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Abstract. Data-driven decisions are becoming increasingly relevant for supply 

chains as traditional paradigms are being replaced with concepts and approaches 

more suited for the advent of big data. However, the prevailing consensus is that 

companies are struggling to cope with an overabundance of data, which presents 

the following pertinent question: how to efficiently analyze data applying filters 

of relevance and insightfulness to make effective decisions? There is currently a 

lack of research focus on providing quantitative tools to do such analyses. This 

paper, besides offering thoughts on decision-making uncertainty in a digital sup-

ply chain context, describes an approach to address the research gap. The ap-

proach (which involves developing a quantitative model) is further elucidated by 

utilizing an example in the agricultural supply chain that illustrates how value of 

data can be quantified by measuring the performance impact of insights delivered 

using uncertainty reduction as the leverage.  
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1 Decision Making Under Uncertainty in Digital Supply Chains 

In designing and analyzing supply chain processes, the theoretical frame of “hierarchy 
of decisions” has often been used [1]. This view, that segments processes according to 

scope and significance, into strategic, tactical and operational, acknowledges the piv-

otal role of decision making in Supply Chain Management (SCM).  

The decision-making process in SCM, as also in the general sense, is crucially about 

choosing a course of action by assessing alternatives and settling on one “that is most 
likely to result in attaining the objective” [2]. In this way, the efficacy of the process 

hinges heavily on the ability to parse and understand uncertainty in the states of the 

world associated with the alternatives. This notion of uncertainty is at the heart of the 

Organizational Information Processing Theory (OIPT) that posits uncertainty as the 

disparity between information processing need and corresponding capacity, and links 

it to process and organizational performance [3]. 

In the current environment characterized by supply chains readily embracing digital 

technologies and transforming themselves into Digital Supply Chains (DSC), decision 

making under uncertainty presents an apparent contradiction: the abundance of data 

afforded by digital technologies would lead one to expect DSCs to be exploiting this 
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opportunity to achieve parity in the OIPT sense (between information processing need 

and attendant capacity) and drive improved performance resulting in a higher utilization 

of data. However, various studies show that most digital data that is captured is not 

utilized [4] and less than 1% of unstructured data is analyzed at all [5]. Research in the 

areas of digital transformation and Value of Information (VOI) offer up some clues to 

clarify this contradiction.  

Digital transformation is about innovating new business models and ways of value 

creation and capture, focusing on the dual outcomes of customer engagement and inte-

grated digitized solutions. It is perhaps better understood by contrasting with a related 

term – digitization, which on the other hand, is a narrower technology-centric view [6]. 

Not surprisingly, supply chains that focus on transformation perform significantly bet-

ter than peers [6]. On the other hand, a lack of transformation focus leads to unmet 

expectations and such companies are apt to complain, as have six out of 10 respondents 

in this survey of 3000 executives, of having more data than they can use effectively [7].  

A related line of research inquiry concerns VOI in a big data context. Research into 

Information Systems (IS) following IS economics tradition highlight the lack of tools 

to quantify data and the need to address the challenge of “finding a way to quantify the 

value of information that considers both insightfulness and risks” [8]. The two lines of 

inquiry are linked, and the convergence is in the fact that supply chains that are trans-

formation focused are more likely to want to justify investments and therefore also want 

to quantify value of data - and this is where this research aims to contribute. 

2 Approaches for Measuring Business Value of Data 

2.1 State-of-the-Art  

Using a resource-based view, which holds that heterogeneity of organizational re-

sources is a source of value (as it differentiates a firm from competition), Melville et al. 

[9] argue for consideration of competition and environmental factors to measure value 

of data as they are seen to impact value. Higher the level of competition or industry 

concentration, higher is the marginal product and, conversely, lack of competition cre-

ates slack resources leading to lower productivity [10]. Environmental factors or exter-

nal focus, on the other hand, is seen to enhance performance as timely and accurate 

information regarding a firm’s external environment are preconditions for agility [11].  

Besides several empirical studies that adopt a general view on the impact of data on 

value and emphasize the link between data-driven decision making and firm output and 

productivity (see [12, 13] for representative examples), there are also several studies on 

particular problem instances. Ketzenberg et al. [14] assessed VOI in the presence of 

uncertainty around demand, return, and product recovery delivering a key insight that 

greater the uncertainty, greater is the VOI. Dunke and Nickel [15] incorporated for-

ward-looking information in supply chain planning and proposed an optimization 

model that utilizes preview of future information with help of lookahead devices (e.g. 

sensors) to transform an uncertain future into a certain one. 
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2.2 Need for Further Research 

The discussion above points to a wealth of empirical studies and models for specific 

problems. However, a general-purpose quantitative model with a normative character 

(elaborated in 2.3) is lacking. In a review of 117 articles on the topic of research con-

tributions in this area, Viet et al. [16] had found that, in a supply chain decisions’ con-
text, there is disproportionate attention being paid to inventory whilst other areas have 

received insufficient attention. They also report that the impact of new and innovative 

data sources (e.g. sensor data) remains under-explored. In laying out a research agenda 

for future information systems research, Abbasi et al. [8] call for research on the “value 
of various data sources and channels in terms of quality of insights, enabling new ca-

pabilities, and quantifiable business value.” 

2.3 Model Conceptualization 

Before describing the proposed model, it is instructive to go over key model attributes 

that were considered as prerequisites: (1) Quantitative: the overarching question calls 

for the ability to measure the incremental value of insights from digital data. This ne-

cessitates a quantitative-based model that yields a numerical solution. (2) Predictive: 

The model must emulate a decision-making process where the performance potential 

of data-driven insights can be studied. This requires the model to embody predictive or 

simulative capability. (3) Relevant: Zadeh’s principle of incompatibility holds that 
complexity makes relevance and precision impossible to obtain simultaneously [17]. 

Therefore, the model needs to be built on a framework that lends itself to strike the right 

balance. From a performance measurement perspective, it needs to be inclusive (one of 

the key characteristics of a good performance measurement framework [18]) and not 

predisposed to any specific supply chain strategy. For instance, both cost (primary fo-

cus for efficient supply chains) and agility (primary focus for responsive supply chains) 

measures need to be supported. (4) Usable: as the key question being addressed most 

interests supply chain managers, the model should, despite its quantitative rigor, include 

a graphical component for the decision-making process to be analyzed visually as well. 

The proposed model is grounded in the Approximate Dynamic Programming (ADP) 

methodology [19] (also called reinforcement learning). It is an active field of research 

that has a long history owing to its evolution from work done in optimal control theory 

and stochastic approximation (dynamic programming and Markov decision processes). 

ADP’s choice as the model’s underpinning is due to its suitability vis-à-vis prerequi-

sites set forth earlier and its effectiveness in addressing the class of problems typical of 

the supply chain problem domain. One way to justify this claim is by noting the sub-

components of ADP and highlighting structural similarities between ADP and Supply 

Chain (SC) problems. ADP problem formulation consists of policy, reward, value and 

model environment. The solution involves an appropriate choice of policy, which is a 

set of endogenous controllable variables (e.g. reorder point in SC) in the face of uncer-

tainty expressed by the model environment (exogenous information, for e.g., customer 

demand in SC) to maximize cumulative rewards or value (e.g. global perspective in 

SC). The approximate nature of ADP allows problems involving large state-spaces 
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(typical of SC) to be solved by using an approximation architecture. The approximation 

architecture or the learning element allows better policies to be adopted as the system 

learns to interpret the uncertain environment better and develops a more accurate pic-

ture of the (delayed) consequence of actions on value. For the proposed model, this last 

aspect is crucial to modelling the recalibration of uncertainty due to infusion of digital 

data. [20]  

The model incorporates formalisms to represent key elements of uncertainty and 

digital data. For this research, uncertainty is viewed as an empirical quantity [21] that 

can be modelled as a probability distribution. Furthermore, a Bayesian view of proba-

bility is adopted (other view being frequentist) [21], which is suitable in this problem-

context of decision-making where beliefs about states of the world are conditioned on 

all available information. Quantification of uncertainty is a relatively untapped aspect 

in stochastic optimization literature [22] but will be an essential component in the 

model as it impacts policy selection and consequently its predictive ability. In the case 

of digital data, a semantic model (for example, based on W3C SSN ontology [23]) is 

adopted that provides similar modelling rigor. Finally, for model visualization, System 

Dynamics (SD) approach is the primary candidate [24]. SD provides an intuitive rep-

resentation of causal relationships between variables and their impact on performance. 

2.4 Illustration of Model Aspects: Example in the Agricultural Supply Chain 

The example pertains to the production and sales of seeds that starts with the production 

stage (that involves sowing, growing, harvesting, treatment and packaging) and culmi-

nates in the sales of seeds to farmers. The problem of estimating yield is the focus of 

the example and it helps elicit the salient model features.  

Once sales projections are made, production is planned assuming a certain yield (us-

ing factors like crop physiology). However, this is at best a noisy or imprecise estimate 

and the reality at harvest time tends to vary widely from projections. One key implica-

tion is the planning of treatment and packaging capacity, which is often a bottleneck. If 

the capacity planned is insufficient, it leads to lost sales and higher than required ca-

pacity leads to poor utilization and impinges on profits. However, advances in digital 

technologies provide the ability to use sensors and the like, which act as lookahead 

mechanisms and can provide advance insights during the lengthy sow-grow-harvest 

cycle, which can help revise noisy prior estimates with updated, sharper posterior esti-

mates. The dynamics of interaction are presented in Fig. 1. As can be seen from the 

illustration, relevant sensor data (e.g. weather, water content) that are predictors of yield 

when captured can be utilized to revise estimates and perform contingency planning in 

the form of organizing additional subcontracting capacity or shaping demand (promo-

tions) to better match demand and supply. In this way, the proposed model emulates 

decision making with and without insights from digital data to evaluate the impact on 

metrics (e.g. backorders, capacity utilization). The key objective is to make the model 

suitable for assessing investments (for instance by facilitating small-scale experiments) 

by focusing on the potential for better decision making under uncertainty whereby re-

turn on investment can be calculated as a function of incremental value due to insights. 
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Fig. 1. An example of crop-seeds manufacturing and sales described in the text is illustrated. The 

increase of a certain measure causes an increase (+) or decrease (-) of the connected measure. 

3 Conclusion 

An implication of wide adoption of digital technologies by supply chains is the increase 

in decision-making complexity and uncertainty, which translates to a greater burden on 

information processing needs and capabilities. This strain is apparent in various studies 

that show that digital data is heavily under-utilized.  

This paper proposed a quantitative-based model that assesses data in terms of its 

insightfulness, thereby enabling supply chains to address the problem of under-utiliza-

tion and seeks to provide a means to evaluating digital data based on its moderating 

influence on uncertainty and its impact on process performance metrics.  

The focus of the next stage of research is resolving design decisions pertaining to 

model conceptualization, which is followed by model development. The third and final 

stage will be model solving that is supplemented with a case-oriented proof-of-concept.  
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