
Model-driven generation of a BPMS portal based
on Interaction Flow Modeling Language models

Daniel Calegari, Andrea Delgado
Facultad de Ingeniería, Universidad de la República

11300 Montevideo, Uruguay
Email: {dcalegar,adelgado}@fing.edu.uy

Abstract—In any organization, the use of default web applica-
tions that come with their software infrastructure, e.g., a Business
Process Management Systems (BPMS), is the best option in
many cases, if they fulfill the requirements of such organization.
However, there are some cases in which it would be desirable for
an organization to be able to develop or to integrate their own
user web portal with the legacy infrastructure. In previous work
we have proposed a generic BPMS user portal which can be
integrated with potentially any process engine for the execution
of business processes. The main objective of this paper is to
provide an experience report on the use of the Interaction Flow
Modeling Language and the Model-Driven-Engineering approach
for the generation of such BPMS portal. In particular, we discuss
the potential of plain IFML (i.e., the standard definition without
platform-specific extensions) for the specification of a front-end,
as well as some open issues behind its use for the automatic
generation of the BPMS portal in a target platform.

Keywords-Business Process Management Systems; Interaction
Flow Modeling Language; Model-Driven-Engineering

I. INTRODUCTION

Business Process Management Systems (BPMS [1]) arise
as the technology to support the Business Processes (BPs)
lifecycle, from modeling, through developing, deploying, ex-
ecuting and evaluating their execution. Common elements
provided by any BPMS are a process engine where BP
models are executed, a service-oriented API for accessing its
functionalities, and a web portal for user’s interaction (e.g.,
for managing a work list, and performing tasks).

Besides it is possible to begin with a business process
specification and to define a front end adapted to the specific
process, most BPMS provide process-independent user portals
with basically the same set of core features. In Figure 1 there is
an example of the Activiti BPMS1 portal showing the process
area, in which deployed processes can be executed, and the
task area, in which users can manage their work list (i.e. take,
reassign and complete tasks assigned to their roles.

Usually, BPMS portals are tightly coupled with the native
process engine API. The independence between the front-
end and the process engine provides means to migrate from
one process engine to another without affecting the user
experience, as well as offers a unified interaction layer for
external applications, similarly to the way applications already
work nowadays with many database management systems.

1Activiti BPM Platform. http://www.activiti.org/

In [2] we have proposed generic (process-independent)
BPMS user portal which can be integrated (loosely cou-
pled) with potentially any process engine for the execution
of business processes. It is based on a unified data model
and a generic process engine API. We have modeled our
generic BPMS user portal using WebML [3], a domain-
specific language for web applications. WebML can be seen
as an extension of the Interaction Flow Modeling Language
(IFML [4]), a standard language designed for expressing the
content, user interaction and control behavior of the front-
end. A platform-independent front-end model gives us the
possibility to follow the Model-Driven Engineering (MDE [5])
paradigm for the definition of a Model to Text (M2T) transfor-
mation for generating the portal using different technologies.

In such work we faced some difficulties. We specify
WebML models using WebRatio2, the only tool that allows
the specifications of these kind of models and also the code
generation to some specific platforms. However, we needed to
manually implement the prototype since our target technology
was not supported. Moreover, although WebRatio provides
means for connecting to a BPMS, this connection was re-
stricted to some specific BPMS, and it was not possible to
configure every action on the web application to be based on
services provided by our generic API.

Based on these difficulties, the main objective of this paper
is to provide a report on the use of IFML and the MDE
approach for the generation of such BPMS portal. In particular,
we discuss the potential of plain IFML (i.e., the standard
definition without platform-specific extensions) for the spec-
ification of a front-end, as well as the complexity behind
the definition of M2T transformations to a target platform.
Moreover, we use IFML extension mechanism for expressing
concrete action elements connecting the BPMS portal with our
generic API, but without depending on any specific platform.
Finally, we prototype the IFML models with the Eclipse open
source editor3 and define a M2T transformation with Acceleo4.
Complete code is available here5.

The rest of this paper is structured as follows. In Section II
we review some related work. In Section III we provide a brief
introduction to the IFML standard. In Section IV we overview

2WebRatio. http://www.webratio.com
3IFML editor. https://github.com/ifml
4Acceleo. http://www.eclipse.org/acceleo/
5Complete code. https://gitlab.fing.edu.uy/open-coal/IFMLModComp



(a) Process area (b) Task area

Fig. 1. Activiti BPMS process-independent user web portal

the generic BPMS portal we proposed in [2]. In Section V we
present the IFML-based specification of such a portal and in
Section VI we resume the implementation of a prototype based
on a M2T transformation. Then, in Section VII we discuss
some aspects of interest, and finally in Section VIII we present
conclusions and future work.

II. RELATED WORK

There are several proposals for the front-end development
based on the MDE approach, most of them are web en-
gineering approaches as WebML [3] and UML-based Web
Engineering (UWE, [6]) method. The IFML [4] raised the
level of abstraction and becomes the standard language with
a platform-independent approach. In this context, many works
arise for the extension of the language, e.g., for mobile applica-
tions [7]. However, there is not so much work on the evaluation
of the use of plain IFML for the front-end specification and
code generation, besides some general mappings defined in
the IFML book [4]. In [8] the authors define a virtual machine
which translate the IFML models into bytecode that will be
interpreted by the Java Virtual Machine.

As far as we know, there is not so much works on the defini-
tion of a generic BPMS portal. In [9] the authors propose basic
requirements for user interface components in order to make
them applicable for SOA based BPM applications, and they
exemplify how these ideas can be implemented based on Java
Portlets. They do not precisely define the front-end but assume
that the execution of a business process can be achieved with
many different ones. In contrast, we define a generic user web
portal as is commonly defined in most BPMS. As in our work,
they propose an architecture with a services layer connecting
the front-end with the execution engine. However, they define
different usage scenarios for the web services (triggering of
events from UI components, synchronization of a response,
etc.) and the aspects that must be taken into account, without
expressing which specific services they need, as done with
the definition of our API. In this sense, their ideas are more
abstract than ours, and could be integrated. Finally, WebRatio

supports BPM by providing an IFML-based specification of
the user portal using a specific web extension of the language.
Besides the specification has some similarities with ours, they
do not define a generic API (they provide their own process
engine) nor allows code generation to multiple platforms.

III. THE INTERACTION FLOW MODELING LANGUAGE

The Interaction Flow Modeling Language (IFML) [4] aims
to describe the main aspects of an application front-end,
basically: the view part of the application together with the
data and business logic actions, and the control logic. However,
it does not allow the definition of graphics and styles, as well
as the position and rendering of specific view components.

IFML main elements are shown in Figure 2. An IFML
diagram consists of one or more top-level view containers.
These containers can be set as landmark containers (tagged
with a L near the containers name), i.e. they can be accessed
from any other container, e.g. through a link. Moreover, they
can be composed by other containers, e.g. a main window
with many nested windows. These composition can be set
as an alternative (tagged with XOR), i.e. only one nested
container is shown at a time. Also, containers can be set
as default (tagged with D), i.e. they are shown by default,
e.g. the main window. Within a view container, there are
view components, i.e. elements of an interface that displays
content or accepts input (e.g. a form, a list, etc.), and view
component can have many view component parts (e.g. a simple
field of a form or a column in a list). Events are attached
to containers and components (e.g. when an element of a
list is selected) affecting the state of the user interface and
possibly causing the triggering of an action (i.e. a piece of
business logic triggered by an event which may reside on
the server or on the client side, e.g. deletion of the selected
element from the list, or a database update). The state change
caused by an event, and the effect of an event triggering, is
expressed as a navigation flow connecting the event/action to
the view container or component affected by the event/action.
Data flows between view elements and actions bound to



Fig. 2. Main IFML concepts

navigation flows as parameters (typed and named values).
View components and navigation flows are connected with
a domain model which expresses the domain elements and
behaviors for which the IFML model is defined.

WebML [3] is a domain-specific language for web applica-
tions which can be defined using the IFML extension mech-
anism. By using IFML, it is possible then to automatically
generate most of the front-end for different technologies. As
mentioned before, currently there are only two implemen-
tations of IFML: WebRatio which provides a tool suite for
WebML modeling and full code generation; and the Eclipse
IFML editor providing IFML modeling capabilities only.

IV. A GENERIC BPMS USER PORTAL

The generic BPMS user portal we proposed in [2] follows
the architecture shown in Figure 3.

Fig. 3. Generic BPMS portal Architecture diagram

At the Presentation Layer level, the BPMS user web portal
provides the user with the set of functionalities needed to
manage BPs and activities cases, worklists, groups and roles,
among others. Also, other existing applications can be defined
and connected to the generic API in order to interact with the
selected process engine. The Access Layer is composed of two
sub-layers: the Service Layer where the generic process engine
API is defined exposing functionalities to the user portal, and
the Integration Layer which provides the means to actually
implement the interaction with the selected process engine.

Interoperability is achieved based on a unified data model
which was defined as an abstraction of concepts from different
process engines [2] (shown in Figure 4).

The generic API provides general services such as logging
facilities, and specific services such as listing pending tasks for
a given user. The Integration Layer is responsible for providing
the functionalities exposed by the generic process engine API
by invoking the specific methods from the selected process en-
gine, since each process engine has different operation signa-
tures and ways of exposing the same functionality. It comprises
two main components: (i) the interface IEngineAdapter
component which defines the functionalities that have to be
provided, and (ii) the specific adapter component which have
to be implemented for each selected process engine.

Adapters provide the functionalities defined in the interface
by invoking the selected process engine, translating the re-
sponse to the one expected by the generic API. This layer
decouples the definition of functionalities of the portal from
the implementation of these functionalities, which can be
provided by any process engine via the Integration Layer.
Functionalities not provided by the selected process engine
can be disabled in the user portal. In this way, our BPMS
generic portal does not provides yet another process engine
implementation, but a clean integration with existing ones.

The Presentation Layer was formerly expressed using
WebML and manually implemented using HTML5 and
Javascript, as well as other frameworks for structuring code
(AngularJS6) and style sheets and layout definitions (Boot-
strap7). We have also implemented a concrete instance of
our unified process engine API as a HTTP REST API using
Jersey8, and an adapter for the Activiti process engine. The
data model was implemented using the JavaScript Object
Notation (JSON9) as a lightweight data-interchange format.

V. IFML-BASED SPECIFICATION

The IFML models were specified using the open source
IFML editor. In what follows we present an excerpt of the
models, complete enough for exemplifying the use of the main
IFML elements depicted in Figure 2, and for defining the M2T
transformation in the next section. A more complete definition
of the original WebML models can be found in [2].

The generic BPM portal begins with the definition of a
home view which contains a login form which can be used
by users to access the site, as shown in Figure 5. The "Login"
action has a specific dynamic behavior which allows to use the
generic API to login a user to the BPMS. Within IFML actions
are defined in an abstract way. However, when the generator
detects such behavior, it generates the corresponding logic for
login. In general, since we are expressing a presentation layer
on a specific and fixed domain (not depending on the specific
business process that will be executed), actions are fixed and
defined in terms of our generic API.

6AngularJS. https://angularjs.org/
7Bootstrap. http://getbootstrap.com/
8Jersey. https://jersey.java.net/
9JSON. http://www.json.org/



Fig. 4. Unified data model for a BPMS portal in a conceptual UML model

Fig. 5. IFML login model

When a user is logged in, it goes to the Common User
view which provides the functionalities for users of the BPMS,
e.g., list of assigned tasks, perform a task, among others. It
is divided into three main areas: tasks, cases and processes,
which allow identified users to manage their work within the
processes in which they are involved, as was exemplified for
Activiti BPMS in Figure 1. The most important functionality

of a web portal for regular users is the work list, in which
users can list, take, reassign and complete tasks assigned to
their roles (or specifically to them).

In Figure 6 we present the IFML modeling of the processes
area, which allows to search for a specific process (represented
with a Form component), shows a list of processes (repre-
sented as a List component) with their corresponding id, name
and version, and allows to initiate an instance of any of them
(represented with a navigation flow from the process list to
the process form, together with a data binding for identifying
the corresponding process instance). Once again, we express a
"Start" action in an abstract way, but it has a specific dynamic
behavior for starting the process using our generic API.

VI. M2T TRANSFORMATION PROTOTYPE

We defined a M2T transformation from IFML to Java
Server Faces (JSF10) which allows us to generate a front

10Java Server Faces.
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html



Fig. 6. IFML processes area model

end following the Model View Controller (MVC) pattern. We
selected this technology because based on MVC it provides a
clear separation between the view (pages) of the presentation
and its logic. The business logic of our application is assumed
to be provided by the generic API, which can be accessed
through web services as in [2], and it is consistent with the
data model in Figure 4.

A. M2T transformation

The M2T transformation is basically defined as follows:
• Windows (View Container) are translated into web

pages. For each window we generate two files: one with
the view (XHTML page) and another with the controller
(Java code). Since within a window there could be other
components, their generated code is included within the
same two files. When the XOR property of a window is
checked (a disjoint visualization of views), we generate
a lateral bar from which each of the XOR views can be
selected. Moreover, if the modal property is checked, we
generate a pop-up (modal) page. Finally, if the landmark
property is checked, meaning that the container must be
accessible from any other page, we add a link to this page
in a menu bar located in the JSF application header.

• Form is a view component inside a view container, e.g.,
a window. For each form we generate a HTML form with
their corresponding fields (i.e., SimpleField in the IFML
specification). Each field is bound to a domain element
attribute within the domain model, thus we generate the
code for binding form fields to Java beans.

• Action we use specific actions that are mapped to specific
services within our generic API through the dynamic
behavior property of the action. In this way, we generate
the code for service consumption when for example a
button is pressed. We also bind input and output data
of the action to the corresponding input and output
parameters of the service, respectively. Input and output
data is represented with the datatypes generated from the

Fig. 7. Prototype generation process

domain model. Since the action has a navigation flow
from it to another window, we also generate the automatic
flow to the corresponding page (potentially the same).

• List and Details are translated into their corresponding
JSF components (a list or a table). As in the case of the
form, each of their simple fields are bind to some domain
concept attribute.

• Navigation flows are basically translated into buttons. In
the case of a navigation flow from a window, we generate
a button in the top right part of the page. In some cases,
e.g., when navigating from a list to an action or window,
we interpret the navigation flow as a repetitive action,
thus we generate a button for each list element.

• Authentication there are some aspects of the applica-
tion which cannot be expressed in plain IFML, as for
example authentication controls in each page. Thus, our
transformation generates a code fragment for validation
which is included within each page and connected with
the authentication service of our generic API.

B. Code generation

From the technical perspective, the M2T transformation
from IFML to JSF is implemented using Acceleo, an imple-
mentation of the MOF Model to Text Language (MTL) stan-
dard within the Eclipse environment. As depicted in Figure 7,
the generation process takes as input a set of files produced
by the Eclipse-based IFML editor representing the IFML
metamodel and a specific model, and provides as output a JSF
front-end composed by XHTML pages and Java components.

An example transformation rule is depicted in Figure 8. The
rule queries the navigation flows defined within a window
and, for each one of them, defines a navigation button to
its corresponding target flow element (in this case: a window
that will be transformed into a web page). We used Bootstrap
components and style sheets for adding responsive behavior.

After the M2T is performed, a web project is automatically
generated with the web pages and resources for executing the
generic BPM portal. By setting defined configuration files we
can indicate the concrete BPMS process engine that will be
used, since the generated beans invoke the operations defined
in the generic API. We encapsulated the invocations in a set
of utility classes that are used throughout the site beans, to
obtain data from the process engine.



[comment Links to other pages in the upper right corner /]
[if (element.oclAsType(IFMLWindow).eContents(NavigationFlow)->size()>0)]
<h:form class="row">
<div class="pull-right btn-group" role="group" aria-label="...">

[for (element2 : InteractionFlowModelElement | element.eContents())]
[if (element2.oclIsTypeOf(NavigationFlow))]

[if (element2.oclAsType(NavigationFlow).targetFlowElement.oclIsTypeOf(IFMLWindow))]
<h:commandButton class="btn btn-default" value="..." action=""/>
[/if]

[/if]
[/for]

</div>
</h:form>
[/if]

Fig. 8. Example of a transformation rule using Acceleo

An example of the JSF front-end generated from the IFML
model in Figure 6, is the one depicted in Figure 9. The
processes area is a landmark page which can be accessed
from the menu bar. There is a logout button in the top right
part of the page representing a navigation flow between the
processes window to the logout window (not shown in the
IFML models). The search form allows updating the list of
processes once the button is pressed. Within the processes list
there is a repetitive action for starting a process, represented
as a button on the left side of each element.

VII. DISCUSSION

In what follows we discuss several aspects that arise from
our experience and describe many open research problems.

IFML has a great potential and WebRatio is a powerful
tool for supporting the whole life cycle of IFML based
applications. Unfortunately it is the only one, and from a
research perspective it has many drawbacks: it is not open
source, their metamodels are not available, and there is no
information about how the M2T transformations are defined.

One of the open issues (resolved somehow by WebRatio) is
the connection between IFML and other front-end aspects as
graphics, styles, position and rendering of components. In our
experience, the main problem when using plain IFML or one
of their extensions for code generation is that many implicit
decisions have to be taken, or postponed for a future step,
e.g. adding styles in the resulting web application. However,
it could be beneficial to have these aspects modeled and
connected to the IFML model, but not as an extension of
it (e.g. as a complementary model). In fact, the extension
mechanism provided for IFML has some drawbacks from our
point of view, as we will discuss next.

Plain IFML, i.e. the standard definition without any exten-
sion, is enough for expressing many things, but as mentioned,
it is also restrictive. There is a need for lowering the ab-
straction level in order to express platform-specific aspects,
such as: first, the technology to be used, and second, the
kind of environment in which the front-end will be executed.
With respect to the second one, IFML extensions add concrete
actions and components for expressing mobile or web aspects,

independent of any given technology. However, once a model
is built for a given environment, it must be rebuilt for another,
e.g. the use of specific view components, although many of the
aspects already expressed do not change, e.g. the navigation
between containers. In some approaches, e.g. UWE [6], the
presentation and the navigation models are distinguished,
whilst in IFML are tightly coupled. In this sense, it is an
open problem how to adopt a multi-modeling approach for
expressing platform-specific aspects together with the other
front-end elements discussed before.

Based on the existent IFML extension mechanisms, it is
possible to come up with an IFML extension for modeling
BP execution, in connection with the generic process engine
API defined in [2]. In this way, we allow the integration of
any IFML front-end with potentially any process engine, not
necessarily using our BPMS portal definition. For this we
need to extend actions with their respective data bindings
(input and outputs) for login, creation of cases and tasks,
assignation and completion of tasks, among other operations.
We can also define some actions and view components for
common queries, e.g. for querying the list of pending tasks
for a user. Moreover, it could be useful to encapsulate some
parts of the BPMS portal into so called portlets, e.g. the task
list, in such a way that they can be reused in any IFML
application, as proposed in [9] with respect to the definition
of GUI components for SOA based BPM applications.

With respect to the definition of M2T transformations, Ac-
celeo is a very powerful tool but his template-based approach
can be tricky if there is no previous intention of reuse (e.g.
lack of explicit modularization). In particular, it is desirable
to define a library for querying the source model, i.e. in the
case of IFML, for retrieving every container, every navigation
flow from a given component, and so on, which can be reused
no matter the target of the transformation. If not, templates
result in a mixed combination of explicit model queries and
generated text which is hard to read and does not allows reuse.

Finally, from a component perspective, the BPMS world
provides an example of componentization in which process
engine functionalities can be abstracted and the user interface
can be reused in new contexts. The generic API is the most



Fig. 9. Generated JSF processes area

valuable component within the architecture in Figure 3. In
order to enable different BPMS providers we can follow an
ontology-based approach for mapping their engine services
against a set of ontologies in order to support the discovery
and invocation of services. This is intended as future work.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we presented an experience report on the
use of IFML and the MDE approach for the generation of
a generic BPMS user portal which can be integrated (loosely
coupled) with potentially any process engine for the execution
of business processes. We provided a plain IFML specification
of such a portal and a the definition of an Acceleo M2T
transformation for the generation of a JSF-based front-end.

We found that plain IFML has great potential for the
generation of a front-end, but there are many issues that must
be resolved for improving such front-end. In this sense, we
discusses several open problems related with the inclusion of
complementary metamodels (e.g. for styles) and the use of a
multi-modeling approach for expressing different abstraction
levels. We also discuss the possibility of defining an IFML
extension for modeling BP execution in an abstract way.

Since IFML is a high-level language with a visual represen-
tation, it brings UI experts closer to non-technical stakeholders.
However, it is possible to go one step further considering a
mockup-driven approach in which IFML can be considered an
intermediate model for representing certain aspects of a front-
end. In this approach, model-to-model transformations could
be defined from some mockup language to IFML and other
languages in the multi-modeling approach we discussed.

IX. ACKNOWLEDGEMENTS

We would like to thank the students who worked in the
project regarding the prototype implementation: Adrian Dos
Santos, Patricia Rolandi and Guillermo Serratto.

REFERENCES

[1] J. Chang, Business Process Management Systems: Strategy and Imple-
mentation. Auerbach Publications, Taylor & Francis Group, 2005.

[2] A. Delgado, D. Calegari, and A. Arrigoni, “Towards a generic BPMS user
portal definition for the execution of business processes,” Electr. Notes
Theor. Comput. Sci., vol. 329, pp. 39–59, 2016.

[3] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Mat-
era, Designing Data-Intensive Web Applications. Morgan Kaufmann
Publishers Inc., 2002.

[4] OMG, “Interaction Flow Modeling Language Specification (IFML) v1.0,”
Tech. Rep., 2015.

[5] S. Kent, “Model driven engineering,” ser. Proceedings of Integrated
Formal Methods 2002, 2002, pp. 286–298.

[6] N. Koch, A. Knapp, G. Zhang, and H. Baumeister, “Uml-based web
engineering - an approach based on standards,” in Web Engineering:
Modelling and Implementing Web Applications, ser. Human-Computer
Interaction Series, G. Rossi, O. Pastor, D. Schwabe, and L. Olsina, Eds.
Springer, 2008, pp. 157–191.

[7] M. Brambilla, A. Mauri, and E. Umuhoza, “Extending the interaction
flow modeling language (IFML) for model driven development of mobile
applications front end,” in Mobile Web Information Systems - Proc. of
11th Intl. Conference, MobiWIS 2014, ser. Lecture Notes in Computer
Science, I. Awan, M. Younas, X. Franch, and C. Quer, Eds., vol. 8640.
Springer, 2014, pp. 176–191.

[8] S. Gotti and S. Mbarki, “Toward IFVM virtual machine: A model driven
IFML interpretation,” in Proc. of the 11th Intl. Joint Conference on
Software Technologies (ICSOFT 2016), L. A. Maciaszek, J. S. Cardoso,
A. Ludwig, M. van Sinderen, and E. Cabello, Eds. SciTePress, 2016,
pp. 220–225.

[9] J. Hohwiller and D. Schlegel, “Integration of UI services into SOA based
BPM applications,” Lecture Notes in Business Information Processing,
vol. 97 LNBIP, pp. 53–64, 2011.


