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Abstract. We describe our top-team solution to Task 1 for Hindi in the
HASOC contest organised by FIRE 2019. The task is to identify hate
speech and offensive language in Hindi. More specifically, it is a binary
classification problem where a system is required to classify tweets into
two classes: (a) Hate and Offensive (HOF) and (b) Not Hate or Offensive
(NOT). In contrast to the popular idea of pretraining word vectors (a.k.a.
word embedding) with a large corpus from a general domain such as
Wikipedia, we used a relatively small collection of relevant tweets (i.e.
random and sarcasm tweets in Hindi and Hinglish) for pretraining. We
trained a Convolutional Neural Network (CNN) on top of the pretrained
word vectors. This approach allowed us to be ranked first for this task out
of all teams. Our approach could easily be adapted to other applications
where the goal is to predict class of a text when the provided context is
limited.

Keywords: Hate Speech · Offensive Content · Hindi · CNN · Deep
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1 Introduction

The “Hate Speech and Offensive Content Identification in Indo-European Lan-
guages” track1 (HASOC) is one of the tracks in FIRE 2019 conference2 [16]. Task
1 in this track is identification of hate speech and Offensive (HOF) language in
English, German and Hindi in social media posts. In this paper, we describe
our approach to the solution of Task 1 in Hindi. The goal is to label a tweet
written in Hindi as HOF if it contains any form of non-acceptable language such
as hate speech, aggression or profanity; otherwise it is labelled as NOT. There
has been significant research on hate speech and offensive content identification
in several languages, especially in English [3, 2, 6, 25, 24]. However, there is a lack
of work in most other languages. People are now realising the urgency of such
research in other languages. Recently, SemEval 2019 Task 5 [4] was carried out

1 https://hasoc2019.github.io/call for participation.html
2 http://fire.irsi.res.in/fire/2019/home
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on detecting hate speech against immigrants and women in Spanish and En-
glish messages extracted from Twitter, GermEval Share Task [22] was carried
out on the Identification of Offensive Language in German language tweets, and
TRAC-1 [11] conducted a shared task on aggression identification in Hindi and
English. Therefore, HASOC Task 1 for Hindi intends to find out the quality of
hate speech and offensive content identification technology in Hindi.

The training dataset is comprised of 4665 labelled tweets in Hindi. The train-
ing dataset is created from Twitter and participants are allowed to use external
datasets for this task. In the competition setup, the testing dataset is com-
prised of 1319 unlabelled tweets that were also created from Twitter. The testing
dataset and leaderboard were kept unknown to participants until the results were
announced. Competitors had to split the training set to get validation set and
use the validation set through the competition to compare models. The testing
set was only used at the end of the competition for the final leaderboard.

Th proposed approach relies on very little feature-engineering and prepro-
cessing as compared to many existing approaches. Section 2 discusses our top-
ranked model building approach. It consists of two steps: (a) pretraining word
vectors using a relevant collection of unlabelled tweets and (b) training a Convo-
lutional Neural Network (CNN) model using the labelled training set on top of
the pretrained word vectors. Section 3 describes other sophisticated alternative
models that we tried. Though these models did not perform as good as com-
pared to our winning model in this track, their performance provides further
insight into how to use machine learning models for identifying hate speech and
offensive language in Hindi. Section 4 provides experimental results comparing
and analysing our various models both on testing set and validation set. The
source code of our model can be found online at [1].

2 The Winning Model: QutNocturnal

2.1 Data Collection

Labelled Contest Dataset The goal of Task 1 for Hindi is to predict the
class (HOF or NOT) of a given tweet written in Hindi. Out of 4665 labelled
tweets in the training set, 2469 (52.92%) are HOF and 2196 (47.07%) are NOT.
We randomly kept 20% of training data for validation set. We used ten cross
validation in the remaining training set for hyper parameter setting.

Unlabelled External Dataset It is a difficult task to separate abusive tweets
from tweets that are sarcastic, joking, or contained abusive keywords in a non-
abusive context [3]. Lexical detection methods tend to have low accuracy [6,
23] because they classify a tweet as abusive if it contains any abusive keywords.
Also tweets are significantly noisy and do not follow a standard language format.
For example, words in tweets are often misspelled, altered, written in Roman
letters, include local dialects or foreign languages. To transfer the knowledge of
these contexts to the CNN based deep learning model, we pretrain word vectors
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using 0.5 million relevant tweets. More specifically, we collected 4,94,311 random
tweets in Hindi (i.e. topic of discussion can be anything) using TrISMA3 and 5251
sarcasm tweets in Hinglish [14] (i.e. sarcasm in Hindi language but written in
Roman letters) from [19] for pretraining.

Preprocessing We de-identified person occurrence (e.g. @someone) with xxatp,
url occurence with xxurl, source of modified retweet with xxrtm and source of
unmodified retweet with xxrtu. We fixed the repeating characters (e.g. goooood)
in word and removed common invalid characters (e.g. < br/ >, < unk >, @−@,
etc). We used html unescape to replace hexadecimal escape sequences with the
character that it represents. We used multi-language spaCy module4 to lemma-
tize words and a lightweight stemmer for Hindi language [18] for stemming the
words.

2.2 Word Embedding

Embedding models quantify semantic similarities between words based on their
distributional property that a word is characterised by the company it keeps.
These models quantify semantic properties of words by mapping co-occurring
words close to each other in an Euclidean space. Given a sizeable corpus, these
models can effectively learn a high-quality word embedding from the co-occurrence
of words in the corpus. Word embedding maps each word from the vocabulary
to a vector of real numbers. Mikolov et al. [15] proposed two popular models
for word embedding based on the feed-forward neural network: Skip-gram and
Continuous Bag-of-Words as shown in Figure 1.

In embedding models, a sliding window of a fixed size moves along the text of
a corpus. For a given position of the sliding window, let the word in the middle
is current word wi and the words on its left and right within the sliding window
are context words C. The continuous bag-of-words model predicts the current
word wi from the surrounding context words C, i.e. p(wi|C). In contrast, the
skip-gram model uses the current word wi to predict the surrounding context
words C, i.e. p(C|wi). In Figure 1, for example in this corpus, if the current
position of a running sliding window contains the phrase tum sirf chutiya kat ti
ho. In continuous bag-of-words, the context words {tum, sirf, kat, ti, ho} can be
used to predict the current word {chutiya}, whereas, in skip-gram, the current
word {chutiya} can be used to predict the context words {tum, sirf, kat, ti, ho}.

The objective of model training is to find a word embedding that maximises
p(wi|C) or p(C|wi) over a corpus. In each step of training, each word is either
(a) pulled closer to the words that co-occur with it or (b) pushed away from
all the words that do not co-occur with it. A softmax or approximate softmax
function can be used to achieve this objective [15]. At the end of the training,
the embedding brings closer not only the words that are explicitly co-occurring

3 https://research.qut.edu.au/dmrc/projects/trisma-tracking-infrastructure-for-
social-media-analysis/

4 https://spacy.io/models/xx
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Fig. 1: Continuous Bag-of-Words and Skip-gram Word Embedding Models [3]

in a training dataset, but also the words that implicitly co-occur. For example,
if w1 explicitly co-occurs with w2 and w2 explicitly co-occurs with w3, then the
model can bring closer not only w1 to w2, but also w1 to w3.

We use the continuous bag-of-words model in this contest as this model is
faster and has a slightly better accuracy for the words that appear frequently
based on our experimental results. We implemented this model using the module
Word2Vec in Gensim Python library. We set the word vector dimension to 200,
minimum word count to 2, number of iteration in pretraining to 10, sliding
window size to 5 and maximum vocabulary count to 0. We run this model on
the unlabelled external dataset described in Section 2.1 to get the pretrain word
vectors. Our pretrained word vectors and corresponding python code to use them
in classifier are available online at [1].

2.3 Model Architecture

The proposed architecture of our top-ranked model CNN to identify hate speech
and offensive language in Hindi is given in Figure 2. This is an empirically cus-
tomised and regulated version of the architecture that we have used in our prior
work of misogynistic tweets identification on Tweeter [3]. In this architecture, we
use word embedding to represent each word w in an n-dimensional word vector
w ∈ Rn. We represent a tweet t with m words as a matrix t ∈ Rm×n. We apply
convolution operation to the tweet matrix with one stride. Each convolution op-
eration applies a filter fi ∈ Rh×n of size h. Empirically, based on the accuracy
improvement in ten-fold cross validation, 256 filters are used for h ∈ {3, 4} and
512 filters for h ∈ {5}. The convolution is a function c(fi, t) = r(fi · tk:k+h−1),
where tk:k+h−1 is the kth vertical slice of the tweet matrix from position k to
k + h− 1, fi is the given filter and r is a Rectified Linear Unit (ReLU) function
[17]. The function c(fi, t) produces a feature ck similar to nGrams for each slice
k, resulting in m−h+1 features. The max-pooling operation [20] is applied over
these features and the maximum value is taken, i.e. ĉi = max(c(fi, t)). Max-
pooling captures the most important feature for each filter. As there are a total
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of 1024 filters (256+256+512) in the proposed model, the 1024 most important
features are learned from the convolution layer.

Then, we pass these features to a fully connected hidden layer with 256
perceptrons that use the ReLU activation function. This fully connected hidden
layer learns the complex non-linear interactions between the features from the
convolution layer and generates 256 higher level new features. Finally, we pass
these 256 higher level features to the output layer with single perceptron that
uses the sigmoid activation function. The perceptron in output layer generates
the probability of the tweet being HOF or NOT.

In this architecture (Figure 2), a proportion of units are randomly dropped-
out from each layer except the output. This is done to prevent co-adaptation of
units in a layer and to reduce overfitting. We set 50% units droppedout from the
input layer, the filters of size 3 and the fully connected hidden layer based on
best empirical results. Only 20% units are droppedout from the filters of size 4
and 5. Python code for this model is available online at [1].
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Fig. 2: Architecture of our top-ranked CNN Model for the Hate Speech and Offensive
Content Identification track in Hindi Language [3]

3 Alternative Models

We have implemented eight other models in addition to the winning CNN model
to see the performance of hate speech and offensive language detection in Hindi.

– Long Short-Term Memory Network (LSTM) [9]. We implement LSTM with
100 units, 50% dropout, binary cross-entropy loss function, Adam optimiser
and sigmoid activation.

– Feedforward Deep Neural Network (DNN) [7]. We implement DNN with
five hidden layers, each layer containing eight units, 50% dropout applied to
the input layer and the first two hidden layers, softmax activation and 0.04
learning rate. We manually tuned hyper parameters of all neural network
based models (CNN, LSTM, DNN) based on cross-validation.
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– Non NN models including Support Vector Machines (SVM) [8], Random
Forest (RF) [13], XGBoost (XGB) [5], Multinomial Naive Bayes (MNB)
[12], k-Nearest Neighbours (kNN) [21] and Ridge Classifier (RC) [10]. We
automatically tune hyper parameters of all these models using ten-fold cross-
validation and GridSearch from scikit-learn. Among all the models, only
CNN and LSTM use transfer learning.

4 Experimental Results

A total of nine machine learning models, including the winning customised CNN
model, were trained to identify hate speech and offensive language in Hindi. We
used transfer learning of word vectors for both CNN and LSTM. The word
vectors were pre-trained on a collection of relevant tweets and tuned with the
training dataset during the model training.

4.1 Results

The experimental results comparing models in custom validation set are given
in Table 1. The detailed results of the winning CNN model in test dataset are

Table 1: Model Comparison Results in Custom Validation Set

Macro Average of Classes

CNN DNN kNN LSTM MNB RF RC SVM XGB
precision 0.83 0.72 0.61 0.79 0.76 0.74 0.73 0.68 0.74
recall 0.82 0.72 0.56 0.78 0.75 0.74 0.72 0.61 0.75
f1-score 0.81 0.72 0.51 0.78 0.75 0.74 0.72 0.58 0.74
support 933 933 933 933 933 933 933 933 933

Weighted Average of Classes

CNN DNN kNN LSTM MNB RF RC SVM XGB

precision 0.84 0.72 0.61 0.79 0.76 0.74 0.73 0.68 0.75
recall 0.82 0.72 0.58 0.78 0.76 0.74 0.73 0.63 0.74
f1-score 0.81 0.72 0.52 0.78 0.75 0.74 0.73 0.58 0.75
support 933 933 933 933 933 933 933 933 933

Accuracy

CNN DNN kNN LSTM MNB RF RC SVM XGB
0.82 0.72 0.58 0.78 0.76 0.74 0.73 0.63 0.74

given in Table 2.5

5 In the absence of any other information except the email message about the top-team
performance, we are not able to provide the comparative results with other submitted
team results. We will update this table with the rest of the team performance, once
we receive information from the track organisers.
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Table 2: Detailed Results of Winning Model CNN in Test Dataset

Confusion Matrix

HOF NOT

446 159 HOF
80 633 NOT

Class Wise Performance

Precision Recall F1-score Support

HOF 0.85 0.74 0.79 605
NOT 0.8 0.89 0.84 713

Accuracy 0.82 1318
Macro avg 0.82 0.81 0.81 1318
Weighted avg 0.82 0.82 0.82 1318

4.2 Analysis of the results

Experimental results in both validation and test set show that CNN outperforms
all other models. CNN is able to outperform LSTM and other baseline models
because of the specific nature of tweets. For example, tweets can be super con-
densed and indirect texts (e.g. satire), may not follow the standard sequence of
the language and be full of noise.

Traditional models (e.g. SVM, XGBoost, RF, kNN, etc.) are based on bag-of-
words assumption. The bag-of-words (or bag-of-phrases) representation cannot
capture sequences and patterns that are very important to identify hate speech
and offensive contents in tweets. For example, if a tweet ends saying if you know
what I mean, there is a high chance that it is an offensive tweet, even though
individual words are innocent.

A LSTM model is popularly used in natural language processing research
because of its effectiveness of handling sequences in text datasets. Empirical
results in Table 1 show that it performed as a second best model. However,
the sequence in a tweet can be highly impacted by the noise [3, 23], consequently
LSTM finds it difficult to identify the class. On the other hand, CNN can identify
many small and large patterns in a tweet, if some of them are impacted by noise
it can still use other patterns to identify the class.

5 Conclusion
We introduce an effective method for the task of hate speech and offensive con-
tent identification in Hindi. We propose a custom CNN architecture built on
word vectors pre-trained on a relevant corpus from the task-specific domain.
The proposed model was the top-ranked model in this task under the track.
We conducted a series of experiments conducted using state-of-the-art models.
Experimental results show that the contexts of hate speech and offensive con-
tent can be captured through transfer learning of word embeddings (a.k.a. word
vectors) and those contexts can significantly improve the performance of hate
speech and offensive content identification. We also observed that when trans-
fer learning through word vectors is utilised, CNN performs better than LSTM
because of the noisy nature of tweets. CNN can identify many small and large
patterns in a tweet, if some of them gets altered by noise it can still use other
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patterns to identify the class of the tweet. On the other hand, LSTM uses the
sequence of a tweet to identify its class, but noise in the tweet can alter the
sequence and make it hard for LSTM to identify the class.
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