
Semisupervised Segmentation of UHD Video

Oliver Kerul’-Kmec1, Petr Pulc1,2, Martin Holeňa2
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Abstract: One of the key preprocessing tasks in informa-
tion retrieveal from video is the segmentation of the scene,
primarily its segmentation into foreground objects and the
background. This is actually a classification task, but with
the specific property that it is very time consuming and
costly to obtain human-labelled training data for classifier
training. That suggests to use semisupervised classifiers to
this end. The presented work in progress reports the inves-
tigation of semisupervised classification methods based on
cluster regularization and on fuzzy c-means in connection
with the foreground / background segmentation task. To
classify as many video frames as possible using only a
single human-based frame, the semisupervised classifica-
tion is combined with a frequently used keypoint detec-
tor based on a combination of a corner detection method
with a visual descriptor method. The paper experimentally
compares both methods, and for the first of them, also clas-
sifiers with different delays between the human-labelled
video frame and classifier training.

1 Introduction

For the indexing of multimedial content, it is beneficial to
have annotations of actors, objects or any other informa-
tion that can occur in a video. A vital preprocessing task to
prepare such annotations is the segmentation of the scene
into foreground objects and the background.

Traditional methods, such as Gaussian mixture model-
ing, work on the pixel level and are time consuming on
higher resolution video [1]. Another simple method mod-
els the background through image averaging, however it
requires a static camera [6]. Our approach, on the other
hand, is based on the level of detected interest points, and
uses semi-supervised classification to assign those points
as belonging either to the foreground objects or to the
background.

In the next section, we introduce the key points detector
we employed for the detection of points of interest. Sec-
tion 3 recalls two methods of semi-supervised classifica-
tion we used in our approach. The approach itself is out-
lined in Section 4. Finally, Section 5 presents the results
of its experimental validation performed so far.

2 Scene Segmentation in the Context of
Video Preprocessing

In each frame of the video, a keypoint detector is used to
detect points of interest and compute their descriptors. In

our research, a combination of a corner detection method
FAST (Features from Accelerated Segment Test) with a
visual descriptor method BRIEF (Binary Robust Indepen-
dent Elementary Features) is used to this end, known as
ORB (oriented FAST and rotated BRIEF) [7]. Points of
interest detected in a frame are always attempted to match
those detected in the next frame. Such matching points are
searched in a two-step fashion:
(i) Only the points of interest in the spacial neighbour-

hood of the expected position are considered. That
position is based on last known interest point posi-
tion and its past motion (if available).

(ii) Among the points of interest resulting from (i), as
well as among all detected in the current frame for
which no information about their past motion is avail-
able, points in the previous frame are searched based
on the Hamming distance between the descriptors of
both points.

Whereas the dependence of matching success on the dif-
ference between positions of the points and on the move-
ment of the first point has a straightforward geometric
meaning, its dependence on the Hamming distance be-
tween their descriptors has a probabilistic character. In
[7], this dependence was investigated and was found that
if the Hamming distance between 256-bit binary descrip-
tors of the points is greater than 64, then the probability of
successful match is less than 5%.

If two points of interests in subsequent frames are con-
sidered matching, the point in the later frame is added to
the history vector of the point in the previous frame. In
this way, we get the motion description of each point of
interest.

3 Semi-supervised Classification

Traditional supervised classification techniques use only
labelled instances in the learning phase. In situations
where the number of availabe labelled instances is insuffi-
cient, labelling is expensive and time consuming, semi-
supervised classification can be employed, which uses
both labelled and unlabelled instances for learning.

In the reported research, we used the following two
methods for semisupervised classification.

3.1 Semisupervised Classification with Cluster
Regularization

The principle of this method, in detail described in [8],
consists in clustering all labelled and unlabelled instances
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and estimating, for the instance xk, k = 1, . . . ,N, its proba-
bility distribution qk on the set of clusters. In addition, the
following penalty function is proposed for the differences
between the pairs (qk,qn) of probability distributions of
the instances.

P(qk,qn) = sin
(π

2
(r(qk,qn)∗ s(qk,qn))

κ
)
,

k,n = 1, . . . ,N,k 6= n, (1)

where r(qk,qn) denotes the Pearson correlation coeffi-
cient between qk and qn, κ is a parameter controlling the
steepeness of the mapping from similarity to penalty, and
s(qk,qn) is a normalized similarity of the probability dis-
tributions qk and qn, defined

s(qk,qn) = 1− ‖qk−qn‖−dmin

dmax−dmin
(2)

using the notation

dmin = minQ, dmax = maxQ,

with Q = {‖qk−qn‖|k,n = 1, . . . ,N,k 6= n}. (3)

The results of clustering allow to assign pseudolabels
to unlabelled instances. In particular, the pseudolabel as-
signed for the j-th among the M considered clusters to an
unlabelled instance xn in a cluster Ψ is

ŷn, j =
exp
(
∑xk∈Ψ is labelled yk, j

)

∑M
i=1 exp

(
∑xk∈Ψ is labelled yk,i

) , (4)

where yk,i, i = 1, . . . ,M is a crisp or fuzzy label of the la-
belled instance xk for the class i. For uniformity of nota-
tion, the symbol ŷk, j, j = 1, . . . ,M can also be used for yk, j
if xk is labelled.

The penalty function (1) can be used as a regulariza-
tion modifier in some loss function L : [0,1]2 → [0,+∞)
measuring the discrepancy between the classifier outputs
F(xn) = ((F(xn))1, . . . ,(F(xn))M) for an instance xn, and
the corresponding labels (yn,1, . . . ,yn,M) or pseudolabels
(ŷn,1, . . . , ŷn,M):

E =
1
N

M

∑
j=1

(
∑

xn labelled
L((F(xn)) j,yn, j)+

∑
xn unlabelled

λ max(qn)

|φ(xn)| ∑
xk∈φ(xn)

P(qk,qn)L((F(xk)) j, ŷk, j

)
, (5)

where λ > 0 is a given parameter determining the tradeoff
between supervised loss and unsupervised regularization,
and the set of instances xk 6= xn with the highest value of
P(qk,qn) is denoted φ(xn).

In [8], the following design decisions have been made
for the loss function and the classifier in (5):

1. The employed loss function can be derived from
DKL ((ŷn,1, . . . , ŷn,M)‖F(xn)), the Kullback-Leibler
divergence, from classifier outputs to labels or pseu-
dolabels. If both the labels or pseudolabels and the

classifier outputs form probability distributions on
classes, then

DKL((ŷn,1, . . . , ŷn,M)‖F(xn)) =

=
M

∑
j=1

ŷn, j ln
(
(F(xn)) j

ŷn, j

)
,n = 1, . . . ,N. (6)

Therefore, the considered loss function is

L((F(xk)) j, ŷk, j) =

= ŷn, j ln
(
(F(xn)) j

ŷn, j

)
,n = 1, . . . ,N, j = 1, . . . ,M.

(7)

2. As a classifier, a multilayer perceptron with one hid-
den layer is used, such that the activation function g in
its hidden layer is smooth and includes no bias, and
its output layer performs the softmax normalization
of the hidden layer. Hence,

(F(x)) j =
exp(g(w>j·x))

∑M
i=1 exp(g(w>i· x)

. (8)

The weight vectors w1·, . . . , wM· in (8) are learned
through the minimization of the error function (5).

3.2 Semi-supervised Kernel-Based Fuzzy C-means

This method, in detail described in [9], originated from
the fuzzy c-means clustering algorithm [2]. Similarly to
the original fuzzy c-means, the method is parametrized by
a parameter m > 1. What makes this method more gen-
eral than the original fuzzy c-means, is its dependence
on the choice of some kernel K, i.e., a symmetric func-
tion on pairs (x,y) of clustered vectors, which has positive
semidefinite Gramm matrices (e.g., Gaussian or polyno-
mial kernels). In fact, the fuzzy c-means algorithm corre-
sponds to the choice K(x,y) = x>y.

First, the membership matrix U l is constructed, for clus-
tering nl labelled instances xl

1, . . . ,x
l
nl

into as many clusters
as there are classes, i.e., M. For j = 1, . . . ,M,k = 1, . . . ,nk,

U l
j,k =

{
1 if the instance xl

k is labelled with the class j
0 else.

(9)

From U l , the initial cluster centers are constructed as

v0
j =

∑nl
k=1 U l

j,kxl
k

∑nl
k=1 U l

j,k
, j = 1, . . . ,M. (10)

If for some t = 0,1, . . . , the cluster centers vt
1, . . . ,v

t
M are

available, such as (10), then they are used together with
the chosen kernel K to construct the membership matrix
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Uu,t for clustering nu unlabelled instances xu
1, . . . ,x

u
nu , as

follows:

Uu,t
j,k =

(1−K(xu
k ,v j))

− 1
m−1

∑M
i=1(1−K(xu

k ,vi))
− 1

m−1
,

j = 1, . . . ,M, k = 1, . . . ,nu. (11)

Finally, the cluster centers are updated, for t = 0,1, .. by
calculating

vt+1
j =

=
∑nl

k=1(U
l
j,k)

mK(xl
k,v

t
j)x

l
k +∑nl

k=1(U
u,t
j,k)

mK(xu
k ,v

t
j)x

u
k

∑nl
k=1(U

l
j,k)

mK(xl
k,v

t
j)+∑nl

k=1(U
u,t
j,k)

mK(xu
k ,v

t
j)

.

(12)

The computations (11)–(12) are iterated until at least
one of the following termination criteria is reached:
(i) ‖Uu,t −Uu,t−1‖ < ε, t ≥ 1, for a given matrix norm

‖ · ‖ and a given ε > 0;
(ii) a given maximal number of iterations tmax.

4 Proposed Approach

4.1 Overall Strategy

Our methodology for the segmentation of video frames
into foreground objects and background relies on the as-
sumption that the user typically assigns corresponding la-
bels to points of interest only in the first frame, and even
not necessarily to all detected points of interest.

No matter whether the considered method of semisuper-
vised classification is semisupervised classification with
cluster regularization or semi-supervised kernel-based
fuzzy c-means, the methodology always proceeds in the
following steps:

1. In the first frame, the user labels some of the points
of interest detected by the ORB detector.

2. Using the considered method of semisupervised clas-
sification, the remaining detected points of interest
are labelled.

3. Matching points detected in the next frame are as-
signed the same labels as the points to which they are
matched.

4. Using the considered method of semisupervised clas-
sification, the remaining points of interest detected in
the next frame are labelled.

5. Steps 3 and 4 are repeated till either the points of in-
terest in all frames have been classified or the scene
has been so much disrupted between two frames that
no points of interest could be matched between them
(in such a case, new labelling by the user is needed).

4.2 Implementation of Object Segmentation

The Cartesian coordinates ([p]1, [p]2) of a point p of in-
terest are expressed with respect to top left corner of the
frame, using as units the frame height and width. Due to
that, [p]1 and [p]2 are normalized to [0,1].

For a match between points of interest pk and pk+1 in
subsequent frames k and k+1, the following criteria have
been used:
(i) The point pk+1 must lie within the radius rp

k from the
estimated new position of the point p̂k

‖pk+1− p̂k‖< rp
k . (13)

Here, the estimated position p̂k is calculated as

p̂k =

{
pk + c1(pk− pk−1) if pk−1 is available,
pk else,

(14)

where c1 > 0, and the radius rp
k is calculated as

rp
k = (up

kW )2, (15)

where up
k quantifies the uncertainty pertaining to the

point pk in the k-th frame and W denotes the frame
width (in the units in which point positions are ex-
pressed). The uncertainty up is set to up

1 = c2 > 0
in the first frame and is then evolved from frame
to frame through linear scaling above a lower limit
c3 > 0:

up
k+1 =

{
max(c3,c4up

k ) if pk is matched,
c5up

k if pk is not matched,
(16)

where 0 < c4 < 1,c5 > 1.
Moreover, if the evolution (16) leads to up

k+1 > c6 for
some c6 > c3, then the point p is deactivated and not
any more considered for matching.

(ii) Hamming distance between the 256-bit binary de-
sciptors of the points is at most 64.

The choice of the real-valued constants in the criterion
(i) has been based on the resolution of the video (4K), on
the frame rate (25) and on the defaults in the ORB imple-
mentation based on [7]. They have been set to the follow-
ing values: c1 = 0.6,c2 = 0.02,c3 = 0.009,c4 = 0.9,c5 =
1.1,c6 = 0.03.

In each frame, the described implementation was used
to find 500 most interesting points. On a linux computer
with a 3.3 GHz Intel Xeon E3-1230 processor, this took
95.32 ms.

4.3 Implementation of Semi-supervised Classifiers

As input features for both classification methods, the
Cartesian coordinates ([pk]1, [pk]2) of the point in the k-th
frame and and the polar coordinates ([pk− pk−1]||, [pk+1−
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pk]ϕ) of its movement with respect to the previous frame
are used.

In the implementation of the semisupervised classifica-
tion with cluster regularization method described in 3.1,
we used k-means clustering for an initial clustering of all
instances. Although this method allows choosing the num-
ber of clusters independently of the number of classes,
we have set it to the same value for comparability with
semi-supervised kernel-based fuzzy c-means, i.e., to the
value 2 corresponding to the classes of foreground objects
and background. Hence, we performed k-means cluster-
ing with k = 2. Since the k-means algorithm does not
output a probability distribution on the set of clusters, we
employed a simple procedure proposed in [8] to transform
the original distances from an instance xn to cluster centers
v1, . . . ,vk, to a probability distribution qn, which assures
that xn more likely belongs to clusters to which centers it
is closer:

(qn)i =

1−
(

‖xn−vi‖
∑k

j=1 ‖xn−vi‖

)

k−1
. (17)

Consequently, for our case k = 2:

(qn)1 =
‖xn− v2‖

‖xn− v1‖+‖xn− v2‖
, (18)

(qn)2 =
‖xn− v1‖

‖xn− v1‖+‖xn− v2‖
. (19)

The remaining parameters pertaining to semisupervised
classification with cluster regularization were set as pro-
posed in [8]: λ = 0.2,κ = 2, |φ(xn)|= 10.

For the semi-supervised kernel-based fuzzy c-means
algorithm described in 3.2, we used a Gaussian kernel
function for updating the membership matrix K(x,y) =
exp(−‖x− y‖2/σ2), where the parameter σ is computed
as proposed in [9]:

σ =
1
M

√
∑N

n=1 ‖xn− v‖2

N
, (20)

where v is the center of all instances. The remaining pa-
rameters were set as follows: m = 2,ε = 0.001, tmax = 50.

5 Experimental Validation

5.1 Employed Data

For the validation of the proposed approach we prepared
12 short videos. In all videos, there is a yellow or blue bal-
loon as a foreground object and a green background. On
the background, there are a few small red sticky notes to
help detecting some key points. The videos were recorded
in a UHD resolution.

Here is a brief characterization of all employed videos:

• a handheld camera, both the foreground object and
the background are sharp,

• a handheld camera, only the foreground object is
sharp (2 videos),

• a static camera, only the background is sharp (2
videos),

• a static camera, only the background is sharp, the
foreground object is close to the camera,

• a static camera, only the foreground object is sharp, a
hand is interfering with the background (2 videos),

• a static camera, only the foreground object is sharp,
it is moving towards the camera,

• a static camera, only the foreground object is sharp,
it is moving away from the camera,

• static camera, only the foreground object is sharp, it
passes the scene multiple times (2 videos).

For the testing, labels were available for all points of inter-
est. Unfortunately, those labels were often unreliable.

5.2 Results and Their Analysis

On all the employed videos, we measured the quality of
classification by means of accuracy, sensitivity, specificity
and F-measure of both implemented classification meth-
ods.

For the fuzzy c-means method, the accuracy and speci-
ficity on the unlabelled data are illustrated for four partic-
ular videos in Figure 1.

For the cluster-regularization method, we compared the
values of the considered four quality meaures obtained
with five classifiers trained in each of the five first video
frames with respect to the delay between classifier training
and measuring its quality. The results of their comparison
are for three particular delays, 1 frame, 5 frames and 10
frames, summarized in Table 1. In addition, for delays up
to 50 frames, they are again illustrated for accuracy and
sensitivity on the four videos used already in connection
with the fuzzy c-means classifier, in Figures 2–5.

The figures (2)–(5) indicate that classifiers trained in a
later frame tend to have higher accuracy and specificity,
but in general, the differences between classifiers trained
in different frames are small. This is confirmed by the
Friedman test for delays 1, 5 and 10 frames between clas-
sifier training and measuring its quality and for all four
considered quality measures. The hypothesis of equality
of all five classifiers is rejected (p-value < 5%) only for
the delay 1 frame and the F-measure, and weakly rejected
(p-value < 10%) for the delay 1 frame and the sensitivity,
as well as for the delay 5 frames and the F-measure. A
posthoc test expectedly reveals that the equality of all five
classifiers was rejected mainly due to differences between
classifiers trained in the early and in later frames; in par-
ticular between those trained in the 1st and 4th frame (de-
lay 1, both sensitivity and F-measure), classifiers trained
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Table 2: Results of the Friedman test of the hypothesis
that for a given delay between classifier training and mea-
suring its quality, a given quality measure is equal for the
classifiers trained in each of the 5 first video frames, for
the 12 combinations of delays and quality measures con-
sidered in Table 1. The combinations for which the tested
hypotheseis was weakly rejected (p-value < 10%) are in
italic, the single combination for which it was rejected (p-
value < 5%) is in bold italic. All simultanously tested hy-
potheses were corrected in accordance with Holm [5]

Quality measure Delay p-Value
accuracy 1 1
accuracy 5 0.117
accuracy 10 1

sensitivity 1 0.052
sensitivity 5 0.428
sensitivity 10 0.238
specificity 1 1
specificity 5 1
specificity 10 0.25
F-measure 1 0.043
F-measure 5 0.089
F-measure 10 0.238

in the 1st and 4th frame (delay 1, F-measure) and classi-
fiers trained in the 1-3 frame and in the 5th frame (delay 5,
F-measure).

6 Conclusion

The presented research integrates two comparatively re-
cent approaches, the keypoint detector ORB, which is a
combination of a corner detection method with a visual
descriptor method, and two semi-supervised classifiction
methods. To our knowledge, this is the first time these ap-
proaches are used together for the task of scene segmenta-
tion into the foreground objects and the background.

On the other hand, this is a work in progress and the pre-
sented results are still rather preliminary, being obtained
on 12 artificially created videos with a quite simple scene
segmentation. Both approaches should be investigated in
the context of more complex segmentations and more re-
alistic scenes. To this end, however, especially the ORB
detector needs to be more deeply elaborated with methods
of semisupervised classification.
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Figure 1: The evolution of accuracy (top) and specificity
(bottom) of the c-means method on the unlabelled data for
four particular videos
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Figure 4: The evolution of accuracy (top) and specificity
(bottom) of the classifiers trained in each of the 5 first
video frames for a static-camera video, in which only the
foreground object is sharp and is moving towards the cam-
era

Figure 5: The evolution of accuracy (top) and specificity
(bottom) of the classifiers trained in each of the 5 first
video frames for a static-camera video, in which only the
foreground object is sharp and passes the scene multiple
time
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