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Abstract. In this study, drug and disease features were obtained by
querying open linked data to train our classifier for predicting new drug
indications, and the predictive performance of the classifier for different
validation schemes was evaluated. We collected the drug and disease
data from Bio2RDF, an open source project that uses semantic web
technologies to link data from multiple sources. A binary feature matrix
was generated using drug target, substructure and side effects and disease
ontology terms. We collected a broader collection of data containing 816
drugs and 1393 diseases with their features and gold standard data we
generated by combining multiple drug indication data sources. We tried
our method on a different dataset, compiled by other researchers, that
confirmed the predictive value of our method independent of the primary
data.

A crucial flaw in the typical evaluation scheme for drug indication pre-
dictions that would yield unrealistic predictions is to fail to consider
the paired nature of inputs. We partitioned the data in distinct train-
ing and test sets where not only pairs but also drugs/diseases are were
not overlapped. We tested several classifiers under different cross vali-
dation schemes and compared our approach with existing methods. We
observed that our model had better predictive performance than the
existing models in disjoint cross-validation settings.
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learning, drug indication prediction

1 Introduction

Despite genomic and technological advances, drug discovery and development
continues to be a time-consuming and costly process. The number of approved
new drugs has remained far below expectations, notwithstanding substantial
investments in the pharmaceutical and health sciences. Therefore, one attractive
option is to reduce the time and cost of drug development by expanding the scope



of usage of already approved, known drugs. Given that these drugs have passed
stringent approvals by US Food and Drug Administration, there is minimal risk
associated with their safety and tolerability. Drug repositioning can dramatically
reduce development times and costs from the discovery to the clinical approval
stages. Between 20 and 30 scientific papers on the subject of drug repositioning
are published each month [1]. Given this data, the importance of repositioned
drugs on the market is highlighted by the fact that they account for 30% of new
indications per year.

Previous efforts to estimate large-scale novel drug indications have focused
on the mapping of gene expression profiles [10,8] and on the recommendation
of similar drugs or diseases based on known drug-disease relationships [4]. Ma-
chine learning has a significant advantage over other methods, by offering a way
in which to optimally combine different drug and disease characteristics into a
predictive model. It may also reveal important features that allow for identifying
promising drug indications. Machine learning based drug indication prediction
studies have used various similarity measures such as chemical structure, side-
effect, protein target information. One such approach is the PREDICT method
by [5]. In this method, 5 drug-drug similarity and 2 disease-disease similarity
measures were used to train a logistic classifier to predict potential drug-disease
association. Zhang and colleagues [23] proposed k-nearest neighbor approach (
Similarity-based LArge-margin learning of Multiple Sources (SLAMS)) to pre-
dict novel drug indications by calculating the combined similarity score with the
drug data obtained from different sources. Guney [6] developed an open-source
software tool for researchers to repeat this work and made it public.

Since machine learning generally treats drug indication prediction as a binary
classification problem, it is necessary to specify the known drug indications (pos-
itive set) and the drug-disease pairs with no indications (negative set). Although
the indications in the positive set are usually previously known, the results of
clinical trials in which drugs have failed are often not reported. A recent attempt
aimed to provide a gold standard database, repoDB [1], that also contains failed
drug-indications by retrieving clinical trial records from AACT database 4. But
the number of reported failed indications are far less than number of true indi-
cations.

In this study, drug and disease features were obtained by querying open data
to train our classifier for predicting new drug indications, and the predictive
performance of the classifier for different validation schemes was evaluated. We
compared our method with previous computational drug indication prediction
approaches. We observed that we had better predictive performance than the
PREDICT and the SLAMS in disjoint cross-validation settings. Tests and pre-
dictions data generated by combining multiple drug indications data sources
were evaluated. Finally, we make our work open and freely available so that
others can use or extend this methodology °.

4 https://www.ctti-clinicaltrials.org/aact-database
® https://github.com/rcelebi/drugindication_ml



2 Method

We developed a computational pipeline to reproduce the data and the results of
our methodology. The pipeline consists of following steps:

1- Query and download open drug and disease data sets 2- Extract features
from data sets 3- Select negative samples and balance the proportion of positive
and negative samples that will be introduced into the classifier 4- Apply cross-
validation 5- Build classifiers

2.1 Data Compiled from Linked Open Data

Machine learning models to predict drug indications were trained using drug and
disease featured extracted from open data.

Most studies use features already curated for drug repurposing. This study
generated features obtained from querying repositories of linked data. Linked
Data refers to data sources that use Semantic Web technologies to make struc-
tured content available on the web. In following the principles of Linked Data,
these resources become more FAIR - Findable, Accessible, Interoperable, and
Reusable [21]. One key resource for the biomedical sciences on the Semantic Web
is Bio2RDF [2], an open source project that uses semantic web technologies to
construct and make available a network of linked data from several major bio-
logical databases, including Drugbank, KEGG and SIDER. We used Bio2RDF
to obtain raw data which were subsequently processed to generate the features
for our learning model (Figure 1).
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Fig. 1. Visualization of the semantic graph for Clozapine in the subset of Bio2RDF.
Bio2RDF normalized and integrated drug data from different data sources in semantic
space.



We wrote and executed SPARQL queries to obtain 816 drugs and their tar-
gets from DrugBank and KEGG dataset, the chemical structure information of
these drugs from DrugBank dataset, the side effect information from SIDER, and
diseases MedDRA concepts from BioPortal (Noy et al. 2009). In case of a version
update to the data, it will be possible to re-execute the queries and obtain new
updated data.

We normalized the data using Drugbank identifiers for drugs, NCBI gene
identifiers for drug targets and diseases, while side effects were mapped to UMLS
identifiers so as to integrate various terminologies.

We obtained drug-disease associations from DrugCentral and The National
Drug File Reference Terminology (NDF-RT) repositories. Drug Central con-
tained a total of 6677 drug-disease relationships consisting of 1519 drugs and
1229 diseases. NDF-RT contains 2998 drug indications spanning 782 drugs and
737 diseases that have direct mappings to Drugbank, UMLS concepts respec-
tively. After assembling drug-disease associations, a unified gold standard has
8951 drug indications, 1594 drugs and 1611 diseases (see Table 1). Only 4715
drug-disease associations were used in the experiments where the features could
be generated for only 788 drugs and 1103 diseases in the unified gold standard.

Table 1. Statistics about NDF-RT, DrugCentral and unification of two gold standards.

DrugCentral NDF-RT Common Unified

Drug 1519 782 707 1594
Disease 1229 737 355 1611
Drug-Disease Association 6677 2998 724 8951

2.2 Extracting Features

Chemical structure Drug structure at the molecular level describes its binding
activity. Chemical fingerprints are the most commonly used structural profiling
marker for drugs [13]. Fingerprints are bit vectors that indicate the presence (1)
or absence (0) of certain chemical features (e.g. a C=N group, a six member ring,
). We used the OpenBabel 2.3 library to take an input chemical formula (SMILES
ID) and generate Molecular Access System (MACCS) binary structural feature
lists with lengths of 166.

Drug targets The set of targets for a drug can shed light on affected biological
processes. We represent the set of drug targets obtained from DrugBank and
KEGG as a bit vector in which 1 represents a target of the drug, and a 0
represents not a target for the drug. This results in a sparse matrix, since the
drugs have a median of one putative target each.



Drug Side Effects Side effects elicited by drugs are suggestive of a physiological
role. Previous studies have used used side effects to estimate drug similarity,
despite the potential noise in labeling [3,22]. We used SIDER [9] as a source
of drug side-effect information. SIDER was automatically constructed by text
mining of drug product labels and are known to contain false positives.

Disease Description A drug can be indicated for a greater number of dis-
eases than its original indications. In order to be gain information about these
situations, it is necessary to produce profiles that describe the level of similarity
between diseases. In order to produce a disease profile, we used top-level concepts
that the disease shared on an ontology. We obtained NDF-RT and MedDRA on-
tologies from BioPortal to define a disease with its top-level concepts. If a disease
is present in a ontology, the top concepts associated with this concept represent
1 (existence) or 0 (absence) in the feature vector.

2.3 Selecting and Balancing Negative Samples

We tested the strategy for the selection of negative examples that was conducted
by means of random selection of negative cases from among unknown drug-
disease associations within the diseases at least one drug indicated for. The
negative set is randomly selected from unknown drug-disease associations in
some proportion to the number of pairs within the the positive set. The user can
input the proportion of the positive and negative samples within each fold.

2.4 Evaluation

Existing studies generally predict that the drugs in the test set will also be in
the training set. However, researchers are more interested in discovering a drug
whose indications are unknown, so the evaluation established in this way can
give misleading information about the prediction of indications for new drugs.
Guney [6] examined the situation where the drugs in the test set are disjoint from
the drugs in training set. We have expanded Guney’s drug-wise cross-validation
approach to include disease-wise cross-validation as well (see Figure 2). Thus,
prediction performance changes were observed in the samples in the test set
differed from those in the training set, in which they have no common drugs or
diseases. We used these different cross-validation schemes to see how reliable our
estimates are for a drug or disease that is not in the training set.

2.5 Building Classifiers

We used Python Scikit-learn machine learning package to build the classifiers.
Various classifiers were constructed with logistic regression (LR), k-nearest neigh-
bor classifier (KNN), random forest (RF), and gradient boosting classifier (GBC).
The parameters for building different classifiers were chosen as follows: L2 penalty
and C = 1.0 for LR; n_neighbors = 5 for KNN; n_estimators = 1000 and
max_depth = 5 for RF and GBC. We implemented approaches for data balanc-
ing, cross validation and classifier building.
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Fig. 2. Graphical representation of training-test split of a toy data. In this example c1,
c2, c3, and c4 correspond to four compounds, and pl and p2 correspond to two phe-
notypes. A known drug indication between a compound and phenotype is represented
as the edge of the graph. Since two-fold cross-validation was used in this example, two
groups were separated in terms of drug or disease. In the case of a) drug and b) disease
and related associations are grouped into training and test data.

3 Results

We first compared our approach with the SLAMS method using NDF-RT gold
standard and the data already curated, available online through Guneys tool.
By trying the same data used in the SLAMS method we wanted to show the
predictability of our method independent of the data compiled. The NDF-RT
version that they used contained a total of 3250 drug relationships between 799
drugs and 719 diseases. We observed best AUC = 87.10% for the NDFRT gold
standard using Gradient Boosting Tree Classifier with pair-wise cross-validation
(see Table 2). AUC fell to 82.77% in drug-wise cross-validation ( no two drugs are
not in the same fold) . Here, the number of negatives samples chosen was twice
as large as the positive set. In comparison, the SLAMS could yield best AUC
=84.65% with Logistic Regression for in pair-wise cross-validation and AUC
=68.43% in drug-wise cross-validation. It shows us there is a huge improve-
ment in prediction performance for drug-wise (68.43% to 82.77%) and pair-wise
(84.65% to 87.10%).

We next examined the prediction performance of our method with the unified
indication gold standard and the data compiled from open linked data. Figure 3
shows the AUC for different classifiers under various validation schemes averaged
over ten runs of ten-fold cross validation. We observed Gradient Boosting Clas-
sifier (GBC) has significant prediction performance over other ML methods with
AUC of 0.88. Under both drug-wise and disease-wise cross validation schemes,



Table 2. Areas under ROC curves (AUC) under drug-wise and pair-wise cross-
validation averaged over ten runs of ten-fold cross validation for NDF-RT gold standard.

Our Method SLAMS

Model Drug disjoint AUC AUC
LR no 73.03 £+ 2.00 84.65 +0.19
yes 69.46 + 3.79 68.43 4+ 0.87
RF no 82.88 + 1.69 82.78 £+ 0.40
yes 76.79 & 3.78 65.27 4+ 0.82
KNN no 70.81 + 2.26 81.83 £+ 0.82
yes 70.52 + 4.22 65.44 + 0.75
GB no 87.10 + 1.53 84.22 +0.36

yes 82.77 £ 3.37 67.82 £ 0.74

GBC was better than other ML algorithms and did not fall below AUC score of
0.83.

When considering drug-wise disjoint cross-validation scheme, SLAMS ob-
tains AUC score of 0.66 with logistic regression at best. Another observation is
PREDICT with the drug and disease similarities using the same data obtains
an averaged AUC score of 0.72 with logistic regression under the same scheme.

3.1 Analysis of Novel Predictions

To evaluate the predictive power of our method, we investigate the predictions
made by our tool for drug Reboxetine. Reboxetine is an antidepressant effective
drug in the selective noradrenaline reuptake inhibitor (SNARI) group used in
the treatment of depression with high affinity for the carrier of noradrenaline,
which selectively inhibits noradrenaline reuptake in the presynaptic range.

Reboxetine has only one indication (Major Depressive Disorder) specified in
our gold standard. In the light of current literature, Reboxetine is also suggested
as an effective and safe option for the treatment of depression, sleep disorders
[11,17], eating disorders [7, 18], attention deficit hyperactivity disorder (ADHD)
[19, 16], panic attack [20], depression in parkinsonian patients [12]. The estimates
we made for potential indications of this drug are given in the Table 3.

The probabilities for the potential indications for the logistic classifier Re-
boxetine were given in Table 3 and the average probability of 17 indications
are 0.65. For the first 15 diseases, the probability is greater than 0.5 and it is
understood that the indication is likely. Our model predicts that among all dis-
eases, 200 diseases may be associated with Reboxetine (P > 0.5). In addition to
the reasonable estimates such as Hypertensive disease (P = 0.937) and Allergic
rhinitis (P = 0.986), which need to supported by evidence from the literature.
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Fig. 3. Areas under ROC (AUC) under various validation schemes averaged over ten
runs of ten-fold cross validation for the unified gold standard.

4 Conclusion

Researchers have exploited publicly accessible datasets to validate their hypothe-
ses for prediction of drug indications. However, the datasets are diverse and are
subject to change over time, which may result in different conclusions for the
same hypotheses. We used Semantic Web technologies, specifically Linked Data,
to represent, link and access data related to drugs and diseases provided by the
Bio2RDF project. We use SPARQL queries to obtain drug and disease features
to train classifiers. In case of a version update to the data, it will be possible to
re-execute the queries and obtain new updated data.

We collected a wider collection of data containing 816 drugs and 1393 diseases
with their features. Predictions for gold standard data generated by combining
multiple drug indications data sources were evaluated. We tried our method on a
different dataset, compiled by [23], that show us the predictability of our method
independent of the data compiled.

A crucial flaw in a typical evaluation scheme for drug indication predictions
that would make unrealistic predictions is failure to consider the paired nature of
inputs [15]. We partitioned the data in distinct train and test sets where not only
pairs but also drugs/diseases are not overlapped as suggested in [14] for drug-
target interaction prediction. We tested several classifiers under different cross
validation schemes and compared our approach with existing methods namely
PREDICT, SLAMS. We observed that we had better predictive performance
than the PREDICT and the SLAMS in disjoint cross-validation settings.



Table 3. Potential indications for Reboxetine and prediction scores by our model

Ranking Disease Probability
1 Narcolepsy 0.82
2 Depressive disorder 0.8
3 Parkinson Disease 0.78
4 Schizophrenia 0.77
5 Obsessive-Compulsive Disorder 0.71
6 Anxiety Disorders 0.71
7 Generalized Anxiety Disorder 0.71
8 Panic Disorder 0.69
9 Obesity 0.69
10  Cerebrovascular accident 0.67
11 Anorexia nervosa 0.67
12 Bulimia Nervosa 0.67
13 Attention deficit hyperactivity disorder 0.63
14  Eating Disorders 0.63
15  Post-Traumatic Stress Disorder 0.58
16  Fibromyalgia 0.46
17  Binge eating disorder 0.18
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