAS and
ontologies. The intelligent levels of the system (Knowledge
Base and Multi-Agent System) in [6], use the knowledge
provided by the IOT devices and its semantic environment
in order to reason and react to set theses devices. In [2] a
model was implemented based on a multi-agent approach for
urban freight transportation, a knowledge data model was used
to represent the urban environment. A city logistics ontology
was proposed. A method for the representation of knowledge
and reasoning in Agile Worker-Cobot manufacturing has also
been proposed in [21]. A similar system based on ontology
and multi-agent in [4] has been proposed for the Construction
and Cooperation Mechanism of Logistics Vehicle. Inspired by
these related works, we decided to increment the MASCAT
Multi-Agent-System with semantic knowledge in order to
have more realistic simulations, and auto-adapting agents that
are able to infer new traffic data such as changing weather
conditions, accidents, roadworks, A Relational Database may
have been the answer to store such knowledge, but a relational
database [15] fails if provided with fragmentary or incomplete
knowledge because it works upon closed-world assumptions.
The traditional relational database stores concepts in the form
of tables without containing information about the meaning
of these stored concepts, and how they are related to other
concepts. Ontologies [10] have also been adopted as a possible
representation for complex concepts and domains. In fact, it
is a powerful model for mapping and describing information
related to real-world knowledge areas. [25]. Ontologies have
advanced ways to provide automated classification for different
types of data. However, the processing of the ontology’s
individuals is one of the costliest computational operations
within ontology reasoning. To query this data model, we can
use two query languages SPARQL [3], [9] and SQWRL [18].
Furthermore, the reasoning ability of ontologies can also lead
to problems in processing time. Several types of research have
been done [14] to analyze the performance of the available
reasoners. It shows that the structure and size of the ontology
and the complex queries submitted to the reasoner have a high
influence on the performance of these ontologies.
Therefore, we studied yet other solutions to find a technology
that can provide similar capabilities with better performance.
In our research, we are interested in the GDBMS that support
RDF triple stores and inferences. So based on the mentioned

ranking and on a comparison of different GDBMS done by
the university of Leipzig [11].
We came up with a list of the most popular and free to
use GDBMS that support RDF/SPARQL as their data model:
Virtuoso, allegroGraph, StarDog, GraphDB, BlazeGraph.
And for rule-based inference [1], there are two principle rea-
soning strategies: Forward-chaining and Backward chaining.
The first one is the Forward-chaining, this type of reasoning
strategy involves applying the inference rules to explicit state-
ments in order to produce new facts. The second one is the
Backward-chaining strategy that which require to start with a
fact illustrating or a query answering.
In our case, we are interested in forward-chaining reasoning
because query time is an essential factor that guarantees the
required performance to keep up with the constantly ”shifting
environment” of the connected vehicle in the traffic simulator
MASCAT. Therefore, we need to dynamically create the
Environment individuals and obtain the possible inferences
before querying the semantic knowledge. Virtuoso and Star-
Dog GDBMS only support Backward-Chaining Reasoning,
which is not suitable for our case, so we are now only down
to three Graph Database Management Systems: AllegroGraph,
GraphDB and BlazeGraph. AllegroGraph [34] leads the largest
deployment with loading and querying 1 Trillion triples.
However AllegroGraph is available on a Windows platform
through a Linux Virtual Machine, which could degrade the
performance factor as directly declared on AllegroGraphs web-
site. Therefore, we considered the use of Ontotexts GraphDB
since it is more popular than BlazeGraph.
Graph database [31] makes the application of operations pos-
sible based on a graph of data and metadata. Such operations
can improve performance and greatly increase the speed of
recovery operations while maintaining the same precision of
pure ontology-based approaches and reasoning. Since with
Graph database there is no schema, each entity can contain
different data attributes, and there is no need to perform
join operations on multiple tables in order to obtain the
needed information. In this way, we will eliminate the need
for saving redundant data and sending complex queries to
retrieve woven datasets. But, what Graph Database would
we adopt? GraphDB [17], [22] is built on OWL. It uses
ontologies that allow the repository to automatically reason
about the data [19]. It offers OWL inference allowing to
create new semantic facts from existing facts. Massive loads,
queries and inferencing can be handled in real time. And
to augment the expressiveness of our designed ontology, we
defined a set of Semantic Rules. These rules for GraphDB
are called ”Entailment Rules”. In conclusion, we decided to
use an approach based on the GraphDB Graph database to
provide our vehicles with data interpretation capability in case
of disturbance without having a high consumption of time. We
managed to bypass our exclusive need for the standard OWL
Ontology and benefited from a Graph Database Structure that
takes an Ontology file as its input.



III. PROPOSED SOLUTION

A. Global Overview

Fig. 1. Vehicle behavior in the LLEA

Based on our studies, we know that the vehicle driving
behavior is one of the main factors that can disturb traffic flow.
Each strange condition on the road can affect the surrounding
vehicles. In case of an accident for example because of snowy
weather, near surround- ing vehicles will be aware of the
situation and will try to control their behavior accordingly.
However, this reaction can have diverse effects on the flow,
because other vehicles on the road might not be aware of what
is happening. They only know that the road is blocked and they
cannot react appropriately. This is not the case of connected
vehicles which can react to regulate congested traffic in normal
traffic conditions as we demonstrated in our last work [5],
where we succeeded to regulate traffic using our proposed
Local Leader Election Algorithm (LLEA) (Fig.1) with only
10% of connected vehicles on the road. This algorithm is
computed for each CV every 10 seconds. The CVs speed is
programmed to vary in a speed interval I = [0;130[ (KM/h).
We try in this case to mimic realistic traffic state variations,
this interval was originally decomposed into 4 smaller, static
and fixed intervals based on a certain logical traffic state:

• I1 = [0;30[ : I1 includes vehicles in traffic congestion
• I2 = [25;50[ : I2 includes vehicles in critical state
• I3 = [40;90[ : I3 includes vehicles in normal traffic
• I4 = [80;130[ : I4 includes vehicles in fluid traffic

These intervals will be modified in our actual solution and will
be dynamically change based on each CVs Environment. This
LLEA consists also of two consecutive decisions. The First
Decision D1 is a local decision that each CV has to make. It
consists of three steps:

• The CV must determine the interval Ii whose speed limits
are respected by the highest number of surrounding CVs

• The CV must compute the optimal speed of the interval
Ii which happens to be the median of the speed values
of the surround- ing CVs in Ii

• The CV must choose the neighbor CV that has the closest
speed to the computed median and send this decision to
the surrounding CVs

The Second Decision D2 is a collective decision that happens
in a certain zone. It consists of three steps:

• Each CV receives the D1 Decisions of the surrounding
CVs

• The votes are counted for each CV in this zone
• The CV that received the most votes is elected to be the

local leader for this zone and all CVs must adapt their
speed to follow the speed of the local leader.

In our previous work, the implementation of this election
protocol improved traffic flow in an optimal environment with
no disturbances, by providing speed recommendations to the
driver. This kind of recommendation will be offered to a con-
nected vehicle after a negotiation with the surrounding vehicles
based on a V2V communication. It allows a reduction of traffic
congestion through an election of a local leader selected from
the neighboring vehicles. These will adapt their behavior to
follow the elected local leaders speed recommendation. Since
this protocol is based on the concept of multi-agent system,
each vehicle follows the cycle of Perception- Decision-Action
However, many disturbances can affect the flow in real life
like weather conditions, roadworks, unsafe and unexpected
events, obstacles on the road, vehicle stopping, stuck vehicle,
no protected accident area, emergency braking, unexpected
queue end, ...

In order to be able to achieve traffic regulation in any
context, it is strongly needed to provide a common framework
that allows Traffic data to be shared and reused between
entities. Therefore, it is necessary to Link and structure road
traffic data exchanged between vehicles (agents) to simply
access to the knowledge that it already contains and express
accurately the real road traffic situation.

In other terms, we need to give our connected vehicles
modeled as agents in the LLEA a particular knowledge of the
environment to get them to: first understand the situation, then
inform other connected vehicles on the road and finally emerge
with a correct behavior whatever the conditions, without
causing massive traffic congestion. As we showed in the state
of art section, an ontology can provide a complete description
of traffic data, and thus can allow an accurate interpretation
of traffic context, which will give the connected vehicles
adequate reactions. This ontology will represent the real road
traffic road environment with the definition of all entities and
properties that can affect the Connected Vehicles behavior. By
augmenting the ontology with pre-defined traffic rules which
respect to the European Traffic Norms and Regulations, the
connected vehicles will adapt their behavior according to the
knowledge inferred, at the interpretation level.
We choose to begin with inferring the adequate speed intervals
needed for different situations on the roads, in order to provide
CVs a with flexible intervals as we see in table (Fig.2). This
will enhance the local leader election algorithm, since the
local leader speed will be calculated based on dynamically
inferred speed intervals. The framework we implemented
is extensible, so in order to cover any environmental and
contextual knowledge inference, we only need to add related



concepts to the ontology and the corresponding rules.

Fig. 2. Intervals according to the European Traffic Norms and Regulations

Fig.3 is a UML activity diagram that shows the control flow
of the processing steps that enable a connected vehicle to
understand its environment based on a realistic inferred knowl-
edge. Individuals of our semantic data model, representing the
environmental conditions, will be created dynamically on load
time. Each connected vehicles can check its environment to
know if there is a need to adapt its behavior. In our approach,
the environment is controlled by three main criteria: the
road type, weather, and visibility. As already explained, other
criteria can be simply added further on. If the environment
didn′t change, it would load the behavior of the connected
vehicle in the LLEA directly without a level of interpretation.
If it did change, a query is prepared with the Road Type and
weather as well as the visibility detected by the corresponding
sensor, as input parameters. The defined ontology is then
queried with these aggregated values in order to infer new
knowledge related to this correlation of values. If the query
returns no result, this would mean that this is an occurrence of
a new context, so new individuals will be created and added
to the the ontology representing these detected conditions. If
successful, the new inferred speed intervals will be returned
by the query at the interpretation level in order to choose a
Local Leader in the LLEA respecting the particular conditions
at this particular time. The election protocol will be launched
every 10 sec by every connected car, and based on the results
of the election the Local Leader, vehicle adapt his speed in
order to follow his Leader.

IV. SOLUTION DESIGN AND IMPLEMENTATION

MASCAT is a research simulator based on a Multi-Agent
System of vehicles, implemented in Java, over the MOVSIM
simulator. In our previous research work on MASCAT we
proposed and implemented a local leader election protocol.
The purpose of this protocol was to ensure traffic fluidity
and regulation on a highway. This solution has shown its
effectiveness in tackling the congestion problem with a small
percentage of connected vehicles. However, the MASCAT
simulator does not include a very important feature which
is the auto-adaption of connected vehicles under several
disturbances in the environment. The connected vehicles in

MASCAT do not take into account the environment in the ideal
world under disturbances like the meteorological conditions
such as the visibility, weather We will describe how we
were able to alter the behavior of the MASCAT connected
vehicles so that they would consider their surroundings, and
this, without deteriorating the simulators performance while
always ensuring traffic regulation.

A. Semantic Plugin

The fact that the interactions between agents are highly
information-dense raises many problems. Because of that
our research was oriented to use a semantic method. This
method can achieve a step of data interpretation by each agent
on the multi-agent system. This goal can be achieved after
implementing the Semantic Traffic Data Analysis plugin. Its
main objectives are to Link, structure and analyze Traffic Data
in order to optimize the Local Leader Election Protocol imple-
mented in MASCAT. MASCAT Connected Vehicules would
elect a local leader in a certain radius around them, based on
the computed median speed value in the speed interval having
the highest number of vehicles. The vehicle with the closest
speed to this median is selected to become the local leader, so
its speed will be adopted by surrounding connected vehicles.
The Plugin will provide each connected vehicle with the
adequate ”Speed Intervals” relatively to a certain context. The
LLEA will be then executed, based on the inferred intervals,
in order to compute an adequate recommended speed. Doing
so will make the simulation more realistic by ensuring that
the CVs behavior would adapt to a continuously shifting
environment. In the following sub-sections we will start by
describing the ontology based approach and the connection
between the plugin and the simulator, then we will describe
the graph database approach which we adopted for its high
performance compared to the ontology based approach.

1) Ontology Based Approach:
• Firstly, as shown in the Fig. 4, we started to implement

our solution in Protégé with a preliminary prototype
including an initial ontology representing the context of
road traffic. This ontology includes main classes (Context,
Weather) and properties (hasWeather, hasSpeedLimit,
hasRecommendedSpeed)

• Secondly, in order to obtain a recommended speed based
on knowledge about meteorological conditions, this solu-
tion was augmented with semantic rules using semantic
web rule language (SWRL) to respond to each traffic
context (for each individual). This ontology uses the
rule engine Drools and the Pellet reasoner in order to
generate the axioms of the defined rules, inferring facts
and checking the consistency of the ontology.

• Thirdly, based on this solution, we succeeded in returning
a value of ”the recommended speed” for a certain context
by using a SPARQL query. [22]

2) Connecting a semantic module to the MASCAT simula-
tor: In order to connect MASCAT to the semantic plugin, we
implemented a Java module that uses the Jena API to query
the OWL Ontology. The communication with the simulator



Fig. 3. Vehicle behavior in case of a semantic traffic data analysis

Fig. 4. First Prototype Ontology on Protégé

was done through a dedicated Singleton Java class that we
named the SemanticDecision class. A simple variable was
used to toggle the semantic behavior On and Off, which will
consequently toggle the interpretation phase On and Off, thus
granting the vehicles with two possible behaviors:
• The First behavior where the CVs are following the

steps local leader election algorithm (LLEA) without a
semantic data analysis (without interpretation level)

• The second one where the CVs have an altered behavior:
the Semantic Decision Behavior in which they adapt
according to the inferred semantic knowledge.

This approach was tested in order to communicate an
inferred recommended speed to the connected vehicles. The
test showed that the ontology lacked the performance needed
to keep up with the response delay of the simulator. Therefore,
we opted to consider as an alternative approach the use of
a graph database, which according to ref can perform much
better than the ontology in terms of response time.

3) Graph Database approach: As we found when we
explored the related work, and after severals tests and com-
parisons, we concluded that the use of the GraphDB Graph
database would be the best choice to enhance the performance
of our semantic plugin. We used Eclipse RDF4J (formerly
known as Sesame) to connect GraphDB to the MASCAT code,
and to process and handle RDF data. RDF4J also supports
creating, parsing, scalable storage, reasoning and querying

with RDF and Linked Data (Section II).
GraphDB can process an input OWL Ontology file and has
a built-in reasoner (TRREE) that automatically can make
inferences at load time (Forward-Chaining Reasoning), with
a very good performance level, enabling us to connect to
MASCAT and run our simulations appropriately. After en-
suring that the semantic plugin is highly functional at the
technical level, we went through enhancing it at the semantic
level, by extending the input ontology in order to be able
to infer speed intervals according to the vehicule’s context.
We explored many proposed existing ontologies [16], [20],
[27] which include many entities and concepts that can affect
the behavior of the CV and their perception to discover their
surroundings and respond to perturbations (entities such as
the Weather property of the entity Environment). We used a
combined subset of these concepts, nevertheless the ontology
could be extended and refined furthermore in future works.
As for the speed intervals used in our last work for the
implementation of the local leader election algorithm, they
were defined in the protocol in a static way. But if we want
to give the connected vehicles the possibility to adapt their
behavior according to their context, the speed intervals should
now be inferred from the GraphDB’s Ontology.
Thus we added the following classes to the ontology Fig.5
: ”Environment, RoadType, Weather, Visibility” and the fol-
lowing object properties ”hasRoadType, hasWeather, hasVisi-
bility” and the 4 inferred speed Intervals which are represented
by 8 Data Properties which are the minimum and maximum
bounds of each of these four intervals (hasInterval1Min, has-
Interval1Max, ...)

We also augmented our Ontology with semantic rules to
obtain the speed intervals when needed. In GraphDB these
rules are called entailment rules and can be added in a custom
ruleset .pie file. The main goal is to offer a connected vehicle
with speed intervals (Fig.2) that correspond to its specific



Fig. 5. Final Solution Ontology

Environment individual, and thus respect road type, weather
conditions, visibility and regulations.

V. RESULTS

As the simulations done in our latest work show, [5] a
small percentage of connected vehicles can improve traffic
flow, when adopting V2V (Vehicle-to-Vehicle) communication
approach combined with a traffic regulation scheme based on
a decentralized election protocol. In this model, the elected
Local Leader plays a key role in the regulation of the traffic.
What was missing in the simulations already undertaken, is
the study of the behavior of the connected vehicles in critical
weather conditions. This is exactly what the semantic plugin
will help us test, since the LLEA will be based on the knowl-
edge (inferred intervals corresponding to the specific weather
condition) offered by our GraphDB semantic approach.

A. Set Up

In this section, we describe the common experimentation
parameters to run our scenarios:
Since Highways suffer from an enormous daily amount of
vehicles, the road type studied in our tests is the Highway
type. The speed limitations are those defined by European
Laws (Fig.2). The baseline scenario consists of a dense traffic
state generated on a 3-lane straight highway. The input flow is
maintained to 1800 vehicles per hour during the 1200 seconds
simulation. Then, we gradually introduce CVs (from 0% to
30% ) which will execute the modified LLEA which takes
into consideration the inferred semantic knowledge. For now,
this knowledge consists of the speed intervals, needed for the
computation of the recommended speed, in each environment
and thus the election of the local leader. These scenarios
correspond to early CVs deployment phases that will occur
soon in real-life scenarios. Traffic flow is expected to be
gradually improved when we increase the number of CVs,
but we need to verify vehicles behaviors in critical weather
conditions based on the knowledge offered by our imple-
mented semantic plugin. Simulations results presented in this
paper were given by the mentioned Multi-Agent Simulator for
Connected and Automated Traffic (MASCAT) [8], augmented
with our semantic plugin.

B. Simulations

After the implementation of the GraphDB based Solution,
it was time to test our overall solution to validate if the CVs

in MASCAT were adapting their behaviors as a reaction to a
specific disturbance (a specific weather condition) according
to a deep interpretation realized by each agent in order to get
correct intervals for this situation. In consequence, elect a local
leader and respect the offered speed recommendation in the
regulation strategy.

1) Particular Weather Condition Scenario: Initial traffic
density in this scenario is set to 37 vehicles per kilometer.
This setting tends to model a critical regime that can cause
a network capacity drop due to the heterogeneities in the
flow of numerous vehicles. We explained previously in Fig.
?? that connected vehicles should be able to adapt their
speed after detecting the actual weather condition based on
vehicle knowledge. For example, in case of snowy weather
and low visibility, on a Highway Road, our semantic query
will return the following inferred intervals: [0;30[ [15;50[
[17;30[ [26;40[

Fig. 6. Space-time diagram (vehicles trajectories and speed on the right-most
lane) for the baseline simulation (with 0 to 30% of CV) in Snowy Scenario

Figure 6 depicts the trajectories (and speeds) of all the
vehicles in the right-most lane, for the baseline scenario (0%
of CVs). Then, we gradually introduce CVs (from 0% to 30% )
executing the LLEA enabled with semantic knowledge. Traffic
flow is expected to be gradually improved with the increasing
number of CVs .
The baseline Scenario (0% CV) models a dense traffic state
where congestion waves (in red color) appear spontaneously
and grow, leading to the formation of massive traffic jams.
The absence of connected vehicles in this baseline scenario
will not allow the detection of environmental condition. The
only possible way to control IDM vehicles speed in MASCAT
simulator is to set their maximum speed to 40 km/h (equal to
upper interval limit value). But, this maximum speed limit was



not useful. Vehicles didnt respect this maximum value and no
regulation strategy of the LLEA was used. Traffic congestion
was mainly due to the speed heterogeneities between individ-
uals, and it is accentuated by lane-changes.
The purpose of our approach is the self-adaptation in any
weather condition using our knowledge-based electoral pro-
tocol thus maintaining traffic fluidity even in case of low
speed (snowy weather). We can observe on the same figure,
the results for the 10% of the connected vehicle which show
how connected vehicles were able to adapt their speed based
on our proposed semantic approach in LLEA. The local
leaders tend to stabilize the flow in very difficult weather
conditions. We notice after simulating our scenario with an
increased percentage of connected vehicles (up to 50% of CV),
connected vehicles were able to behave correctly as we see in
the space-time diagrams. We also check our approach with
all weather conditions mentioned in Fig. ?? for the road type
Highway. We were satisfied by the results, our knowledge-
based LLEA shows its effectiveness and reactivity in case of
a weather disturbance.

2) Shifting between several Weather Conditions Scenario:
Initial traffic density in this scenario is set to 15 vehicles per
kilometer in order to detect the connected vehicles behaviors
changes from one weather condition to another on a Highway
Road. The aim of this scenario is to validate the concept of
auto-adaptation of our approach and analyze what happens in
the step of shifting between two extreme weather conditions.
We tested this scenario in semantically enabled MASCAT
version, with a Road length of 9000 m. This Road is divided
into 9 road segments 1000 m each. From position 0 to 4500,
we choose to have the first Environment (HighWay - Sunny
- High) while the second Environment (HighWay - Snowy-
Low) will cover the position 4501 to 9000.In 7, we show
how the vehicles started behaving at the beginning of the
simulation.

Fig. 7. Vehicles behaviors adaptation in Shifting scenario

As expected, we can see in Figure 7 that the highway is
divided into two parts:
• The first part (between the positions 0 and 4500) in

which the CVs are moving noticeably fast in a Sunny
Environment (Notice the green and blue colors of the
CVs).

• The second part (between the positions 4501 and 9000) in
which the CVs are moving noticeably slower in a Snowy

Environment (Notice the yellow and orange colors of the
CVs)

Fig. 8. Space time Diagram for 100 percent of CVs During Shifting Scenario

The space-time diagram shown in Fig.8 was obtained at the
end of this scenario. Notice the middle road segment that is
between the positions 4000 and 5000. As we can see, the cars
are immediately slowing down when crossing from the Sunny
to the Snowy Environment (Notice the red color of the CVs
on the position 4500). This means that the CVs are actually
abiding to the semantic LLEP result that was executed using
the queried Speed Intervals. Each time a CV enters a new
Environment, it queries the GraphDB for these Speed Intervals
and will keep using them until this environment changes,
therefore optimizing MASCATs performance. These results
validates the overall behavior expected from our projects
outcomes (the plugin and the ontology) that we detailed in
the previous sections. Our solution was tested and validated
after several simulations in MASCAT simulator. We can safely
say that the Graph Database approach seems to be way more
convenient than its semantic web ontology counterpart by
effectively querying the Graph Database structure without
having to rely on a less - performant exclusive ontology
approach. We switched to the GraphDB GDBMS because we
found out that the standard ontology could be easily inserted
into a GraphDB repository. Doing so, we accomplished our
projectsǵoals by implementing a plugin that would make the
simulations more realistic. Being aware of the requirements
and constraints, we ultimately did not deteriorate MASCATs
pace while performing the necessary computations and tasks.

As we have seen in this paper, we have used many tools
in order to develop this project and make it work. We design
and build a working Semantic Web Ontology on Protégé and
GraphDB, and successfully linked it to the MASCAT simulator
by implementing a rigorous plugin. We also extended and
improved our solution by dynamically creating the Ontolo-
gys individuals and activating the Visibility Sensor class in
MASCAT. Our plugin helped achieve traffic regulation, by
enabling the connected vehicles to sense and adapt to changing
environmental conditions without deteriorating the simulator’s
performance.



VI. CONCLUSIONS AND FUTURE WORK

To summarize, results indicate that our approach can have
a positive impact on the peoples lives where the driver of a
CV could obtain a message in which the recommended speed
of his vehicle is specified. He would then adapt to this speed
knowing that its the most optimal, safe and law-abiding way
to go. This way, he would make sure that the decision he takes
would contribute in boosting the overall traffic conditions on
the road and help in maintaining an efficient traffic situation
that is conform to traffic regulations and laws. Additionally,
our plugin made MASCATs simulations more realistic, and
therefore more reliable by helping road traffic experts expand
their studies and analyze the simulators results after introduc-
ing new factors that can now be taken into consideration thanks
to the ever-expanding Semantic Web knowledge. The designed
Ontology can be tailored to the experts needs in order to try
to replicate any simulation environment thus contributing in
finding solutions to the daily traffic congestions in shifting
scenarios.
We propose now some of our recommendations for future
works and implementations. We understand that this work is
not fully complete in what concerns Semantic Traffic Data
Analysis. The first noticeable thing that could be done is
expanding the Ontologys designs in order to include more
parameters and entities that can influence the behavior of the
CVs in MASCAT such as the Drivers skills & abilities, traffic
lights, road intersections, obstacles & road works, pedestrians,
etc. Ultimately, the CVs sensors could be linked to a stream
processing software platform like Apaches Kafka in order to
simulate real-time environment detection in MASCAT.
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